POSITIVITY OF OPERATOR-MATRICES OF HUA-TYPE

TSUYOSHI ANDO
This paper is dedicated to Professor Josip E. Pečarić

Submitted by F. Kittaneh

Abstract. Let $A_{j}(j=1,2, \ldots, n)$ be strict contractions on a Hilbert space. We study an $n \times n$ operator-matrix:

$$
\mathbf{H}_{n}\left(A_{1}, A_{2}, \ldots, A_{n}\right)=\left[\left(I-A_{j}^{*} A_{i}\right)^{-1}\right]_{i, j=1}^{n}
$$

For the case $n=2$, Hua [Inequalities involving determinants, Acta Math. Sinica, 5 (1955), 463-470 (in Chinese)] proved positivity, i.e., positive semidefiniteness of $\mathbf{H}_{2}\left(A_{1}, A_{2}\right)$. This is, however, not always true for $n=3$. First we generalize a known condition which guarantees positivity of \mathbf{H}_{n}. Our main result is that positivity of \mathbf{H}_{n} is preserved under the operator Möbius map of the open unit disc \mathcal{D} of strict contractions.

1. Introduction and preliminaries

Let $A_{j}(j=1,2, \ldots, n)$ be strict contractions, that is, $\left\|A_{j}\right\|<1$, on a Hilbert space \mathcal{H}. Since all $I-A_{j}^{*} A_{i}$ and $I-A_{i} A_{j}^{*}$ are invertible, let us consider an $n \times n$ operator-matrix

$$
\mathbf{H}_{n}\left(A_{1}, A_{2}, \ldots, A_{n}\right)=\left[\left(I-A_{j}^{*} A_{i}\right)^{-1}\right]_{i, j=1}^{n},
$$

and its cousin

$$
\mathbf{G}_{n}\left(A_{1}, A_{2}, \ldots, A_{n}\right)=\left[\left(I-A_{i} A_{j}^{*}\right)^{-1}\right]_{i, j=1}^{n} .
$$

Here $\mathbf{X}=\left[X_{i, j}\right]_{i, j=1}^{n}$ means that $X_{i, j}$ is the (i, j)-operator entry of \mathbf{X}. (Notice that Xu et al. [7] used $\mathbf{H}_{n}\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ for our $\mathbf{G}_{n}\left(A_{1}^{*}, A_{2}^{*}, \ldots, A_{n}^{*}\right)$.)

In this paper our interest is in positivity, i.e., positive semi-definiteness, of the operator-matrix \mathbf{H}_{n} (and also that of \mathbf{G}_{n}). We will use the notation $\mathbf{X} \geq \mathbf{Y}$ to mean that both \mathbf{X}, \mathbf{Y} are selfadjoint and $\mathbf{X}-\mathbf{Y}$ is positive. In particular $\mathbf{X} \geq 0$ means that \mathbf{X} is positive. Here let us use $\mathbf{X}>0$ to denote its positive definiteness, that is, \mathbf{X} is positive and invertible.

For an operator-matrix $\mathbf{X}=\left[X_{i, j}\right]_{i, j=1}^{n}$ with invertible $X_{n, n}$, the Schur complement of the (n, n)-operator entry $X_{n, n}$ in \mathbf{X}, denoted by $\mathbf{X} /(n)$ in this paper, is the $(n-1) \times(n-1)$ operator-matrix defined by

$$
\begin{equation*}
\mathbf{X} /(n)=\left[X_{i, j}-X_{i, n} X_{n, n}^{-1} X_{n, j}\right]_{i, j=1}^{n-1} . \tag{1.1}
\end{equation*}
$$

In this case, \mathbf{X} is invertible if and only if $\mathbf{X} /(n)$ is invertible. Further the following relation holds (see [2, Section 7.7])

$$
\begin{equation*}
(\mathbf{X} /(n))^{-1}=\text { the top }(n-1) \times(n-1) \text { operator-submatrix of } \mathbf{X}^{-1} . \tag{1.2}
\end{equation*}
$$

For our purpose the following Schur criteria are quite useful. For selfadjoint \mathbf{X} with invertible $X_{n, n}$ the positivity of \mathbf{X} is equivalent to that $X_{n, n} \geq 0$ and $\mathbf{X} /(n) \geq 0$. Further $\mathbf{X}>0$ if and only if $X_{n, n}>0$ and $\mathbf{X} /(n)>0$.

