

Banach J. Math. Anal. 2 (2008), no. 1, 105–112

BANACH JOURNAL OF MATHEMATICAL ANALYSIS ISSN: 1735-8787 (electronic) http://www.math-analysis.org

A FIXED POINT APPROACH TO THE STABILITY OF A GENERALIZED CAUCHY FUNCTIONAL EQUATION

ABBAS NAJATI^{1*} AND ASGHAR RAHIMI²

Submitted by C. Park

ABSTRACT. We investigate the following generalized Cauchy functional equation

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

where $\alpha, \beta \in \mathbb{R} \setminus \{0\}$, and use a fixed point method to prove its generalized Hyers–Ulam–Rassias stability in Banach modules over a C^* -algebra.

1. INTRODUCTION

The stability problem of functional equations originated from a question of S.M. Ulam [22] concerning the stability of group homomorphisms : Let $(G_1, *)$ be a group and let (G_2, \diamond, d) be a metric group with the metric $d(\cdot, \cdot)$. Given $\epsilon > 0$, does there exist $\delta(\epsilon) > 0$ such that if a mapping $h : G_1 \to G_2$ satisfies the inequality

$$d(h(x * y), h(x) \diamond h(y)) < \delta$$

for all $x, y \in G_1$, then there is a homomorphism $H: G_1 \to G_2$ with

$$d(h(x), H(x)) < \epsilon$$

for all $x \in G_1$?

In other words, we are looking for situations where homomorphisms are stable, i.e., if a mapping is almost a homomorphism, then there exists a homomorphism near it. D.H. Hyers [6] gave a first affirmative answer to the question of Ulam

Date: Received: 25 April 2008; Accepted 2 Jun 2008.

^{*}Corresponding author.

²⁰⁰⁰ Mathematics Subject Classification. Primary: 39B72; Secondary 47H09.

Key words and phrases. Generalized metric space, fixed point, stability, Banach module, C^* -algebra.

for Banach spaces. Let X and Y be Banach spaces: Assume that $f: X \to Y$ satisfies

$$\|f(x+y) - f(x) - f(y)\| \le \varepsilon$$

for some $\varepsilon \ge 0$ and all $x, y \in X$. Then there exists a unique additive mapping $T: X \to Y$ such that

$$\|f(x) - T(x)\| \le \varepsilon$$

for all $x \in X$.

T. Aoki [2] and Th.M. Rassias [20] provided a generalization of the Hyers' theorem for additive and linear mappings, respectively, by allowing the Cauchy difference to be unbounded.

Theorem 1.1. (Th.M. Rassias). Let $f : E \to E'$ be a mapping from a normed vector space E into a Banach space E' subject to the inequality

$$||f(x+y) - f(x) - f(y)|| \le \epsilon(||x||^p + ||y||^p)$$
(1.1)

for all $x, y \in E$, where ϵ and p are constants with $\epsilon > 0$ and p < 1. Then the limit

$$L(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}$$

exists for all $x \in E$ and $L: E \to E'$ is the unique additive mapping which satisfies

$$||f(x) - L(x)|| \le \frac{2\epsilon}{2 - 2^p} ||x||^p \tag{1.2}$$

for all $x \in E$. If p < 0 then inequality (1.1) holds for $x, y \neq 0$ and (1.2) for $x \neq 0$. Also, if for each $x \in E$ the mapping $t \mapsto f(tx)$ is continuous in $t \in \mathbb{R}$, then L is linear.

The above inequality has provided a lot of influence in the development of what is now known as a generalized Hyers–Ulam–Rassias stability of functional equations. P. Găvruta [5] provided a further generalization of the Th.M. Rassias' theorem. During the last three decades a number of papers and research monographs have been published on various generalizations and applications of the generalized Hyers–Ulam–Rassias stability to a number of functional equations and mappings (see [14]–[19]). We also refer the readers to the books [4], [7], [9] and [21].

Let E be a set. A function $d: E \times E \to [0, \infty]$ is called a *generalized metric* on E if d satisfies

(i) d(x, y) = 0 if and only if x = y;

(*ii*) d(x, y) = d(y, x) for all $x, y \in E$;

(*iii*) $d(x, z) \le d(x, y) + d(y, z)$ for all $x, y, z \in E$.

We recall the following theorem by Margolis and Diaz.

Theorem 1.2. [12] Let (E, d) be a complete generalized metric space and let $J: E \to E$ be a strictly contractive mapping with Lipschitz constant L < 1. Then for each given element $x \in E$, either

$$d(J^n x, J^{n+1} x) = \infty$$

for all non-negative integers n or there exists a non-negative integer n_0 such that

- (1) $d(J^n x, J^{n+1} x) < \infty$ for all $n \ge n_0$;
- (2) the sequence $\{J^nx\}$ converges to a fixed point y^* of J;
- (3) y^* is the unique fixed point of J in the set $Y = \{ y \in E : d(J^{n_0}x, y) < \infty \};$
- (4) $d(y, y^*) \le \frac{1}{1-L}d(y, Jy)$ for all $y \in Y$.

Throughout this paper, let A be a unital C^* -algebra with unitary group U(A), unit e and norm $|\cdot|$. Assume that X and Y are left Banach A-modules. An additive mapping $T: X \to Y$ is called A-linear if T(ax) = aT(x) for all $a \in A$ and all $x \in X$.

