
Banach J. Math. Anal. 2 (2008), no. 2, 85–93

Banach Journal of Mathematical Analysis

ISSN: 1735-8787 (electronic)
http://www.math-analysis.org

THREE–PARAMETER WEIGHTED HARDY TYPE
INEQUALITIES

R. OINAROV1∗ AND A. KALYBAY2

This paper is dedicated to Professor Josip E. Pečarić
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Abstract. For 0 < r < ∞ and 1 ≤ p ≤ q < ∞ we find necessary and
sufficient conditions for the validity of the following inequality: b∫

a

u(x)

 x∫
a

|g(x)− g(t)|rw(t)dt


q
r

dx


1
q

≤ C

 b∫
a

v(x)|g′(x)|pdx


1
p

,

where u(·), v(·), and w(·) are weight functions.

1. Introduction and preliminaries

Let 0 < r, p, q < ∞ and −∞ ≤ a < b ≤ +∞. Suppose that u(·), v(·), and w(·)
are weight functions, i.e., positive and locally integrable on (a, b).

We consider the following inequalities: b∫
a

u(x)

 x∫
a

|g(x)− g(t)|rw(t)dt


q
r

dx


1
q

≤ C

 b∫
a

v(x)|g′(x)|pdx


1
p

, (1.1)
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a

u(x)

 b∫
x

|g(t)− g(x)|rw(t)dt


q
r

dx


1
q

≤ C

 b∫
a

v(x)|g′(x)|pdx


1
p

. (1.2)

If we put that g′(x) = f(x) for x ∈ (a, b), then the inequalities (1.1) and (1.2)
have the following forms: b∫

a

u(x)

 x∫
a

∣∣∣∣∣∣
x∫

t

f(s)ds

∣∣∣∣∣∣
r

w(t)dt


q
r

dx


1
q

≤ C

 b∫
a

v(x)|f(x)|pdx


1
p

, (1.3)

 b∫
a

u(x)

 b∫
x

∣∣∣∣∣∣
t∫

x

f(s)ds

∣∣∣∣∣∣
r

w(t)dt


q
r

dx


1
q

≤ C

 b∫
a

v(x)|f(x)|pdx


1
p

, (1.4)

respectively.
In the inequalities (1.3) and (1.4) without loss of generality we suppose that

f ≥ 0.
In this paper we study the inequalities (1.1) ((1.3)) and (1.2) ((1.4)) in the case

0 < r < ∞ and 1 ≤ p ≤ q < ∞.
Let (α, β) ⊂ (a, b) and 1

p
+ 1

p′
= 1. Assume

v(α, β) = ess inf
α<t<β

v(t), U(α, β) =

 β∫
α

u(x)dx


1
q

,

A+(α, β) = sup
x∈(α,β)

 β∫
x

w(t)dt


1
r
 x∫

α

v1−p′(s)ds

 1
p′

,

B+(α, β) =

 β∫
α

 β∫
x

w(t)dt


r

p−r
 x∫

α

v1−p′(s)ds


r(p−1)

p−r

w(x)dx


p−r
pr

,

D+(α, β) =

 β∫
α

 β∫
x

w(t)dt


r

1−r

(v(α, x))
r

r−1 w(x)dx


1−r

r

,

A−(α, β) = sup
x∈(α,β)

 x∫
α

w(t)dt

 1
r
 β∫

x

v1−p′(s)ds


1
p′

,
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B−(α, β) =


β∫

α

 x∫
α

w(t)dt

 r
p−r
 β∫

x

v1−p′(s)ds


r(p−1)

p−r

w(x)dx


p−r
pr

,

D−(α, β) =

 β∫
α

 x∫
α

w(t)dt

 r
1−r

(v(x, β))
r

r−1 w(x)dx


1−r

r

,

J+(α, β) = sup
f≥0

(
β∫
α

w(t)

(
t∫

α

f(s)ds

)r

dt

) 1
r

(
β∫
α

v(x)fp(x)dx

) 1
p

,

J−(α, β) = sup
f≥0

(
β∫
α

w(t)

(
β∫
t

f(s)ds

)r

dt

) 1
r

(
β∫
α

v(x)fp(x)dx

) 1
p

.