Let us return to $\mathbf{H}_{n}\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ and $\mathbf{G}_{n}\left(A_{1}, A_{2}, \ldots, A_{n}\right)$. In the case $n=2$, for simplicity, let us write $A=A_{1}$ and $A_{2}=B$. Hua [4] showed $\mathbf{H}_{2}(A, B) \geq$ 0 . Since $\left(I-B^{*} B\right)^{-1}>0$, by the Schur criteria the Hua's positivity result is equivalent to the following inequality:

$$
\begin{equation*}
\left(I-A^{*} A\right)^{-1}-\left(I-B^{*} A\right)^{-1}\left(I-B^{*} B\right)\left(I-A^{*} B\right)^{-1} \geq 0 \tag{1.3}
\end{equation*}
$$

With help of the identity (1.2), Xu et al. 7] gave a simple proof for the following identity due to Hua [4] which guarantees the positivity (1.3):

$$
\begin{aligned}
& \left(I-A^{*} A\right)^{-1}-\left(I-B^{*} A\right)^{-1}\left(I-B^{*} B\right)\left(I-A^{*} B\right)^{-1} \\
& =\left(I-B^{*} A\right)^{-1}(A-B)^{*}\left(I-A A^{*}\right)^{-1}(A-B)\left(I-A^{*} B\right)^{-1}
\end{aligned}
$$

In [1] we proved also

$$
\begin{equation*}
\left(I-A A^{*}\right)^{-1}-\left(I-A B^{*}\right)^{-1}\left(I-B B^{*}\right)\left(I-B A^{*}\right)^{-1} \geq 0, \tag{1.4}
\end{equation*}
$$

consequently $\mathrm{G}_{2}(A, B) \geq 0$. In this connection, let us point out that the following relation exists behind the inequality (1.4):

$$
\begin{aligned}
& \left(I-A A^{*}\right)^{-1}-\left(I-A B^{*}\right)^{-1}\left(I-B B^{*}\right)\left(I-B A^{*}\right)^{-1} \\
& =\left(I-A B^{*}\right)^{-1}\left\{A(A-B)^{*}\left(I-A A^{*}\right)^{-1}(A-B) A^{*}\right. \\
& \left.+(A-B)(A-B)^{*}\right\}\left(I-B A^{*}\right)^{-1} .
\end{aligned}
$$

What happens when $n \geq 3$? In [1] we showed that $\mathbf{H}_{3}\left(A_{1}, A_{2}, A_{3}\right) \geq 0$ is not always true, while Xu et al. [7] has shown that the situation is the same for $\mathbf{G}_{3}\left(A_{1}, A_{2}, A_{3}\right)$. Let us start with a relation between $\mathbf{H}_{n}\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ and $\mathbf{G}_{n}\left(A_{1}, A_{2}, \ldots, A_{n}\right)$.

$$
\begin{align*}
\mathbf{G}_{n}\left(A_{1}, A_{2}, \ldots, A_{n}\right)= & {[\overbrace{I, I, \ldots, I}^{n}]^{*} \overbrace{I, I, \ldots, I}^{n}]+\operatorname{diag}\left(A_{1}, A_{2}, \ldots, A_{n}\right) } \\
& \times \mathbf{H}_{n}\left(A_{1}, A_{2}, \ldots, A_{n}\right) \cdot \operatorname{diag}\left(A_{1}, A_{2}, \ldots, A_{n}\right)^{*} . \tag{1.5}
\end{align*}
$$

In fact, since $A(I-B A)^{-1}=(I-A B)^{-1} A$ for any strict contractions A, B,

$$
I+A_{i}\left(I-A_{j}^{*} A_{i}\right)^{-1} A_{j}^{*}=I+\left(I-A_{i} A_{j}^{*}\right)^{-1} A_{i} A_{j}^{*}=\left(I-A_{i} A_{j}^{*}\right)^{-1}
$$

