

Banach J. Math. Anal. 2 (2008), no. 2, 1–8

BANACH JOURNAL OF MATHEMATICAL ANALYSIS ISSN: 1735-8787 (electronic) http://www.math-analysis.org

POSITIVITY OF OPERATOR-MATRICES OF HUA-TYPE

TSUYOSHI ANDO

This paper is dedicated to Professor Josip E. Pečarić

Submitted by F. Kittaneh

ABSTRACT. Let A_j (j = 1, 2, ..., n) be strict contractions on a Hilbert space. We study an $n \times n$ operator-matrix:

 $\mathbf{H}_{n}(A_{1}, A_{2}, \dots, A_{n}) = [(I - A_{i}^{*}A_{i})^{-1}]_{i, i=1}^{n}.$

For the case n = 2, Hua [Inequalities involving determinants, Acta Math. Sinica, 5 (1955), 463–470 (in Chinese)] proved positivity, i.e., positive semidefiniteness of $\mathbf{H}_2(A_1, A_2)$. This is, however, not always true for n = 3. First we generalize a known condition which guarantees positivity of \mathbf{H}_n . Our main result is that positivity of \mathbf{H}_n is preserved under the operator Möbius map of the open unit disc \mathcal{D} of strict contractions.

1. INTRODUCTION AND PRELIMINARIES

Let A_j (j = 1, 2, ..., n) be strict contractions, that is, $||A_j|| < 1$, on a Hilbert space \mathcal{H} . Since all $I - A_j^*A_i$ and $I - A_iA_j^*$ are invertible, let us consider an $n \times n$ operator-matrix

$$\mathbf{H}_{n}(A_{1}, A_{2}, \dots, A_{n}) = [(I - A_{j}^{*}A_{i})^{-1}]_{i,j=1}^{n},$$

and its cousin

$$\mathbf{G}_n(A_1, A_2, \dots, A_n) = [(I - A_i A_j^*)^{-1}]_{i,j=1}^n$$

Here $\mathbf{X} = [X_{i,j}]_{i,j=1}^n$ means that $X_{i,j}$ is the (i, j)-operator entry of \mathbf{X} . (Notice that Xu et al. [7] used $\mathbf{H}_n(A_1, A_2, \ldots, A_n)$ for our $\mathbf{G}_n(A_1^*, A_2^*, \ldots, A_n^*)$.)

Date: Received: 1 March 2008; Accepted 25 March 2008.

2000 Mathematics Subject Classification. Primary 47B63; Secondary 47B15, 15A45.

Key words and phrases. Positivity, Strict contraction, Operator-matrix, Hua theorem.

T. ANDO

In this paper our interest is in *positivity*, i.e., positive semi-definiteness, of the operator-matrix \mathbf{H}_n (and also that of \mathbf{G}_n). We will use the notation $\mathbf{X} \geq \mathbf{Y}$ to mean that both \mathbf{X}, \mathbf{Y} are selfadjoint and $\mathbf{X} - \mathbf{Y}$ is positive. In particular $\mathbf{X} \geq 0$ means that \mathbf{X} is positive. Here let us use $\mathbf{X} > 0$ to denote its positive definiteness, that is, \mathbf{X} is positive and invertible.

For an operator-matrix $\mathbf{X} = [X_{i,j}]_{i,j=1}^n$ with invertible $X_{n,n}$, the Schur complement of the (n, n)-operator entry $X_{n,n}$ in \mathbf{X} , denoted by $\mathbf{X}/(n)$ in this paper, is the $(n-1) \times (n-1)$ operator-matrix defined by

$$\mathbf{X}/(n) = [X_{i,j} - X_{i,n} X_{n,n}^{-1} X_{n,j}]_{i,j=1}^{n-1}.$$
(1.1)

In this case, **X** is invertible if and only if $\mathbf{X}/(n)$ is invertible. Further the following relation holds (see [2, Section 7.7])

$$(\mathbf{X}/(n))^{-1}$$
 = the top $(n-1) \times (n-1)$ operator-submatrix of \mathbf{X}^{-1} . (1.2)

For our purpose the following *Schur criteria* are quite useful. For selfadjoint **X** with invertible $X_{n,n}$ the positivity of **X** is equivalent to that $X_{n,n} \ge 0$ and $\mathbf{X}/(n) \ge 0$. Further $\mathbf{X} > 0$ if and only if $X_{n,n} > 0$ and $\mathbf{X}/(n) > 0$.