By now owing to a series of works there are known the exact in order estimates
of the values J+ and J− for the different relations between the parameters 0 <
r < ∞ and p ≥ 1. Review of these works, corresponding references and obtained
results are given in the monograph [1]. From [1] and some more exact results
from [2] we have
Lemma A. (i) If 1 ≤ p ≤ r < ∞, then

A±(α, β) ≤ J±(α, β) ≤ p
1
r (p′)

1
p′ A±(α, β). (1.5)

(ii) If 0 < r < p and 1 < p < ∞, then

(p′)
1
p′ r

1
p

(
1− r

p

)
B±(α, β) ≤ J±(α, β) ≤

(
p

p− r

) p−r
pr

p
1
p (p′)

1
p′ B±(α, β). (1.6)

(iii) If 0 < r < 1 = p, then

r(1− r)D±(α, β) ≤ J±(α, β) ≤ (1− r)
1−r

r D±(α, β). (1.7)

Let us notice that in [1] and [2] for the case 0 < r < 1 the estimates (1.6) and
(1.7) are given only for J+, however, by changing of integration variable they can
be easily reduced to J− (see [1], page 53).

In the sequel the symbol A � B means A ≤ CB with some constant C > 0
that depends only on the parameters p, r, and q. The notation A ≈ B asserts
the existence of the two – sided estimate A � B � A. Moreover, we suppose
that the expressions of the form 0

0
, ∞∞ , and 0 · ∞ are taken equal to zero.
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2. Main results

Theorem 2.1. The inequality (1.1) ((1.3)) holds if and only if
(i) E = sup

z>0
U(z, b)A−(a, z) < ∞ for 1 ≤ p ≤ min{r, q} < ∞;

(ii) E = sup
z>0

U(z, b)B−(a, z) < ∞ for 0 < r < p and 1 < p ≤ q < ∞;

(iii) E = sup
z>0

U(z, b)D−(a, z) < ∞ for 0 < r < 1 = p ≤ q < ∞ and v(α, β) > 0

for any α, β : a < α < β < b.
Moreover, E ≈ C, where C is the best constant in (1.1) ((1.3)).

Theorem 2.2. The inequality (1.2) ((1.4)) holds if and only if
(i) F = sup

z>0
U(a, z)A+(z, b) < ∞ for 1 ≤ p ≤ min{r, q} < ∞;

(ii) F = sup
z>0

U(a, z)B+(z, b) < ∞ for 1 < r < p and 1 < p ≤ q < ∞;

(iii) F = sup
z>0

U(a, z)D+(z, b) < ∞ for 0 < r < 1 = p ≤ q < ∞ and v(α, β) > 0

for any α, β : a < α < β < b.
Moreover, F ≈ C, where C is the best constant in (1.2) ((1.4)).

We shall prove only Theorem 2.1 because Theorem 2.2 can be proved similarly.

Proof of Theorem 2.1. Since the inequalities (1.1) and (1.3) are equivalent and
moreover, their best constants coincide we shall prove Theorem 2.1 only for (1.3).

Necessity. Suppose that (1.3) is valid. Let z ∈ (a, b) and f : (a, z) → R be an

arbitrary function, for which
z∫
a

v(t)|f(t)|pdt < ∞. Suppose that

fz(t) =
{

f(t), a<t<z;
0, z≤t<b.

By substitution of the function fz in (1.3) we have that b∫
z

u(x)dx


1
q
 z∫

a

∣∣∣∣∣∣
z∫

t

f(s)ds

∣∣∣∣∣∣
r

w(t)dt


1
r

≤ C

 z∫
a

v(x)|f(x)|pdx

 1
p

.

This yields that

U(z, b)J−(a, z) ≤ C, ∀z ∈ (a, b). (2.1)

From (2.1) and Lemma A for all z ∈ (a, b) we obtain that

U(z, b)A−(a, z) ≤ C for 1 ≤ p ≤ r < ∞,

U(z, b)B−(a, z) � C for 0 < r < p and 1 < p < ∞,

U(z, b)D−(a, z) � C for 0 < r < 1 = p.

Therefore,

E � C. (2.2)
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Sufficiency. Let E < ∞ and f ≥ 0. For any integer k we define:

xk = sup{x ∈ (a, b) :

x∫
a

 x∫
t

f(s)ds

r

w(t)dt ≤ 2rk}.