Since $[\overbrace{I, I, \ldots, I}^{n}]^{*} \overbrace{I, I, \ldots, I}^{n}] \geq 0$, we can conclude from (1.5) the following.
Theorem 1.1. $\boldsymbol{H}_{n}\left(A_{1}, A_{2}, \ldots, A_{n}\right) \geq 0$ implies $\boldsymbol{G}_{n}\left(A_{1}, A_{2}, \ldots, A_{n}\right) \geq 0$.
Remark 1.2. The idea of the proof of Theorem 1.1 is implicit in Xu et al. [7.
However, $\mathbf{G}_{n}\left(A_{1}, A_{2}, \ldots, A_{n}\right) \geq 0$ does not imply $\mathbf{H}_{n}\left(A_{1}, A_{2}, \ldots, A_{n}\right) \geq 0$.
Example 1.3. When \mathcal{H} is of 2-dimension, every operator is represented by a 2×2 matrix. Take $0<\lambda<1$ and let

$$
A_{1}=\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], A_{2}=\lambda\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \text { and } A_{3}=0
$$

Then $\mathbf{G}_{3}\left(A_{1}, A_{2}, A_{3}\right) \geq 0$ but $\mathbf{H}_{3}\left(A_{1}, A_{2}, A_{3}\right) \nsupseteq 0$.
In fact, simple computation will show that, with $\alpha \equiv \lambda^{2}$,

$$
\mathbf{G}_{3}\left(A_{1}, A_{2}, A_{3}\right) /(3)=\frac{\alpha}{1-\alpha}\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \geq 0
$$

hence $\mathbf{G}_{3}\left(A_{1}, A_{2}, A_{3}\right) \geq 0$ by the Schur criteria. On the other hand

$$
\mathbf{H}_{3}\left(A_{1}, A_{2}, A_{3}\right) /(3)=\frac{\alpha}{1-\alpha}\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1-\alpha & 0 \\
0 & 1-\alpha & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

is not positive semi-definite, because it has a 2×2 principal submatrix $\left[\begin{array}{cc}0 & \alpha \\ \alpha & 0\end{array}\right]$, which is not positive semi-definite. Therefore $\mathbf{H}_{3}\left(A_{1}, A_{2}, A_{3}\right) \nsupseteq 0$ by the Schur criteria.

In [1] we showed that if $A_{j}(j=1,2, \ldots, n)$ are commuting normal operators, then $\mathbf{H}_{n}\left(A_{1}, A_{2}, \ldots, A_{n}\right) \geq 0$ and also $\mathbf{G}_{n}\left(A_{1}, A_{2}, \ldots, A_{n}\right) \geq 0$. In the next section we give a generalization of this result.

Our main result of this paper is that positivity of \mathbf{H}_{n} is preserved under an operator Möbius map of the open unit disc \mathcal{D} of strict contractions.

2. Main Results

Theorem 2.1. Let $A_{j}(j=1,2, \ldots, n)$ be strict contractions. If the products $A_{j}^{*} A_{i}(i, j=1,2, \ldots, n)$ are commuting normal operators, $\boldsymbol{H}_{n}\left(A_{1}, A_{2}, \ldots, A_{n}\right) \geq$ 0 .

Proof. Our idea of the proof is parallel to that of Xu et al. 77. The assumption means that there is a commutative unital ${ }^{*}$-subalgebra $\mathcal{C} \subset B(\mathcal{H})$ such that $A_{j}^{*} A_{i} \in \mathcal{C}(i, j=1,2, \ldots, n)$. Then by the Gelfand theorem (see [6, Theorem 4.4]) there is a ${ }^{*}$-isomorphism π of \mathcal{C} to the commutative C^{*}-algebra $C(\Omega)$ of continuus
functions on a compact set Ω. Here the adjoint f^{*} of a function $f \in C(\Omega)$ is determined by

$$
\begin{equation*}
f^{*}(\omega)=\overline{f(\omega)} \quad(\omega \in \Omega) \tag{2.1}
\end{equation*}
$$

Therefore we can write $f^{*}=\bar{f}$. Notice further that positivity of a $C(\Omega)$-matrix $\left[f_{i, j}\right]_{i, j=1}^{n}$ is equivalent to saying that for every $\omega \in \Omega$ the numerical matrix $\left[f_{i, j}(\omega)\right]_{i, j=1}^{n}$ is positive semi-definite in the usual sense.

