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Abstract. In this article we study the existence of non-continuous linear func-
tionals on topological vector spaces. Both sufficient and necessary conditions
for the existence of such maps are found.

1. Introduction

We know that, on every finite dimensional T2 topological vector space, all linear
functionals are always continuous (recall that by linear functional we mean linear
maps from a vector space into the scalar field K = R or C.) In infinite dimensions,
or when we do not have the T2 hypothesis, very different things occur, as we shall
show in this paper. We begin this introduction with the following basic results,
that can be found in any basic reference for topological vector spaces, for instance,
[1] and [2].

Theorem 1.1. Let X be a vector space. Then:

(1) The trivial topology on X is always a vector topology, that makes all the
non-zero linear functionals on X non-continuous.

(2) The topology on X generated by the sub-basis{
f−1 (U) : f : X −→ K is linear and U ⊆ K is open

}
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is a vector topology that makes all the linear functionals on X continuous.
(3) The discrete topology on X is never a vector topology unless X = 0.

Throughout this note we use the notation

N = {x ∈ X : x belongs to every neighborhood of 0} ,

for a given topological vector space X.

Theorem 1.2. Let X be a topological vector space. Let us consider the set N
described above. Then:

(1) The set N is a closed vector subspace of X whose relative topology is the
trivial topology.

(2) The space X is T2 if and only if N = {0}.

Notice that, according to Theorem 1.2, if a topological vector space X is not T2

then the corresponding closed vector subspace N is different from {0}. Therefore,
by Theorem 1.1 any non-zero linear functional on N is not continuous. As a
consequence, there are non-continuous linear functionals on X.

Corollary 1.3. Let X be a topological vector space. Let f : X −→ K be a linear
functional. Then:

(1) If f is continuous then N ⊆ ker (f), where N is the closed vector subspace
of X described above.

(2) If N is topologically complemented and M is a topological complement
for N in X, then f is continuous if and only if N ⊆ ker (f) and f |M is
continuous. In particular, if X is finite dimensional then f is continuous
if and only if N ⊆ ker (f).

Corollary 1.4. Let X be a topological vector space. If X is not T2 then there
are non-continuous linear functionals on X.

Notice that all of these are opposite to what we might expect if we work in the
category of all Banach spaces.

2. Motivating results

The motivation in this paper comes from the following results.

Theorem 2.1. Let X be a finite dimensional T2 topological vector space. Let
M be a convex subset of X such that span (M) = X. If 0 ∈ M then M has
non-empty interior.

Proof. Let {e1, . . . , en} be a Hamel basis for X contained in M . Then, the convex
hull co {0, e1, . . . , en} ⊆ M . Since X is T2 we have that the vector topology on
X is induced by the norm

‖λ1e1 + · · ·+ λnen‖ = max {|λ1| , . . . , |λn|} ,

for every λ1, . . . , λn ∈ K. We show that the usual closed ball
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of center 1
n+1

e1+· · ·+ 1
n+1

en and radius 1
n(n+1)

is contained in the set co {0, e1, . . . , en}.
Let

λ1e1 + · · ·+ λnen ∈ BX

(
1

n + 1
e1 + · · ·+ 1

n + 1
en,

1

n (n + 1)

)
.

We have ∣∣∣∣ 1

n + 1
− λk

∣∣∣∣ ≤ 1

n (n + 1)

for each k ∈ {1, . . . , n}, which means that

0 ≤ λk ≤
1

n
for each k ∈ {1, . . . , n}. In other words,

λ1e1 + · · ·+ λnen ∈ co {0, e1, . . . , en} .

�

Corollary 2.2. Let X be a topological vector space. If X is finite dimensional and
T2, then all convex balanced absorbing subsets M of X have non-empty interior.

Notice that from the previous corollary the following question arises naturally.

Question 2.3. Let X be a topological vector space. Assume that all convex bal-
anced absorbing subsets M of X have non-empty interior. Is X finite dimensional
and T2?

We will try to answer this question in the next section. In this one, we provide
a natural approach to a positive answer to Question 2.3.

Lemma 2.4. Let X be a topological vector space. Let M be a convex balanced
subset of X. Then, M is absorbing if and only if span (M) = X.

Proof. It is well known that every absorbing set is a generator system, that is, its
linear span is the whole space. Conversely, assume that M is a generator system.
Let x ∈ X \ {0} and consider λ1, . . . , λn ∈ K and m1, . . . ,mn ∈ M such that
x = λ1m1 + · · · + λnmn. Because x 6= 0 we have that |λ1| + · · · + |λn| > 0, and
thus we can consider

λ =
1

|λ1|+ · · ·+ |λn|
.

Now, take any α ∈ K with |α| ≤ λ. We have that αx = (αλ1) m1 + · · ·+(αλn) mn

and |αλ1| + · · · + |αλn| ≤ 1, therefore since M is absolutely convex we have
αx ∈ M . �

Theorem 2.5. Let X be a topological vector space. If there exists a Hamel basis
B for X that is not closed, then X possesses a convex balanced absorbing subset
M with empty interior.