Let us return to $\mathbf{H}_n(A_1, A_2, \ldots, A_n)$ and $\mathbf{G}_n(A_1, A_2, \ldots, A_n)$. In the case n = 2, for simplicity, let us write $A = A_1$ and $A_2 = B$. Hua [4] showed $\mathbf{H}_2(A, B) \geq 0$. Since $(I - B^*B)^{-1} > 0$, by the Schur criteria the Hua's positivity result is equivalent to the following inequality:

$$(I - A^*A)^{-1} - (I - B^*A)^{-1}(I - B^*B)(I - A^*B)^{-1} \ge 0.$$
(1.3)

With help of the identity (1.2), Xu et al. [7] gave a simple proof for the following identity due to Hua [4] which guarantees the positivity (1.3):

$$(I - A^*A)^{-1} - (I - B^*A)^{-1}(I - B^*B)(I - A^*B)^{-1} = (I - B^*A)^{-1}(A - B)^*(I - AA^*)^{-1}(A - B)(I - A^*B)^{-1}.$$

In [1] we proved also

$$(I - AA^*)^{-1} - (I - AB^*)^{-1}(I - BB^*)(I - BA^*)^{-1} \ge 0, \tag{1.4}$$

consequently $\mathbf{G}_2(A, B) \geq 0$. In this connection, let us point out that the following relation exists behind the inequality (1.4):

$$(I - AA^*)^{-1} - (I - AB^*)^{-1}(I - BB^*)(I - BA^*)^{-1}$$

= $(I - AB^*)^{-1} \{A(A - B)^*(I - AA^*)^{-1}(A - B)A^* + (A - B)(A - B)^*\}(I - BA^*)^{-1}.$

What happens when $n \geq 3$? In [1] we showed that $\mathbf{H}_3(A_1, A_2, A_3) \geq 0$ is not always true, while Xu et al. [7] has shown that the situation is the same for $\mathbf{G}_3(A_1, A_2, A_3)$. Let us start with a relation between $\mathbf{H}_n(A_1, A_2, \ldots, A_n)$ and $\mathbf{G}_n(A_1, A_2, \ldots, A_n)$.

$$\mathbf{G}_{n}(A_{1}, A_{2}, \dots, A_{n}) = [\overbrace{I, I, \dots, I}^{n}]^{*}[\overbrace{I, I, \dots, I}^{n}] + \operatorname{diag}(A_{1}, A_{2}, \dots, A_{n}) \times \mathbf{H}_{n}(A_{1}, A_{2}, \dots, A_{n}) \cdot \operatorname{diag}(A_{1}, A_{2}, \dots, A_{n})^{*}.$$
(1.5)

In fact, since $A(I - BA)^{-1} = (I - AB)^{-1}A$ for any strict contractions A, B,

$$I + A_i (I - A_j^* A_i)^{-1} A_j^* = I + (I - A_i A_j^*)^{-1} A_i A_j^* = (I - A_i A_j^*)^{-1}$$

Since $[\overline{I, I, \ldots, I}]^*[\overline{I, I, \ldots, I}] \ge 0$, we can conclude from (1.5) the following. **Theorem 1.1.** $H_n(A_1, A_2, \ldots, A_n) \ge 0$ implies $G_n(A_1, A_2, \ldots, A_n) \ge 0$.

Remark 1.2. The idea of the proof of Theorem 1.1 is implicit in Xu et al. [7].

However, $\mathbf{G}_n(A_1, A_2, \dots, A_n) \ge 0$ does not imply $\mathbf{H}_n(A_1, A_2, \dots, A_n) \ge 0$.