Now let

$$
f_{i, j} \equiv \pi\left(A_{j}^{*} A_{i}\right) \quad(i, j=1,2, \ldots, n)
$$

Then by (2.1)

$$
f_{j, i}=\pi\left(A_{i}^{*} A_{j}\right)=\pi\left(A_{j}^{*} A_{i}\right)^{*}=\overline{f_{i, j}} .
$$

Then since

$$
\left[A_{i}^{*} A_{j}\right]_{i, j=1}^{n}=\left[A_{1}, A_{2}, \ldots ., A_{n}\right]^{*} \cdot\left[A_{1}, A_{2}, \ldots ., A_{n}\right] \geq 0
$$

it follows that $\left[f_{j, i}\right]_{i, j=1}^{n} \geq 0$. Therefore for any $\omega \in \Omega$

$$
\left[f_{i, j}(\omega)\right]_{i, j=1}^{n}=\left[\overline{f_{j, i}(\omega)}\right]_{i, j=1}^{n} \geq 0
$$

Recall the positivity theorem for Schur product (or Hadamard product) (see [3, Theorem 5.2.1]) that for two numerical $n \times n$ matrices

$$
\begin{equation*}
\left[\alpha_{i, j}\right]_{i, j=1}^{n} \geq 0 \text { and }\left[\beta_{i, j}\right]_{i, j=1}^{n} \geq 0 \Longrightarrow\left[\alpha_{i, j} \beta_{i, j}\right]_{i, j=1}^{n} \geq 0 \tag{2.2}
\end{equation*}
$$

Then since

$$
\left[\left(I-A_{j}^{*} A_{i}\right)^{-1}\right]_{i, j=1}^{n}=\sum_{k=0}^{\infty}\left[\left(A_{j}^{*} A_{i}\right)^{k}\right]_{i, j=1}^{n}
$$

and

$$
\left[\pi\left(\left(A_{j}^{*} A_{i}\right)^{k}\right)\right]_{i, j=1}^{n}=\left[f_{i, j}^{k}\right]_{i, j=1}^{n},
$$

it follows from the Schur product theorem (2.2) that

$$
\left[\left(A_{j}^{*} A_{i}\right)^{k}\right]_{i, j=1}^{n} \geq 0 \quad(k=1,2, \ldots)
$$

consequently $\left[\left(I-A_{j}^{*} A_{i}\right)^{-1}\right]_{i, j=1}^{n} \geq 0$.
In a similar way we can prove
Theorem 2.2. Let $A_{j}(j=1,2, \ldots, n)$ be strict contractions. If the products $A_{i} A_{j}^{*}(i, j=1, \ldots, n)$ are commuting normal operators, $\boldsymbol{G}_{n}\left(A_{1}, A_{2}, \ldots, A_{n}\right) \geq 0$.
Remark 2.3. Positivity of $\mathbf{G}_{3}\left(A_{1}, A_{2}, A_{3}\right)$ in Example 1.3 follows from Theorem 2.2.

In the linear systems theory (see [8, Chapter 10]), for a time-invariant linear system with a state-space realization matrix $\left[\begin{array}{ll}B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2}\end{array}\right]$ it is common to consider the operator-valued function, called the transfer function, defined as

$$
\zeta \longmapsto B_{2,2}+B_{2,1}\left(\zeta I-B_{1,1}\right)^{-1} B_{1,2}
$$

for complex numbers ζ for which $\zeta I-B_{1,1}$ are invertible. In operator theory, however, it is more convenient to consider a linear-fractional transformation $\Theta(\zeta)$ defined as

$$
\Theta(\zeta)=B_{2,2}+\zeta B_{2,1}\left(I-\zeta B_{1,1}\right)^{-1} B_{1,2} .
$$

