

Banach J. Math. Anal. 2 (2008), no. 1, 105-112
Banach $\mathbf{J o u r n a l}_{\text {of }} \mathbf{M a t h e m a t i c a l ~}^{\mathbf{A}_{\text {nalysis }}}$
ISSN: 1735-8787 (electronic)
http://www.math-analysis.org

A FIXED POINT APPROACH TO THE STABILITY OF A GENERALIZED CAUCHY FUNCTIONAL EQUATION

ABBAS NAJATI ${ }^{1 *}$ AND ASGHAR RAHIMI ${ }^{2}$
Submitted by C. Park

Abstract. We investigate the following generalized Cauchy functional equation

$$
f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)
$$

where $\alpha, \beta \in \mathbb{R} \backslash\{0\}$, and use a fixed point method to prove its generalized Hyers-Ulam-Rassias stability in Banach modules over a C^{*}-algebra.

1. Introduction

The stability problem of functional equations originated from a question of S.M. Ulam [22] concerning the stability of group homomorphisms : Let $\left(G_{1}, *\right)$ be a group and let $\left(G_{2}, \diamond, d\right)$ be a metric group with the metric $d(\cdot, \cdot)$. Given $\epsilon>0$, does there exist $\delta(\epsilon)>0$ such that if a mapping $h: G_{1} \rightarrow G_{2}$ satisfies the inequality

$$
d(h(x * y), h(x) \diamond h(y))<\delta
$$

for all $x, y \in G_{1}$, then there is a homomorphism $H: G_{1} \rightarrow G_{2}$ with

$$
d(h(x), H(x))<\epsilon
$$

for all $x \in G_{1}$?
In other words, we are looking for situations where homomorphisms are stable, i.e., if a mapping is almost a homomorphism, then there exists a homomorphism near it. D.H. Hyers [6] gave a first affirmative answer to the question of Ulam

[^0]for Banach spaces. Let X and Y be Banach spaces: Assume that $f: X \rightarrow Y$ satisfies
$$
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon
$$
for some $\varepsilon \geq 0$ and all $x, y \in X$. Then there exists a unique additive mapping $T: X \rightarrow Y$ such that
$$
\|f(x)-T(x)\| \leq \varepsilon
$$
for all $x \in X$.
T. Aoki [2] and Th.M. Rassias [20] provided a generalization of the Hyers' theorem for additive and linear mappings, respectively, by allowing the Cauchy difference to be unbounded.

Theorem 1.1. (Th.M. Rassias). Let $f: E \rightarrow E^{\prime}$ be a mapping from a normed vector space E into a Banach space E^{\prime} subject to the inequality

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right) \tag{1.1}
\end{equation*}
$$

for all $x, y \in E$, where ϵ and p are constants with $\epsilon>0$ and $p<1$. Then the limit

$$
L(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}
$$

exists for all $x \in E$ and $L: E \rightarrow E^{\prime}$ is the unique additive mapping which satisfies

$$
\begin{equation*}
\|f(x)-L(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p} \tag{1.2}
\end{equation*}
$$

for all $x \in E$. If $p<0$ then inequality (1.1) holds for $x, y \neq 0$ and (1.2) for $x \neq 0$. Also, if for each $x \in E$ the mapping $t \mapsto f(t x)$ is continuous in $t \in \mathbb{R}$, then L is linear.

The above inequality has provided a lot of influence in the development of what is now known as a generalized Hyers-Ulam-Rassias stability of functional equations. P. Găvruta [5] provided a further generalization of the Th.M. Rassias' theorem. During the last three decades a number of papers and research monographs have been published on various generalizations and applications of the generalized Hyers-Ulam-Rassias stability to a number of functional equations and mappings (see [14]-19]). We also refer the readers to the books [4], [7], [9] and 21].

Let E be a set. A function $d: E \times E \rightarrow[0, \infty]$ is called a generalized metric on E if d satisfies
(i) $d(x, y)=0$ if and only if $x=y$;
(ii) $d(x, y)=d(y, x)$ for all $x, y \in E$;
(iii) $d(x, z) \leq d(x, y)+d(y, z)$ for all $x, y, z \in E$.