Example 1.3. When \mathcal{H} is of 2-dimension, every operator is represented by a 2×2 matrix. Take $0 < \lambda < 1$ and let

$$A_1 = \lambda \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, A_2 = \lambda \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 and $A_3 = 0.$

Then $\mathbf{G}_3(A_1, A_2, A_3) \ge 0$ but $\mathbf{H}_3(A_1, A_2, A_3) \not\ge 0$.

In fact, simple computation will show that, with $\alpha \equiv \lambda^2$,

$$\mathbf{G}_{3}(A_{1}, A_{2}, A_{3})/(3) = \frac{\alpha}{1-\alpha} \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix} \ge 0.$$

hence $\mathbf{G}_3(A_1, A_2, A_3) \ge 0$ by the Schur criteria. On the other hand

$$\mathbf{H}_{3}(A_{1}, A_{2}, A_{3})/(3) = \frac{\alpha}{1-\alpha} \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 0 & 1-\alpha & 0\\ 0 & 1-\alpha & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

is not positive semi-definite, because it has a 2×2 principal submatrix $\begin{bmatrix} 0 & \alpha \\ \alpha & 0 \end{bmatrix}$, which is not positive semi-definite. Therefore $\mathbf{H}_3(A_1, A_2, A_3) \geq 0$ by the Schur criteria.

In [1] we showed that if A_j (j = 1, 2, ..., n) are commuting normal operators, then $\mathbf{H}_n(A_1, A_2, ..., A_n) \geq 0$ and also $\mathbf{G}_n(A_1, A_2, ..., A_n) \geq 0$. In the next section we give a generalization of this result.

Our main result of this paper is that positivity of \mathbf{H}_n is preserved under an operator Möbius map of the open unit disc \mathcal{D} of strict contractions.

2. Main Results

Theorem 2.1. Let A_j (j = 1, 2, ..., n) be strict contractions. If the products $A_j^*A_i$ (i, j = 1, 2, ..., n) are commuting normal operators, $H_n(A_1, A_2, ..., A_n) \ge 0$.

Proof. Our idea of the proof is parallel to that of Xu et al. [7]. The assumption means that there is a commutative unital *-subalgebra $\mathcal{C} \subset B(\mathcal{H})$ such that $A_j^*A_i \in \mathcal{C}$ (i, j = 1, 2, ..., n). Then by the Gelfand theorem (see [6, Theorem 4.4]) there is a *-isomorphism π of \mathcal{C} to the commutative C*-algebra $C(\Omega)$ of continuus

functions on a compact set Ω . Here the adjoint f^* of a function $f \in C(\Omega)$ is determined by

$$f^*(\omega) = \overline{f(\omega)} \quad (\omega \in \Omega).$$
(2.1)

Therefore we can write $f^* = \overline{f}$. Notice further that positivity of a $C(\Omega)$ -matrix $[f_{i,j}]_{i,j=1}^n$ is equivalent to saying that for every $\omega \in \Omega$ the numerical matrix $[f_{i,j}(\omega)]_{i,j=1}^n$ is positive semi-definite in the usual sense.

Now let

$$f_{i,j} \equiv \pi(A_j^*A_i) \ (i,j=1,2,\dots,n)$$

Then by (2.1)

$$f_{j,i} = \pi(A_i^*A_j) = \pi(A_j^*A_i)^* = \overline{f_{i,j}}$$

Then since

$$[A_i^*A_j]_{i,j=1}^n = [A_1, A_2, \dots, A_n]^* \cdot [A_1, A_2, \dots, A_n] \ge 0$$

it follows that $[f_{j,i}]_{i,j=1}^n \ge 0$. Therefore for any $\omega \in \Omega$

$$[f_{i,j}(\omega)]_{i,j=1}^n = [\overline{f_{j,i}(\omega)}]_{i,j=1}^n \ge 0.$$

Recall the positivity theorem for *Schur product* (or Hadamard product) (see [3, Theorem 5.2.1]) that for two numerical $n \times n$ matrices

$$[\alpha_{i,j}]_{i,j=1}^n \ge 0 \text{ and } [\beta_{i,j}]_{i,j=1}^n \ge 0 \implies [\alpha_{i,j}\beta_{i,j}]_{i,j=1}^n \ge 0.$$
 (2.2)