It is obvious that xk ≤ xk+1, however, if xk < b, then xk < xk+1 ≤ b. Hence,

xk∫
a

 xk∫
t

f(s)ds

r

w(t)dt = 2rk and

xk+1∫
a

 xk+1∫
t

f(s)ds

r

w(t)dt ≤ 2r(k+1). (2.3)

Let Ik = [xk, xk+1). Then

(a, b) =
⋃
k

[xk, xk+1). (2.4)

Let xk < b. If r ≥ 1, then applying Minkowski’s inequality, we find that

2k−1 = 2k − 2k−1 =

 xk∫
a

 xk∫
t

f(s)ds

r

w(t)dt


1
r

−

 xk−1∫
a

 xk−1∫
t

f(s)ds

r

w(t)dt


1
r

≤

 xk∫
xk−1

 xk∫
t

f(s)ds

r

w(t)dt


1
r

+

 xk−1∫
a

 xk−1∫
t

f(s)ds +

xk∫
xk−1

f(s)ds

r

w(t)dt


1
r

−

 xk−1∫
a

 xk−1∫
t

f(s)ds

r

w(t)dt


1
r

≤

 xk∫
xk−1

 xk∫
t

f(s)ds

r

w(t)dt


1
r

+

 xk−1∫
a

w(t)dt

 1
r xk∫
xk−1

f(s)ds. (2.5)

In the case 0 < r < 1 we get that

2r(k−1) =
1

2r − 1
(2rk − 2r(k−1)) =

1

2r − 1

 xk∫
xk−1

 xk∫
t

f(s)ds

r

w(t)dt

+

xk−1∫
a

 xk−1∫
t

f(s)ds +

xk∫
xk−1

f(s)ds

r

w(t)dt−
xk−1∫
a

 xk−1∫
t

f(s)ds

r

w(t)dt
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≤ 1

2r − 1

 xk∫
xk−1

 xk∫
t

f(s)ds

r

w(t)dt +

xk−1∫
a

 xk∫
xk−1

f(s)ds

r

w(t)dt

 . (2.6)

From (2.3) and (2.4) we have that

T ≡
b∫

a

u(x)

 x∫
a

 x∫
t

f(s)ds

r

w(t)dt


q
r

dx

≤
∑

k

xk+1∫
xk

u(x)dx

 xk+1∫
a

 xk+1∫
t

f(s)ds

r

w(t)dt


q
r

≤
∑

k

2q(k+1)

xk+1∫
xk

u(x)dx ≤ 22q
∑

k

2q(k−1)

xk+1∫
xk

u(x)dx. (2.7)

Here and in the sequel the summation over k is with respect to the set {k :
Ik 6= ∅}.

Let r ≥ 1. Then from (2.5) and (2.7) it follows that

T ≤ 22q
∑

k


 xk∫

xk−1

 xk∫
t

f(s)ds

r

w(t)dt


1
r

+

 xk−1∫
a

w(t)dt

 1
r xk∫
xk−1

f(s)ds


q

xk+1∫
xk

u(x)dx

�
∑

k

 xk∫
xk−1

 xk∫
t

f(s)ds

r

w(t)dt


q
r xk+1∫

xk

u(x)dx

+
∑

k

 xk−1∫
a

w(t)dt


q
r
 xk∫

xk−1

f(s)ds

q xk+1∫
xk

u(x)dx = T1 + T2. (2.8)

In the case 0 < r < 1 due to (2.6) and (2.7) we have that

T �
∑

k

(
2r(k−1)

) q
r

xk+1∫
xk

u(x)dx ≤
(

1

2r − 1

) q
r ∑

k

 xk∫
xk−1

 xk∫
t

f(s)ds

r

w(t)dt
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+

xk−1∫
a

w(t)dt

 xk∫
xk−1

f(s)ds

r
q
r xk+1∫

xk

u(x)dx

�
∑

k

 xk∫
xk−1

 xk∫
t

f(s)ds

r

w(t)dt


q
r xk+1∫

xk

u(x)dx

+
∑

k

 xk−1∫
a

w(t)dt


q
r
 xk∫

xk−1

f(s)ds

q xk+1∫
xk

u(x)dx = T1 + T2. (2.9)

Now, we shall estimate T1 and T2 for each of the cases (i), (ii), and (iii) sepa-
rately.