We recall the following theorem by Margolis and Diaz.
Theorem 1.2. [12] Let (E, d) be a complete generalized metric space and let $J: E \rightarrow E$ be a strictly contractive mapping with Lipschitz constant $L<1$. Then for each given element $x \in E$, either

$$
d\left(J^{n} x, J^{n+1} x\right)=\infty
$$

for all non-negative integers n or there exists a non-negative integer n_{0} such that
(1) $d\left(J^{n} x, J^{n+1} x\right)<\infty$ for all $n \geq n_{0}$;
(2) the sequence $\left\{J^{n} x\right\}$ converges to a fixed point y^{*} of J;
(3) y^{*} is the unique fixed point of J in the set $Y=\left\{y \in E: d\left(J^{n_{0}} x, y\right)<\infty\right\}$;
(4) $d\left(y, y^{*}\right) \leq \frac{1}{1-L} d(y, J y)$ for all $y \in Y$.

Throughout this paper, let A be a unital C^{*}-algebra with unitary group $U(A)$, unit e and norm $|\cdot|$. Assume that X and Y are left Banach A-modules. An additive mapping $T: X \rightarrow Y$ is called A-linear if $T(a x)=a T(x)$ for all $a \in A$ and all $x \in X$.

In this paper, we investigate an A-linear mapping associated with the generalized Cauchy functional equation

$$
\begin{equation*}
f(\alpha x+\beta y)=\alpha f(x)+\beta f(y) \tag{1.3}
\end{equation*}
$$

where $\alpha, \beta \in \mathbb{R} \backslash\{0\}$, and using the fixed point method (see [1, 3, 10, 13]), we prove the generalized Hyers-Ulam-Rassias stability of A-linear mappings in Banach A modules associated with the functional equation (1.3). The first systematic study of fixed point theorems in nonlinear analysis is due to G. Isac and Th.M. Rassias; cf. [8].

Throughout this paper, α and β are fixed non-zero real numbers. For convenience, we use the following abbreviation for a given $a \in A$ and a mapping $f: X \rightarrow Y$,

$$
D_{a} f(x, y):=f(\alpha x+\beta a y)-\alpha f(x)-\beta a f(y)
$$

for all $x, y \in X$.

2. Main Results

Lemma 2.1. Let $f: X \rightarrow Y$ be a mapping with $f(0)=0$ such that

$$
\begin{equation*}
D_{a} f(x, y)=0 \tag{2.1}
\end{equation*}
$$

for all $x, y \in X$ and all $a \in U(A)$. Then f is A-linear.
Proof. Letting $y=0$ in (2.1), we get $f(\alpha x)=\alpha f(x)$ for all $x \in X$. Similarly, we have $f(\beta y)=\beta f(y)$ for all $y \in X$. Hence (2.1) implies that

$$
\begin{equation*}
f(\alpha x+\beta a y)=f(\alpha x)+a f(\beta y) \tag{2.2}
\end{equation*}
$$

for all $x, y \in X$ and all $a \in U(A)$.
Replacing x and y by $\frac{x}{\alpha}$ and $\frac{y}{\beta}$, respectively, in 2.2), we get

$$
\begin{equation*}
f(x+a y)=f(x)+a f(y) \tag{2.3}
\end{equation*}
$$

for all $x, y \in X$ and all $a \in U(A)$. Letting $a=e \in U(A)$ in (2.3), we infer that f is additive and so $f(r x)=r f(x)$ for $x \in X$ and all rational numbers r. By letting $x=0$ in (2.3), we get

$$
\begin{equation*}
f(a y)=a f(y) \tag{2.4}
\end{equation*}
$$

for all $a \in U(A)$ and all $y \in X$. It is clear that (2.4) holds for $a=0$.
Now let $a \in A(a \neq 0)$ and m an integer greater than $4|a|$. Then $\left|\frac{a}{m}\right|<\frac{1}{4}<$ $1-\frac{2}{3}=\frac{1}{3}$. By Theorem 1 of [11], there exist three elements $u_{1}, u_{2}, u_{3} \in U(A)$
such that $\frac{3}{m} a=u_{1}+u_{2}+u_{3}$. So $a=\frac{m}{3}\left(\frac{3}{m} a\right)=\frac{m}{3}\left(u_{1}+u_{2}+u_{3}\right)$. Hence by 2.4) we have

$$
\begin{aligned}
f(a x) & =\frac{m}{3} f\left(u_{1} x+u_{2} x+u_{3} x\right)=\frac{m}{3}\left[f\left(u_{1} x\right)+f\left(u_{2} x\right)+f\left(u_{3} x\right)\right] \\
& =\frac{m}{3}\left(u_{1}+u_{2}+u_{3}\right) f(x)=\frac{m}{3} \cdot \frac{3}{m} a f(x)=a f(x)
\end{aligned}
$$

for all $x \in X$. So $f: X \rightarrow Y$ is A-linear, as desired.
Now we prove the generalized Hyers-Ulam-Rassias stability of A-linear mappings in Banach A-modules.