Then since

$$[(I - A_j^* A_i)^{-1}]_{i,j=1}^n = \sum_{k=0}^\infty [(A_j^* A_i)^k]_{i,j=1}^n,$$

and

$$[\pi((A_j^*A_i)^k)]_{i,j=1}^n = [f_{i,j}^k]_{i,j=1}^n,$$

it follows from the Schur product theorem (2.2) that

$$[(A_j^*A_i)^k]_{i,j=1}^n \ge 0 \ (k=1,2,\ldots).$$

consequently $[(I - A_j^* A_i)^{-1}]_{i,j=1}^n \ge 0.$

In a similar way we can prove

Theorem 2.2. Let A_j (j = 1, 2, ..., n) be strict contractions. If the products $A_iA_j^*$ (i, j = 1, ..., n) are commuting normal operators, $G_n(A_1, A_2, ..., A_n) \ge 0$. Remark 2.3. Positivity of $G_3(A_1, A_2, A_3)$ in Example 1.3 follows from Theorem 2.2.

In the linear systems theory (see [8, Chapter 10]), for a time-invariant linear system with a state-space realization matrix $\begin{bmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{bmatrix}$ it is common to consider the operator-valued function, called the *transfer function*, defined as

$$\zeta \longmapsto B_{2,2} + B_{2,1} (\zeta I - B_{1,1})^{-1} B_{1,2}$$

for complex numbers ζ for which $\zeta I - B_{1,1}$ are invertible. In operator theory, however, it is more convenient to consider a linear-fractional transformation $\Theta(\zeta)$ defined as

$$\Theta(\zeta) = B_{2,2} + \zeta B_{2,1} (I - \zeta B_{1,1})^{-1} B_{1,2}.$$

(See [5, Chapter 6])

Extending the variable from a number ζ to an operator Z, let us define a map $\Theta(Z)$ as

$$\Theta(Z) = B_{2,2} + B_{2,1}Z(I - B_{1,1}Z)^{-1}B_{1,2}.$$
(2.3)

For a contraction B, define its *defect operator* D_B as

$$D_B = (I - B^* B)^{1/2}.$$
 (2.4)

The following relations are immediate from definition (2.4)

$$BD_B = D_{B^*}B$$
, and $B^*D_{B^*} = D_B B^*$, (2.5)

and for any strict contraction Z the operators $I-B^{\ast}Z$ and $I-ZB^{\ast}$ are invertible and the following relation holds

$$Z(I - B^*Z)^{-1} = (I - ZB^*)^{-1}Z.$$
(2.6)

Lemma 2.4. When B is a strict contraction, the operator-matrix $\begin{bmatrix} B^* & D_B \\ -D_{B^*} & B \end{bmatrix}$ is unitary, and the map

$$\Theta(Z) = B - D_{B^*} Z (I - B^* Z)^{-1} D_B = B - D_{B^*} (I - ZB^*)^{-1} Z D_B$$

satisfies the following relations that for any strict contraction Z, W

$$I - \Theta(Z)^* \Theta(W) = D_B (I - Z^* B)^{-1} (I - Z^* W) (I - B^* W)^{-1} D_B.$$

Proof. The proof of unitarity is immediate from (2.5) and omitted. Now since

$$\Theta(Z)^*\Theta(W) = B^*B - D_B(I - Z^*B)^{-1}Z^*D_{B^*}B - B^*D_{B^*}W(I - B^*W)^{-1}D_B + D_B(I - Z^*B)^{-1}Z^*(I - BB^*)W(I - B^*W)^{-1}D_B,$$

by (2.5) and (2.6) we can see

$$I - \Theta(Z)^* \Theta(W) = D_B \{ I + (I - Z^*B)^{-1}Z^*B + B^*W(I - B^*W)^{-1} \\ -(I - Z^*B)^{-1}(I - BB^*)W(I - B^*W)^{-1} \} D_B$$