(See [5, Chapter 6])
Extending the variable from a number ζ to an operator Z, let us define a map $\Theta(Z)$ as

$$
\begin{equation*}
\Theta(Z)=B_{2,2}+B_{2,1} Z\left(I-B_{1,1} Z\right)^{-1} B_{1,2} . \tag{2.3}
\end{equation*}
$$

For a contraction B, define its defect operator D_{B} as

$$
\begin{equation*}
D_{B}=\left(I-B^{*} B\right)^{1 / 2} \tag{2.4}
\end{equation*}
$$

The following relations are immediate from definition (2.4)

$$
\begin{equation*}
B D_{B}=D_{B^{*}} B, \quad \text { and } \quad B^{*} D_{B^{*}}=D_{B} B^{*} \tag{2.5}
\end{equation*}
$$

and for any strict contraction Z the operators $I-B^{*} Z$ and $I-Z B^{*}$ are invertible and the following relation holds

$$
\begin{equation*}
Z\left(I-B^{*} Z\right)^{-1}=\left(I-Z B^{*}\right)^{-1} Z \tag{2.6}
\end{equation*}
$$

Lemma 2.4. When B is a strict contraction, the operator-matrix $\left[\begin{array}{cc}B^{*} & D_{B} \\ -D_{B^{*}} & B\end{array}\right]$ is unitary, and the map

$$
\Theta(Z)=B-D_{B^{*}} Z\left(I-B^{*} Z\right)^{-1} D_{B}=B-D_{B^{*}}\left(I-Z B^{*}\right)^{-1} Z D_{B}
$$

satisfies the following relations that for any strict contractios Z, W

$$
I-\Theta(Z)^{*} \Theta(W)=D_{B}\left(I-Z^{*} B\right)^{-1}\left(I-Z^{*} W\right)\left(I-B^{*} W\right)^{-1} D_{B}
$$

Proof. The proof of unitarity is immediate from (2.5) and omitted. Now since

$$
\begin{aligned}
\Theta(Z)^{*} \Theta(W)= & B^{*} B-D_{B}\left(I-Z^{*} B\right)^{-1} Z^{*} D_{B^{*}} B-B^{*} D_{B^{*}} W\left(I-B^{*} W\right)^{-1} D_{B} \\
& +D_{B}\left(I-Z^{*} B\right)^{-1} Z^{*}\left(I-B B^{*}\right) W\left(I-B^{*} W\right)^{-1} D_{B},
\end{aligned}
$$

by (2.5) and 2.6 we can see

$$
\begin{aligned}
I-\Theta(Z)^{*} \Theta(W)= & D_{B}\left\{I+\left(I-Z^{*} B\right)^{-1} Z^{*} B+B^{*} W\left(I-B^{*} W\right)^{-1}\right. \\
& \left.-\left(I-Z^{*} B\right)^{-1}\left(I-B B^{*}\right) W\left(I-B^{*} W\right)^{-1}\right\} D_{B} \\
= & D_{B}\left(I-Z^{*} B\right)^{-1}\left\{\left(I-Z^{*} B\right)\left(I-B^{*} W\right)+Z^{*} B\left(I-B^{*} W\right)\right. \\
& \left.+\left(I-Z^{*} B\right) B^{*} W-Z^{*}\left(I-B B^{*}\right) W\right\}\left(I-B^{*} W\right)^{-1} D_{B} \\
= & D_{B}\left(I-Z^{*} B\right)^{-1}\left(I-Z^{*} W\right)\left(I-B^{*} W\right)^{-1} D_{B} .
\end{aligned}
$$

Given a complex number β with $|\beta|<1$, the Möbius transformation at β

$$
M_{\beta}(\zeta) \equiv \frac{\beta-\zeta}{1-\bar{\beta} \zeta}
$$

is a conformal map of the open unit disc of the complex plane, which maps 0 to β and β to 0 , and is involutive, that is, $M_{\beta}\left(M_{\beta}(\zeta)\right)=\zeta$.

The following is an analogy for the case of the open unit disc \mathcal{D} of strict contractions.