Let 1 ≤ p ≤ min{r, q} < ∞. Using the upper estimate of (1.5) we obtain that

T1 �
∑

k

(
A−(xk−1, xk)U(xk, xk+1)

)q xk∫
xk−1

v(t)|f(t)|pdt


q
p

≤
∑

k

(
A−(a, xk)U(xk, b)

)q xk∫
xk−1

v(t)|f(t)|pdt


q
p

≤ Eq
∑

k

 xk∫
xk−1

v(t)|f(t)|pdt


q
p

≤ Eq

∑
k

xk∫
xk−1

v(t)|f(t)|pdt


q
p

≤ Eq

 b∫
a

v(t)|f(t)|pdt


q
p

. (2.10)

To estimate T2 we use Hölder’s inequality:

T2 ≤
∑

k

 xk−1∫
a

w(t)dt


q
r
 xk∫

xk−1

v1−p′(t)dt


q
p′ xk+1∫

xk

u(x)dx

 xk∫
xk−1

v(t)|f(t)|pdt


q
p

(2.11)

≤
∑

k

(
A−(a, xk)U(xk, b)

)q xk∫
xk−1

v(t)|f(t)|pdt


q
p

≤ Eq

 b∫
a

v(t)|f(t)|pdt


q
p

.(2.12)

From (2.8), (2.10), and (2.12) it follows that in the case (i) the inequality (1.3)
is correct with the estimate

C � E, (2.13)

where C is the best constant in (1.3).
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Let 0 < r < p and 1 < p ≤ q < ∞. By using the upper estimate of (1.6) we
get that

T1 �
∑

k

(
B−(xk−1, xk)U(xk, xk+1)

)q xk∫
xk−1

v(t)|f(t)|pdt


q
p

≤
∑

k

(
B−(a, xk)U(xk, b)

)q xk∫
xk−1

v(t)|f(t)|pdt


q
p

≤ Eq

 b∫
a

v(t)|f(t)|pdt


q
p

.(2.14)

To estimate T2 we previously carry out the following calculations: xk−1∫
a

w(t)dt

 1
r
 xk∫

xk−1

v1−p′(t)dt

 1
p′

≤

p− r

p

xk−1∫
a

 x∫
a

w(t)dt

 r
p−r

w(t)dt


p−r
pr  xk∫

xk−1

v1−p′(t)dt

 1
p′

�

 xk−1∫
a

 x∫
a

w(t)dt

 r
p−r

w(t)dt


p−r
pr  xk∫

xk−1

v1−p′(t)dt

 1
p′

≤ B−(a, xk). (2.15)

From (2.11) and (2.15) it follows that

T2 �
∑

k

(
B−(a, xk)U(xk, b)

)q xk∫
xk−1

v(t)|f(t)|pdt


q
p

≤ Eq

 b∫
a

v(t)|f(t)|pdt


q
p

.(2.16)

From (2.8), (2.9), (2.14), and (2.16) we have that in the case (ii) the inequality
(1.3) is correct with the estimate (2.13), where C is the best constant in (1.3).

Let us turn to the case (iii). From the right – hand estimate of (1.7) we obtain
that

T1 �
∑

k

(
D−(xk−1, xk)U(xk, xk+1)

)q xk∫
xk−1

v(s)f(s)ds

q

≤ Eq

∑
k

xk∫
xk−1

v(s)f(s)ds

q

≤ Eq

 b∫
a

v(s)f(s)ds

q

. (2.17)
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In this case by the condition v(α, β) > 0 for any α, β : a < α < β < b, therefore:

T2 =
∑

k

U q(xk, xk+1)

 xk−1∫
a

w(t)dt


q
r

1

vq(xk−1, xk)
vq(xk−1, xk)

 xk∫
xk−1

f(s)ds

q

�
∑

k

U q(xk, b)

 xk−1∫
a

 x∫
a

w(t)dt

 r
1−r

w(t)dt


(1−r)q

r

1

vq(xk−1, xk)

 xk∫
xk−1

v(s)f(s)ds

q

≤
∑

k

U(xk, b)

 xk−1∫
a

 x∫
a

w(t)dt

 r
1−r

v
r

r−1 (t, xk)w(t)dt


1−r

r


q xk∫

xk−1

v(s)f(s)ds

q

≤
∑

k

(
U(xk, b)D

−(a, xk)
)q xk∫

xk−1

v(s)f(s)ds

q

≤ Eq

 b∫
a

v(s)f(s)ds

q

.(2.18)

From (2.9), (2.17), and (2.18) we have that the estimate (1.3) is again correct
with the estimate (2.13), where C is the best constant.

Thus, in all three cases the estimate (1.3) holds with the estimate (2.13) for
the best constant C. This together with (2.2) gives that C ≈ E. The proof of
Theorem 2.1 is complete.

�
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