Theorem 2.2. Let $f: X \rightarrow Y$ be a mapping with $f(0)=0$ for which there exists a function $\varphi: X^{2} \rightarrow[0, \infty)$ such that

$$
\begin{align*}
& \lim _{n \rightarrow \infty} 2^{n} \varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)=0, \tag{2.5}\\
& \left\|D_{a} f(x, y)\right\| \leq \varphi(x, y) \tag{2.6}
\end{align*}
$$

for all $x, y \in X$ and all $a \in U(A)$. If there exists a constant $L<1$ such that the function

$$
x \mapsto \psi(x):=\varphi\left(\frac{x}{2 \alpha}, \frac{x}{2 \beta}\right)+\varphi\left(\frac{x}{2 \alpha}, 0\right)+\varphi\left(0, \frac{x}{2 \beta}\right)
$$

has the property

$$
2 \psi(x) \leq L \psi(2 x)
$$

for all $x \in X$, then there exists a unique A-linear mapping $T: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{1}{1-L} \psi(x) \tag{2.7}
\end{equation*}
$$

for all $x \in X$.
Proof. Letting $y=0$ in (2.6), we get

$$
\begin{equation*}
\|f(\alpha x)-\alpha f(x)\| \leq \varphi(x, 0) \tag{2.8}
\end{equation*}
$$

for all $x \in X$. Similarly, letting $x=0$ and $a=e \in U(A)$ in (2.6), we get

$$
\begin{equation*}
\|f(\beta y)-\beta f(y)\| \leq \varphi(0, y) \tag{2.9}
\end{equation*}
$$

for all $y \in X$. So it follows from (2.6), (2.8) and (2.9) that

$$
\|f(\alpha x+\beta y)-f(\alpha x)-f(\beta y)\| \leq \varphi(x, y)+\varphi(x, 0)+\varphi(0, y)
$$

for all $x, y \in X$. Hence

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \varphi\left(\frac{x}{\alpha}, \frac{y}{\beta}\right)+\varphi\left(\frac{x}{\alpha}, 0\right)+\varphi\left(0, \frac{y}{\beta}\right) \tag{2.10}
\end{equation*}
$$

for all $x, y \in X$. Letting $y=x$ in (2.10), we get

$$
\|f(2 x)-2 f(x)\| \leq \varphi\left(\frac{x}{\alpha}, \frac{x}{\beta}\right)+\varphi\left(\frac{x}{\alpha}, 0\right)++\varphi\left(0, \frac{x}{\beta}\right)
$$

for all $x, y \in X$. Hence

$$
\begin{equation*}
\left\|f(x)-2 f\left(\frac{x}{2}\right)\right\| \leq \psi(x) \tag{2.11}
\end{equation*}
$$

for all $x \in X$. Let $E:=\{g: X \rightarrow Y \mid g(0)=0\}$. We introduce a generalized metric on E as follows:

$$
d(g, h):=\inf \{C \in[0, \infty]:\|g(x)-h(x)\| \leq C \psi(x) \text { for all } x \in X\}
$$

It is easy to show that (E, d) is a generalized complete metric space 3].
Now we consider the mapping $\Lambda: E \rightarrow E$ defined by

$$
(\Lambda g)(x)=2 g\left(\frac{x}{2}\right), \quad \text { for all } g \in E \text { and } x \in X
$$

Let $g, h \in E$ and let $C \in[0, \infty]$ be an arbitrary constant with $d(g, h) \leq C$. From the definition of d, we have

$$
\|g(x)-h(x)\| \leq C \psi(x)
$$

for all $x \in X$. By the assumption and last inequality, we have

$$
\|(\Lambda g)(x)-(\Lambda h)(x)\|=2\left\|g\left(\frac{x}{2}\right)-h\left(\frac{x}{2}\right)\right\| \leq 2 C \psi\left(\frac{x}{2}\right) \leq C L \psi(x)
$$

for all $x \in X$. So

$$
d(\Lambda g, \Lambda h) \leq L d(g, h)
$$

for any $g, h \in E$. It follows from (2.11) that $d(\Lambda f, f) \leq 1$. Therefore according to Theorem 1.2, the sequence $\left\{\Lambda^{n} f\right\}$ converges to a fixed point T of Λ, i.e.,