Proposition 2.5. For a strict contraction B, the Möbius map $\Theta_{B}(\cdot)$ at B, defined by

$$
\Theta_{B}(Z) \equiv D_{B^{*}}^{-1}(B-Z)\left(I-B^{*} Z\right)^{-1} D_{B}
$$

is an involutive map of the open unit disc \mathcal{D}, that is,

$$
\Theta_{B}\left(\Theta_{B}(Z)\right)=Z \quad(Z \in \mathcal{D})
$$

It is clear from the definition that $\Theta_{B}(Z)$ is holomorphic with respect to the operator variable Z. Since $\Theta(\cdot)$ is involutive, its inverse is also holomorphic. Therefore $\Theta_{B}(\cdot)$ becomes a biholomorphic map of the open unit disc \mathcal{D} of strict contractions, and is considered as a natural generalization of the Möbius transformation on the open unit disc of the complex plane.

Proof. First let us show the map $\Theta_{B}(\cdot)$ is nothing but the linear-fractinal transformation $\Theta(\cdot)$ of the unitary operator-matrix $\left[\begin{array}{cc}B^{*} & D_{B} \\ -D_{B^{*}} & B\end{array}\right]$. In fact, by definition and 2.5

$$
\begin{aligned}
\Theta(Z) & =B-D_{B^{*}} Z\left(I-B^{*} Z\right)^{-1} D_{B} \\
& =D_{B^{*}}^{-1}\left\{D_{B^{*}} B D_{B}^{-1}\left(I-B^{*} Z\right)-\left(I-B B^{*}\right) Z\right\}\left(I-B^{*} Z\right)^{-1} D_{B} \\
& =D_{B^{*}}^{-1}(B-Z)\left(I-B^{*} Z\right)^{-1} D_{B}=\Theta_{B}(Z)
\end{aligned}
$$

Next $\Theta_{B}(\cdot)$ maps the open unit disc \mathcal{D} to itself. In fact, by Lemma 2.4

$$
I-\Theta_{B}(Z)^{*} \Theta_{B}(Z)=D_{B}\left(I-Z^{*} B\right)^{-1}\left(I-Z^{*} Z\right)\left(I-B^{*} Z\right)^{-1} D_{B}>0 \quad(Z \in \mathcal{D})
$$

Finally the involutivity follows from the following two relations:

$$
B-\Theta(Z)=D_{B^{*}} Z\left(I-B^{*} Z\right)^{-1} D_{B}
$$

and

$$
\begin{aligned}
I-B^{*} \Theta(Z) & =I-B^{*} B+B^{*} D_{B^{*}} Z\left(I-B^{*} Z\right)^{-1} D_{B} \\
& =D_{B}^{2}+D_{B} B^{*} Z\left(I-B^{*} Z\right)^{-1} D_{B} \\
& =D_{B}\left\{I+B^{*} Z\left(I-B^{*} Z\right)^{-1}\right\} D_{B}=D_{B}\left(I-B^{*} Z\right)^{-1} D_{B}
\end{aligned}
$$

Corollary 2.6. If an operator-matrix $\left[B_{i, j}\right]_{i, j=1}^{2}$ with $\left\|B_{2,2}\right\|<1$ is unitary, then the map

$$
\Theta(Z) \equiv B_{2,2}+B_{2,1} Z\left(I-B_{1,1} Z\right)^{-1} B_{1,2}
$$

is a biholomorphic map of the open unit disc \mathcal{D} of strict contractions.

Proof. Let $B=B_{2,2}$. Then it is easy to see from unitarity that there are unitary U, V such that

$$
B_{1,1}=U B^{*} V, B_{1,2}=U D_{B} \text { and } B_{2,1}=-D_{B}^{*} V
$$

Then we have

$$
\Theta(Z)=\Theta_{B}(V Z U)(Z \in \mathcal{D})
$$

where $\Theta_{B}(\cdot)$ is the Möbius map at B. Finally since $Z \longmapsto V Z U$ is a biholomorphic map of \mathcal{D}, the assertion follows from Proposition 2.5.