= $D_B (I - Z^*B)^{-1} \{ (I - Z^*B)(I - B^*W) + Z^*B(I - B^*W) \\ +(I - Z^*B)B^*W - Z^*(I - BB^*)W \} (I - B^*W)^{-1}D_B$
= $D_B (I - Z^*B)^{-1}(I - Z^*W)(I - B^*W)^{-1}D_B.$

T. ANDO

Given a complex number β with $|\beta| < 1$, the Möbius transformation at β

$$M_{\beta}(\zeta) \equiv \frac{\beta - \zeta}{1 - \overline{\beta}\zeta}$$

is a conformal map of the open unit disc of the complex plane, which maps 0 to β and β to 0, and is involutive, that is, $M_{\beta}(M_{\beta}(\zeta)) = \zeta$.

The following is an analogy for the case of the open unit disc \mathcal{D} of strict contractions.

Proposition 2.5. For a strict contraction B, the Möbius map $\Theta_B(\cdot)$ at B, defined by

$$\Theta_B(Z) \equiv D_{B^*}^{-1}(B-Z)(I-B^*Z)^{-1}D_B,$$

is an involutive map of the open unit disc \mathcal{D} , that is,

$$\Theta_B(\Theta_B(Z)) = Z \ (Z \in \mathcal{D}).$$

It is clear from the definition that $\Theta_B(Z)$ is holomorphic with respect to the operator variable Z. Since $\Theta(\cdot)$ is involutive, its inverse is also holomorphic. Therefore $\Theta_B(\cdot)$ becomes a *biholomorphic* map of the open unit disc \mathcal{D} of strict contractions, and is considered as a natural generalization of the Möbius transformation on the open unit disc of the complex plane.

Proof. First let us show the map $\Theta_B(\cdot)$ is nothing but the linear-fractinal transformation $\Theta(\cdot)$ of the unitary operator-matrix $\begin{bmatrix} B^* & D_B \\ -D_{B^*} & B \end{bmatrix}$. In fact, by definition and (2.5)

$$\Theta(Z) = B - D_{B^*}Z(I - B^*Z)^{-1}D_B$$

= $D_{B^*}^{-1} \{ D_{B^*}BD_B^{-1}(I - B^*Z) - (I - BB^*)Z \} (I - B^*Z)^{-1}D_B$
= $D_{B^*}^{-1}(B - Z)(I - B^*Z)^{-1}D_B = \Theta_B(Z).$

Next $\Theta_B(\cdot)$ maps the open unit disc \mathcal{D} to itself. In fact, by Lemma 2.4

$$I - \Theta_B(Z)^* \Theta_B(Z) = D_B(I - Z^*B)^{-1}(I - Z^*Z)(I - B^*Z)^{-1}D_B > 0 \quad (Z \in \mathcal{D}).$$

Finally the involutivity follows from the following two relations:

$$B - \Theta(Z) = D_{B^*} Z (I - B^* Z)^{-1} D_B$$

and

$$I - B^* \Theta(Z) = I - B^* B + B^* D_{B^*} Z (I - B^* Z)^{-1} D_B$$

= $D_B^2 + D_B B^* Z (I - B^* Z)^{-1} D_B$
= $D_B \{ I + B^* Z (I - B^* Z)^{-1} \} D_B = D_B (I - B^* Z)^{-1} D_B.$

Corollary 2.6. If an operator-matrix $[B_{i,j}]_{i,j=1}^2$ with $||B_{2,2}|| < 1$ is unitary, then the map

$$\Theta(Z) \equiv B_{2,2} + B_{2,1}Z(I - B_{1,1}Z)^{-1}B_{1,2}$$

is a biholomorphic map of the open unit disc \mathcal{D} of strict contractions.

