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THE HYERS–ULAM STABILITY FOR TWO FUNCTIONAL
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Abstract. We apply the Luxemburg–Jung fixed point theorem in generalized
metric spaces to study the Hyers–Ulam stability for two functional equations
in a single variable.

1. Introduction and preliminaries

According to [8], the study of stability problems for functional equations origi-
nated from a talk of S. Ulam before the Mathematics Club of the University of
Wisconsin in 1940, when he proposed the following problem:

Let E and E
′
be Banach spaces. Does there exist for each ε > 0 a δ > 0 such

that, to each function f from E into E
′
such that ‖f(x+y)−f(x)−f(y)‖ ≤ δ for

all x, y ∈ E there corresponds a linear transformation l(x) of E into E
′
satisfying

the inequality ‖f(x)− l(x)‖ ≤ ε for all x in E?
A year later, D.H. Hyers answered this question in the affirmative. He designed

as a δ−linear transformation between two Banach spaces E and E ′ any mapping
f : E → E ′ such that

‖f(x + y)− f(x)− f(y)‖ < δ(x, y ∈ E)

and proved the following theorem, which says that the Cauchy functional equation
is ”stable in the sense of Hyers–Ulam”:

Theorem. (cf. [8, Theorem 1]) Let E and E ′ be Banach spaces and let f(x) be
a δ-linear transformation of E into E ′. Then the limit l(x) = limn→∞ f(2nx)/2n

exists for each x ∈ E, l(x) is a linear transformation, and ‖f(x)− l(x)‖ ≤ δ
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for all x ∈ E. Moreover l(x) is the only linear transformation satisfying this
inequality.

Subsequently, the result of Hyers has been generalized by considering un-
bounded Cauchy differences (T. Aoki [2], for additive mappings and Th.M. Ras-
sias [19], for linear mappings). The paper of Th.M. Rassias [19] has provided a
great influence in the development of the theory of stability of functional equa-
tions, see e.g., [20, 7, 9, 16, 15].

Baker ([3]) studied the stability of a nonlinear functional equation by using the
Banach fixed point theorem. Recently, Radu ([18], see also [5]) pointed out that
many theorems concerning the stability of functional equations are consequences
of the fixed point alternative of Margolis and Diaz [14]. In 1996, G. Isac and
Th.M. Rassias [11] were the first mathematicians to introduce applications of
stability theory of functional equations for the proof of new fixed point theorems.
The reader is referred to the book [10] for an extensive account of both old and
new developments of noinlinear methods with applications to fixed point theory.

In this note we apply a fixed point theorem of Jung ([12]) to study the Hyers–
Ulam stability for two functional equations in a single variable. First, we extend
a theorem of Baker [3] and Agarwal et al. [1] and then we obtain a stability result
(in the sense of Ulam) for a functional equation discussed in [17].

2. Fixed points in generalized metric spaces

The notion of complete generalized metric space has been introduced by Lux-
emburg in [13], by allowing the value +∞ for the distance mapping.

If (X, d) is a generalized metric space then the relation ∼ on X defined by x ∼ y
if and only if d(x, y) < +∞ is an equivalence relation on X, which determines
a unique decomposition (called the canonical decomposition) of X into disjoint
equivalence classes, X = ∪{Xα, α ∈ A}. If dα = d |Xα×Xα , then (X, d) is a
complete generalized metric space if and only if (Xα, dα) is a complete metric
space for each α ∈ A.

The fixed point theorems of the alternative on generalized metric spaces can
be obtained from the corresponding fixed point theorems on appropriate metric
spaces. Namely, see [12, Theorem 3.1] , if (X, d) is a generalized metric space,
X = ∪{Xα, α ∈ A} is its canonical decomposition and T : X → X is a mapping
such that

d(T (x), T (y)) < +∞ whenever d(x, y) < +∞,

then T has a fixed point if and only if Tα = T |Xα : Xα → Xα has a fixed point
for some α ∈ A.

Definition 2.1. A mapping ϕ : [0,∞] → [0,∞] is called a generalized strict
comparison function if it is nondecreasing, ϕ(∞) = ∞, limn→∞ϕn(t) = 0 for all
0 < t < ∞ and t − ϕ(t) → ∞ as t → ∞. Let (X, d) be a generalized metric
space and ϕ be a generalized strict comparison function. A mapping f : X → X
is called a strict ϕ-contraction if

d(f(x), f(y)) ≤ ϕ(d(x, y))

for all x, y ∈ X.
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Theorem 2.2. Let (X, d) be a complete generalized metric space and T : X → X
be a strict ϕ-contraction such that d(x0, T (x0)) < +∞ for some x0 ∈ X. Then
T has a unique fixed point in the set Xα0 := {y ∈ X, d(x0, y) < ∞} and the
sequence (T n(x))n∈N converges to the fixed point x∗ for every x ∈ Y. Moreover,
d(x0, T (x0)) ≤ δ implies d(x∗, x0) ≤ δϕ := sup{t > 0, t− ϕ(t) ≤ δ}.