$$
T: X \rightarrow Y, \quad T(x)=\lim _{n \rightarrow \infty}\left(\Lambda^{n} f\right)(x)=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)
$$

and $T(2 x)=2 T(x)$ for all $x \in X$. Also T is the unique fixed point of Λ in the set $E^{*}=\{g \in E: d(f, g)<\infty\}$ and

$$
d(T, f) \leq \frac{1}{1-L} d(\Lambda f, f) \leq \frac{1}{1-L}
$$

i.e., inequality (2.7) holds true for all $x \in X$. It follows from the definition of T, (2.5) and (2.6) that

$$
\begin{aligned}
\left\|D_{a} T(x, y)\right\| & =\lim _{n \rightarrow \infty} 2^{n}\left\|D_{a} f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)\right\| \\
& \leq \lim _{n \rightarrow \infty} 2^{n} \varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)=0
\end{aligned}
$$

for all $x, y \in X$ and all $a \in U(A)$. By Lemma 2.1, the mapping $T: X \rightarrow Y$ is A-linear. Finally it remains to prove the uniqueness of T. Let $P: X \rightarrow Y$ be another A-linear mapping satisfying 2.7). Since $d(f, P) \leq \frac{1}{1-L}$ and P is additive, $P \in E^{*}$ and $(\Lambda P)(x)=2 P(x / 2)=P(x)$ for all $x \in X$, i.e., P is a fixed point of Λ. Since T is the unique fixed point of Λ in $E^{*}, P=T$.

Corollary 2.3. Let $r>1$ and θ be non-negative real numbers and let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and the inequality

$$
\left\|D_{a} f(x, y)\right\| \leq \theta\left(\|x\|^{r}+\|y\|^{r}\right)
$$

for all $x, y \in X$ and all $a \in U(A)$. Then there exists a unique A-linear mapping $T: X \rightarrow Y$ such that

$$
\|f(x)-T(x)\| \leq \frac{2\left(|\alpha|^{r}+|\beta|^{r}\right) \theta}{\left(2^{r}-2\right)|\alpha \beta|^{r}}\|x\|^{r}
$$

for all $x \in X$.
Proof. The proof follows from Theorem 2.2 by taking

$$
\varphi(x, y):=\theta\left(\|x\|^{r}+\|y\|^{r}\right)
$$

for all $x, y \in X$. Then we can choose $L=2^{1-r}$ and we get the desired result.
Theorem 2.4. Let $f: X \rightarrow Y$ be a mapping with $f(0)=0$ for which there exists a function $\Phi: X^{2} \rightarrow[0, \infty)$ such that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{2^{n}} \Phi\left(2^{n} x, 2^{n} y\right)=0 \\
& \left\|D_{a} f(x, y)\right\| \leq \Phi(x, y)
\end{aligned}
$$

for all $x, y \in X$ and all $a \in U(A)$. If there exists a constant $L<1$ such that the function

$$
x \mapsto \Psi(x):=\Phi\left(\frac{x}{\alpha}, \frac{x}{\beta}\right)+\Phi\left(\frac{x}{\alpha}, 0\right)+\Phi\left(0, \frac{x}{\beta}\right)
$$

has the property

$$
\Psi(2 x) \leq 2 L \Psi(x)
$$

for all $x \in X$, then there exists a unique A-linear mapping $T: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{1}{2-2 L} \Psi(x) \tag{2.12}
\end{equation*}
$$

for all $x \in X$.
Proof. Using the same method as in the proof of Theorem 2.2, we have

$$
\begin{equation*}
\left\|\frac{1}{2} f(2 x)-f(x)\right\| \leq \frac{1}{2} \Psi(x) \tag{2.13}
\end{equation*}
$$

for all $x \in X$. We introduce the same definitions for E and d (replacing Ψ by ψ) as in the proof of Theorem 2.2 such that (E, d) becomes a generalized complete metric space. Let $\Lambda: E \rightarrow E$ be the mapping defined by

$$
(\Lambda g)(x)=\frac{1}{2} g(2 x), \quad \text { for all } g \in E \text { and } x \in X
$$

One can show that $d(\Lambda g, \Lambda h) \leq L d(g, h)$ for any $g, h \in E$. It follows from (2.13) that $d(\Lambda f, f) \leq \frac{1}{2}$. Due to Theorem 1.2 , the sequence $\left\{\Lambda^{n} f\right\}$ converges to a fixed point T of Λ, i.e.,

$$
T: X \rightarrow Y, \quad T(x)=\lim _{n \rightarrow \infty}\left(\Lambda^{n} f\right)(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)
$$

and $T(2 x)=2 T(x)$ for all $x \in X$. Also

$$
d(T, f) \leq \frac{1}{1-L} d(\Lambda f, f) \leq \frac{1}{2-2 L}
$$

i.e., inequality (2.12) holds true for all $x \in X$.