Proof. Let $B = B_{2,2}$. Then it is easy to see from unitarity that there are unitary U, V such that

$$B_{1,1} = UB^*V, \ B_{1,2} = UD_B \text{ and } B_{2,1} = -D_B^*V.$$

Then we have

$$\Theta(Z) = \Theta_B(VZU) \ (Z \in \mathcal{D}),$$

where $\Theta_B(\cdot)$ is the Möbius map at *B*. Finally since $Z \longmapsto VZU$ is a biholomorphic map of \mathcal{D} , the assertion follows from Proposition 2.5.

The following is the main result of this paper.

Theorem 2.7. Let B be a strict contraction, and $\Theta_B(\cdot)$ the Möbius map at B on the open unit disc \mathcal{D} of strict contractions. Then for any $A_i \in \mathcal{D}$ (i = 1, 2, ..., n)

 $\boldsymbol{H}_n(A_1, A_2, \dots, A_n) \geq 0 \quad implies \quad \boldsymbol{H}_n(\Theta_B(A_1), \Theta_B(A_2), \dots, \Theta_B(A_n)) \geq 0.$

Proof. Since by Lemma 2.4

$$(I - \Theta_B(A_j)^* \Theta_B(A_i))^{-1} = D_B^{-1} (I - B^* A_i) (I - A_j^* A_i)^{-1} (I - A_j^* B) D_B^{-1},$$

we have

$$\mathbf{H}_n\left(\Theta_B(A_1),\Theta_B(A_2),\ldots,\Theta_B(A_n)\right)=\mathbf{D}\cdot\mathbf{H}_n(A_1,A_2,\ldots,A_n)\cdot\mathbf{D}^*$$

where

$$\mathbf{D} = \operatorname{diag}\left(D_B^{-1}(I - B^*A_1), D_B^{-1}(I - B^*A_2), \dots, D_B^{-1}(I - B^*A_n)\right)$$

This identity proves the assertion.

Remark 2.8. It is not clear whether or not

 $\mathbf{G}_n(A_1, A_2, \dots, A_n) \ge 0$ implies $\mathbf{G}_n(\Theta_B(A_1), \Theta_B(A_2), \dots, \Theta_B(A_n)) \ge 0.$

Remark 2.9. In Introduction we stated that $\mathbf{H}_2(A, B) \geq 0$ is valid for any strict contraction A, B. Let us show that this result is included in the combination of Theorem 2.2 and Theorem 2.7. In fact, consider the Möbius map $\Theta_B(\cdot)$ at B. Then by Proposition 2.5 $A = \Theta_B(\tilde{A})$ where $\tilde{A} = \Theta_B(A)$ and $B = \Theta_B(0)$ and by Theorem 2.2 $\mathbf{H}_2(\tilde{A}, 0) \geq 0$. Then apply Theorem 2.7 to see $\mathbf{H}_2(A, B) \geq 0$.

Acknowledgement The author would like to thank Professor F. Zhang for the paper [7] before publication and useful comments on the original version of the present paper.

References

- 1. T. Ando, *Hua-Marcus inequalities*, Linear Multilinear Alg. 8 (1980), 347–352.
- 2. R. Horn and Ch. Johnson, Matrix Analysis, Cambridge Univ. Press, 1985.
- 3. R. Horn and Ch. Johnson, Topics in Matrix Analysis, Cambridge Univ. Press, 1991.
- L.K. Hua, Inequalities involving determinants, Acta Math. Sinica, 5 (1955), 463–470 (in Chinese). See also Transl. Amer. Math. Soc. (2) 32, (1963), 265–272.
- B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North Holland, New York, 1970.
- 6. M. Takesaki, Theory of Operator Algebras I, Springer, New York, 1979.
- 7. Ch. Xu, Zh. Xu and F. Zhang, *Revisiting HuaEMarcus-Bellman-Ando inequalities on con*tractive matrices, Linear Alg. Appl. (to appear)

8. K. Zhou, J.C. Doyle and K. Glover, *Robust and Optimal Control*, Prentice Hall, New York, 1995.

SHIROISHI-KU, HONGO-DORI 9, MINAMI 4-10-805, SAPPORO 003-0024, JAPAN. *E-mail address:* ando@es.hokudai.ac.jp