The following is the main result of this paper.
Theorem 2.7. Let B be a strict contraction, and $\Theta_{B}(\cdot)$ the Möbius map at B on the open unit disc \mathcal{D} of strict contractions. Then for any $A_{i} \in \mathcal{D}(i=1,2, \ldots, n)$

$$
\boldsymbol{H}_{n}\left(A_{1}, A_{2}, \ldots, A_{n}\right) \geq 0 \quad \text { implies } \quad \boldsymbol{H}_{n}\left(\Theta_{B}\left(A_{1}\right), \Theta_{B}\left(A_{2}\right), \ldots, \Theta_{B}\left(A_{n}\right)\right) \geq 0
$$

Proof. Since by Lemma 2.4

$$
\left(I-\Theta_{B}\left(A_{j}\right)^{*} \Theta_{B}\left(A_{i}\right)\right)^{-1}=D_{B}^{-1}\left(I-B^{*} A_{i}\right)\left(I-A_{j}^{*} A_{i}\right)^{-1}\left(I-A_{j}^{*} B\right) D_{B}^{-1},
$$

we have

$$
\mathbf{H}_{n}\left(\Theta_{B}\left(A_{1}\right), \Theta_{B}\left(A_{2}\right), \ldots, \Theta_{B}\left(A_{n}\right)\right)=\mathbf{D} \cdot \mathbf{H}_{n}\left(A_{1}, A_{2}, \ldots, A_{n}\right) \cdot \mathbf{D}^{*}
$$

where

$$
\mathbf{D}=\operatorname{diag}\left(D_{B}^{-1}\left(I-B^{*} A_{1}\right), D_{B}^{-1}\left(I-B^{*} A_{2}\right), \ldots, D_{B}^{-1}\left(I-B^{*} A_{n}\right)\right)
$$

This identity proves the assertion.
Remark 2.8. It is not clear whether or not

$$
\mathbf{G}_{n}\left(A_{1}, A_{2}, \ldots, A_{n}\right) \geq 0 \text { implies } \mathbf{G}_{n}\left(\Theta_{B}\left(A_{1}\right), \Theta_{B}\left(A_{2}\right), \ldots, \Theta_{B}\left(A_{n}\right)\right) \geq 0
$$

Remark 2.9. In Introduction we stated that $\mathbf{H}_{2}(A, B) \geq 0$ is valid for any strict contraction A, B. Let us show that this result is included in the combination of Theorem 2.2 and Theorem 2.7. In fact, consider the Möbius map $\Theta_{B}(\cdot)$ at B. Then by Proposition 2.5 $A=\Theta_{B}(\tilde{A})$ where $\tilde{A}=\Theta_{B}(A)$ and $B=\Theta_{B}(0)$ and by Theorem 2.2 $\mathbf{H}_{2}(\tilde{A}, 0) \geq 0$. Then apply Theorem 2.7 to see $\mathbf{H}_{2}(A, B) \geq 0$.

Acknowledgement The author would like to thank Professor F. Zhang for the paper [7] before publication and useful comments on the original version of the present paper.

References

1. T. Ando, Hua-Marcus inequalities, Linear Multilinear Alg. 8 (1980), 347-352.
2. R. Horn and Ch. Johnson, Matrix Analysis, Cambridge Univ. Press, 1985.
3. R. Horn and Ch. Johnson, Topics in Matrix Analysis, Cambridge Univ. Press, 1991.
4. L.K. Hua, Inequalities involving determinants, Acta Math. Sinica, 5 (1955), 463-470 (in Chinese). See also Transl. Amer. Math. Soc. (2) 32, (1963), 265-272.
5. B. Sz.-Nagy and C. Foiaş,Harmonic Analysis of Operators on Hilbert Space, North Holland, New York, 1970.
6. M. Takesaki, Theory of Operator Algebras I, Springer, New York, 1979.
7. Ch. Xu, Zh. Xu and F. Zhang, Revisiting HuaEMarcus-Bellman-Ando inequalities on contractive matrices, Linear Alg. Appl. (to appear)
8. K. Zhou, J.C. Doyle and K. Glover, Robust and Optimal Control, Prentice Hall, New York, 1995.

Shiroishi-ku, Hongo-dori 9, Minami 4-10-805, Sapporo 003-0024, Japan.
E-mail address: ando@es.hokudai.ac.jp