The rest of the proof is similar to the proof of Theorem 2.2 and we omit the details.

Corollary 2.5. Let $0<r<1$ and θ, δ be non-negative real numbers and let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and the inequality

$$
\left\|D_{a} f(x, y)\right\| \leq \delta+\theta\left(\|x\|^{r}+\|y\|^{r}\right)
$$

for all $x, y \in X$ and all $a \in U(A)$. Then there exists a unique A-linear mapping $T: X \rightarrow Y$ such that

$$
\|f(x)-T(x)\| \leq \frac{3 \delta}{2-2^{r}}+\frac{2\left(|\alpha|^{r}+|\beta|^{r}\right) \theta}{\left(2-2^{r}\right)|\alpha \beta|^{r}}\|x\|^{r}
$$

for all $x \in X$.
Proof. The proof follows from Theorem 2.4 by taking

$$
\Phi(x, y):=\delta+\theta\left(\|x\|^{r}+\|y\|^{r}\right)
$$

for all $x, y \in X$. Then we can choose $L=2^{r-1}$ and we get the desired result.

Acknowledgment

The authors would like to thank the referee for a number of valuable suggestions regarding a previous version of this paper.

References

[1] M. Amyari and M.S. Moslehian, Hyers-Ulam-Rassias stability of derivations on Hilbert C^{*}-modules, Contemporary Math. 427 (2007), 31-39.
[2] T. Aoki, On the stability of the linear transformationin Banach spaces, J. Math. Soc. Japan 2 (1950) 64-66.
[3] L. Cădariu and V. Radu, On the stability of the Cauchy functional equation: A fixed point approach, Grazer Math. Ber. 346 (2004) 43-52.
[4] P. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore and London, 2002.
[5] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[6] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222-224.
[7] D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkh" auser, Basel, 1998.
[8] G. Isac and Th. M. Rassias, Stability of Ψ-additive mappings: applications to nonlinear analysis, Internat. J. Math. Math. Sci., 19 (1996), 219-228.
[9] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press lnc., Palm Harbor, Florida, 2001.
[10] S.-M. Jung and T.-S. Kim, A fixed point approach to stability of cubic functional equation, Bol. Soc. Mat. Mexicana, 12 (2006), 51-57.
[11] R.V. Kadison and G. Pedersen, Means and convex combinations of unitary operators, Math. Scand., 57 (1985), 249-266.
[12] B. Margolis, J.B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305-309.
[13] M. Mirzavaziri and M.S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc., 37 (2006), 361-376.
[14] M.S. Moslehian and Th.M. Rassias, Stability of functional equations in non-Archimedian spaces, Appl. Anal. Disc. Math., 1 (2007), 325-334.
[15] A. Najati, Hyers-Ulam stability of an n-Apollonius type quadratic mapping, Bulletin of the Belgian Mathematical Society-Simon Stevin, 14 (2007), 755-774.
[16] A. Najati, On the stability of a quartic functional equation, J. Math. Anal. Appl., 340 (2008), 569-574.
[17] A. Najati and M.B. Moghimi, Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl., 337 (2008), 399-415.
[18] A. Najati and C. Park, Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras associated to the Pexiderized Cauchy functional equation, J. Math. Anal. Appl., 335 (2007), 763-778.
[19] C. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl., 275 (2002), 711-720.
[20] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
[21] Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers Co., Dordrecht, Boston, London, 2003.
[22] S.M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.
1 Department of Mathematics, University of Mohaghegh Ardabili, Ardabil, IRAN

E-mail address: a.nejati@yahoo.com
${ }^{2}$ Department of Mathematics, University of Maragheh, Maragheh, Iran
E-mail address: asgharrahimi@yahoo.com

[^0]: Date: Received: 25 April 2008; Accepted 2 Jun 2008.
 *Corresponding author.
 2000 Mathematics Subject Classification. Primary: 39B72; Secondary 47H09.
 Key words and phrases. Generalized metric space, fixed point, stability, Banach module, C^{*}-algebra.