Proof. Let X = ∪{Xα, α ∈ A} be the canonical decomposition of X. Since
d(x0, T (x0)) < +∞, both x0 and T (x0) belong to the class Xα0 . On the other
hand, it is easy to show that ϕ(t) < t for all t ∈ (0,∞). Thus, for every y ∈ Xα0 ,

d(x0, T (y)) ≤ d(x0, T (x0)) + d(T (x0), T (y))

≤ d(x0, T (x0)) + ϕ(d(x0, y)) ≤ d(x0, T (x0)) + d(x0, y) < ∞
that is, Xα0 is an invariant subset for T . This means that the restriction Tα0 =
T |Xα0

is a strict ϕ-contraction on the metric space (Xα0 , d) and now the conclu-
sion follows from a well known fixed point result in metrical fixed point theory
(see e.g., [21, Theorem 7.1.1] or [4, section 2.5]). �

3. Hyers–Ulam stability of the nonlinear functional equation
f(x) = F (x, f(η(x)))

The Hyers–Ulam stability for the nonlinear functional equation

f(x) = F (x, f(η(x)))

where η : S → S and F : S × X → X are given mappings is discussed in [3]
and [1] (for the generalized stability of this equation see [6] and [5]). In the
next theorem we slightly improve [3, Theorem 2] and from [1, Theorem 13], by
considering comparison functions.

Theorem 3.1. Let S be a nonempty set and (X, d) be a complete metric space.
Let η : S → S, F : S ×X → X. Suppose that

d(F (x, u), F (x, v)) ≤ ϕ(d(u, v)) (x ∈ S, u, v ∈ X) ,

where ϕ : [0,∞] → [0,∞] is a generalized strict comparison function and let
f : S → X, δ > 0 be such that

d(f(x), F (x, f(η(x)))) ≤ δ (x ∈ S) .

Then there is a unique mapping fs : S → X such that

fs(x) = F (x, fs(η(x))) (x ∈ S)

and
d(f(x), fs(x)) ≤ δϕ (x ∈ S)

where δϕ := sup{t : t− ϕ(t) ≤ δ}.

Proof. Consider the set Y of all mappings a from S to X. According to [3, The-
orem 2], the formula ρ(a, b) = sup{d(a(x), b(x)), x ∈ S} defines a (generalized)
complete metric on Y. Next, let us define the mapping T from Y to Y as follows:
for every a ∈ Y and x ∈ S, T (a)(x) = F (x, a(η(x))). Then, for all a, b ∈ Y and
x ∈ S,

d(T (a)(x), T (b)(x)) = d(F (x, a(η(x))), F (x, b(η(x))))
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≤ ϕ(d(a(η(x)), b(η(x))) ≤ ϕ(ρ(a, b)).

Therefore,

ρ(T (a), T (b)) ≤ ϕ(ρ(a, b)) (a, b ∈ Y )

that is, T is a strict ϕ-contraction on Y .
As d(f(x), F (x, f(η(x)))) ≤ δ (x ∈ S) means that ρ(f, T (f)) ≤ δ, from The-

orem 2.2 it follows that there is a unique fs in Y such that fs = T (fs) and
d(f(x), fs(x)) ≤ sup{t : t− ϕ(t) ≤ δ} (x ∈ S). �

4. The Hyers–Ulam stability of the equation µ ◦ f ◦ η = f

Let X be a nonempty set, (Y, d) be a metric space and η : X → X, µ : Y → Y
be two given functions. In the following we deal with the Hyers–Ulam stability
problem for the functional equation µ◦f ◦η = f , where f : X → Y is an unknown
mapping. The Hyers–Ulam–Rassias stability of this equation has been studied in
[17] and [5].

Theorem 4.1. Let X be a nonempty set, (Y, d) be a complete metric space and
η : X → X, µ : Y → Y be two given functions. Suppose that f : X → Y satisfies

d((µ ◦ f ◦ η)(x), f(x)) ≤ δ (x ∈ X),

where δ is a given positive real number. If ϕ : [0,∞] → [0,∞] is a generalized
strict comparison function and

d(µ(u), µ(v)) ≤ ϕ(d(u, v)) (u, v ∈ Y ),

then there exists a unique mapping c : X → Y , which satisfies both the equation

µ ◦ c ◦ η = c

and the estimation

d(f(x), c(x)) ≤ δϕ (x ∈ X).

Moreover,

c(x) = lim
n→∞

(µn ◦ f ◦ ηn) (x) (x ∈ X).

Proof. Let E := {a : X → Y } and ρ(a, b) = sup{d(a(x), b(x)), x ∈ S}. For every
f ∈ E, define T (f) : X → Y by T (f) = µ ◦ f ◦ η.

From the definition of T it follows that if a, b ∈ E then, for all x ∈ X,

d(T (a)(x), T (b)(x)) = d(µ ◦ a ◦ η(x), µ ◦ b ◦ η(x))

≤ ϕ(d(a(f(x)), b(f(x))) ≤ ϕ(ρ(a, b)).

Therefore,

ρ(T (a), T (b)) ≤ ϕ(ρ(a, b)) (a, b ∈ E).

As d((µ ◦ f ◦ η)(x), f(x)) ≤ δ (x ∈ X) means that ρ(f, T (f)) ≤ δ, we can
use Theorem 2.2 to conclude the proof.
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[5] L. Cădariu and V. Radu, Fixed point method for the generalized stability of functional

equations in single variable, Fixed Point Theory and Applications, to appear.
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