Proof. We can assume that 0 ∈ cl (B) \ B. Let M be the absolutely convex hull
of B. By Lemma 2.4, we have that M is absorbing. We shall show that M has
empty interior. Assume to the contrary. Then there exists a neighborhood U of
0 contained in M . Next, pick another neighborhood V of 0 such that V +V ⊆ U .
There exists b ∈ B ∩ V . Then, 2b ∈ M , but this is impossible. �
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3. Main results

In this section we provide a partial positive answer to Question 2.3.

Theorem 3.1. Let X be a topological vector space. If there exists a non-continuous
linear functional f on X, then X possesses a convex balanced absorbing subset
M with empty interior.

Proof. Let us take M = f−1 ({t ∈ K : |t| ≤ 1}). We have that M is convex,
balanced, and absorbing. Let us show that M has empty interior. Otherwise,
since M is absolutely convex (convex and balanced) we have that 0 belongs to the
interior of M . Therefore, we can find a balanced and absorbing neighborhood
U of 0 contained in M . It suffices to show that f is continuous at 0. So, let
ε > 0. Then, εU is a neighborhood of 0 and f (εU) ⊆ {t ∈ K : |t| ≤ ε}. Hence f
is continuous at 0, and so on X. This completes the proof. �

Theorem 3.2. Let X be a topological vector space. If there exists a Hamel basis
B for X that is not closed, then there exists a non-continuous linear functional
f on X.

Proof. Again, we can assume that 0 ∈ cl (B) \B. Then, we can consider a linear
functional f on X such that f (B) = {1}. Clearly, f is not continuous on X. �

Theorem 3.3. Let X be a topological vector space. If X has local basis U of
neighborhoods of 0 such that the cardinal of U is less than or equal to the algebraic
dimension of X, then X possesses a Hamel basis B that is not closed.

Proof. Let B′ be a Hamel basis for X. Since card (U) ≤ card (B′) there exists an
injective mapping

U −→ B′

U 7−→ bU .

Now, since every element of U is an absorbing set, for every U ∈ U we can
find λU ∈ K \ {0} such that λUbU ∈ U . Then, (λUbU)U∈U is a null net such that
{λUbU : U ∈ U} is a free system (linearly independent). In accordance to the Zorn
Lemma, there exists a Hamel basis B for X containing the set {λUbU : U ∈ U}.
Obviously, 0 ∈ cl (B) \B. So B is not closed. �

Theorem 3.4. Let X be a topological vector space. If X either has the trivial
topology and is not zero or is infinite dimensional and first countable, then X has
a local basis U of neighborhoods of 0 such that the cardinal of U is less than or
equal to the algebraic dimension of X.

Proof. If X has the trivial topology and is not zero then the cardinal of any local
basis of neighborhoods of 0 is 1 and the algebraic dimension of X is greater than or
equal to 1. Therefore, assume that X is infinite dimensional and first countable.
There exists a local basis U of neighborhoods of 0 such that card (U) = ℵ0. Now,
let us consider any Hamel basis B for X. Since X has infinite dimension we have
that

card (B) ≥ ℵ0 = card (U) .

�
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Now, we are ready to state and prove a partial positive solution to Question
2.3.

Theorem 3.5. Let X be a topological vector space. Assume that all convex
balanced absorbing subsets M of X have non-empty interior. Then:

(1) All linear functionals f on X are continuous. In particular, X is T2.
(2) If the topology on X coincides with the topology generated by the sub-basis{

f−1 (U) : f : X −→ K is linear and U ⊆ K is open
}

,

then X is finite dimensional.

Proof.
(1) According to Theorem 3.1 all linear functionals on X must be continuous.

Therefore, by Corollary 1.4 we deduce that X is T2.
(2) Let B be any Hamel basis of X. Let M be the absolutely convex hull of

B. By hypothesis we have that M has non-empty interior. Therefore, 0 belongs
to the interior of M and hence we can find f1, . . . , fn linear functionals on X and
U1, . . . , Un ⊆ K open neighborhoods of 0 such that

f−1
1 (U1) ∩ · · · ∩ f−1

n (Un) ⊆ M.

Thus, we also have that

ker (f1) ∩ · · · ∩ ker (fn) ⊆ M.

Now, suppose that we can find 0 6= x ∈ ker (f1)∩ · · · ∩ ker (fn). We can uniquely
write x = λ1b1 + · · · + λmbm with λ1, . . . , λm ∈ K and b1, . . . , bm ∈ B. Observe
that, since x ∈ M , we have that

∑m
i=1 |λi| ≤ 1. Next, let us take

α >
1∑m

i=1 |λi|
.

Then,
αx ∈ ker (f1) ∩ · · · ∩ ker (fn) ⊆ M,

but αx = (αλ1) b1 + · · · + (αλm) bm and
∑m

i=1 |αλi| > 1, which is impossible.
Therefore

ker (f1) ∩ · · · ∩ ker (fn) = 0.

In other words, the algebraic dual of X is finite dimensional and so is X. �
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