In this paper, we investigate an A-linear mapping associated with the generalized Cauchy functional equation

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y) \tag{1.3}$$

where $\alpha, \beta \in \mathbb{R} \setminus \{0\}$, and using the fixed point method (see [1, 3, 10, 13]), we prove the generalized Hyers–Ulam–Rassias stability of A-linear mappings in Banach Amodules associated with the functional equation (1.3). The first systematic study of fixed point theorems in nonlinear analysis is due to G. Isac and Th.M. Rassias; cf. [8].

Throughout this paper, α and β are fixed non-zero real numbers. For convenience, we use the following abbreviation for a given $a \in A$ and a mapping $f: X \to Y$,

$$D_a f(x, y) := f(\alpha x + \beta a y) - \alpha f(x) - \beta a f(y)$$

for all $x, y \in X$.

2. Main Results

Lemma 2.1. Let $f: X \to Y$ be a mapping with f(0) = 0 such that

$$D_a f(x, y) = 0 \tag{2.1}$$

for all $x, y \in X$ and all $a \in U(A)$. Then f is A-linear.

Proof. Letting y = 0 in (2.1), we get $f(\alpha x) = \alpha f(x)$ for all $x \in X$. Similarly, we have $f(\beta y) = \beta f(y)$ for all $y \in X$. Hence (2.1) implies that

$$f(\alpha x + \beta ay) = f(\alpha x) + af(\beta y) \tag{2.2}$$

for all $x, y \in X$ and all $a \in U(A)$.

Replacing x and y by $\frac{x}{\alpha}$ and $\frac{y}{\beta}$, respectively, in (2.2), we get

$$f(x+ay) = f(x) + af(y)$$
 (2.3)

for all $x, y \in X$ and all $a \in U(A)$. Letting $a = e \in U(A)$ in (2.3), we infer that f is additive and so f(rx) = rf(x) for $x \in X$ and all rational numbers r. By letting x = 0 in (2.3), we get

$$f(ay) = af(y) \tag{2.4}$$

for all $a \in U(A)$ and all $y \in X$. It is clear that (2.4) holds for a = 0.

Now let $a \in A$ $(a \neq 0)$ and m an integer greater than 4|a|. Then $|\frac{a}{m}| < \frac{1}{4} < 1 - \frac{2}{3} = \frac{1}{3}$. By Theorem 1 of [11], there exist three elements $u_1, u_2, u_3 \in U(A)$

such that $\frac{3}{m}a = u_1 + u_2 + u_3$. So $a = \frac{m}{3}(\frac{3}{m}a) = \frac{m}{3}(u_1 + u_2 + u_3)$. Hence by (2.4) we have

$$f(ax) = \frac{m}{3}f(u_1x + u_2x + u_3x) = \frac{m}{3}[f(u_1x) + f(u_2x) + f(u_3x)]$$
$$= \frac{m}{3}(u_1 + u_2 + u_3)f(x) = \frac{m}{3}\cdot\frac{3}{m}af(x) = af(x)$$

for all $x \in X$. So $f : X \to Y$ is A-linear, as desired.

Now we prove the generalized Hyers–Ulam–Rassias stability of A-linear mappings in Banach A-modules.

Theorem 2.2. Let $f: X \to Y$ be a mapping with f(0) = 0 for which there exists a function $\varphi: X^2 \to [0, \infty)$ such that

$$\lim_{n \to \infty} 2^n \varphi \left(\frac{x}{2^n}, \frac{y}{2^n} \right) = 0, \tag{2.5}$$

 \square

$$\|D_a f(x, y)\| \le \varphi(x, y) \tag{2.6}$$

for all $x, y \in X$ and all $a \in U(A)$. If there exists a constant L < 1 such that the function

$$x \mapsto \psi(x) := \varphi\left(\frac{x}{2\alpha}, \frac{x}{2\beta}\right) + \varphi\left(\frac{x}{2\alpha}, 0\right) + \varphi\left(0, \frac{x}{2\beta}\right)$$

has the property

$$2\psi(x) \le L\psi(2x)$$

for all $x \in X$, then there exists a unique A-linear mapping $T: X \to Y$ such that

$$\|f(x) - T(x)\| \le \frac{1}{1 - L}\psi(x) \tag{2.7}$$

for all $x \in X$.

Proof. Letting y = 0 in (2.6), we get

$$\|f(\alpha x) - \alpha f(x)\| \le \varphi(x, 0) \tag{2.8}$$

for all $x \in X$. Similarly, letting x = 0 and $a = e \in U(A)$ in (2.6), we get

$$\|f(\beta y) - \beta f(y)\| \le \varphi(0, y) \tag{2.9}$$

for all $y \in X$. So it follows from (2.6), (2.8) and (2.9) that

$$\|f(\alpha x + \beta y) - f(\alpha x) - f(\beta y)\| \le \varphi(x, y) + \varphi(x, 0) + \varphi(0, y)$$

for all $x, y \in X$. Hence

$$\|f(x+y) - f(x) - f(y)\| \le \varphi\left(\frac{x}{\alpha}, \frac{y}{\beta}\right) + \varphi\left(\frac{x}{\alpha}, 0\right) + \varphi\left(0, \frac{y}{\beta}\right)$$
(2.10)

for all $x, y \in X$. Letting y = x in (2.10), we get

$$\|f(2x) - 2f(x)\| \le \varphi\left(\frac{x}{\alpha}, \frac{x}{\beta}\right) + \varphi\left(\frac{x}{\alpha}, 0\right) + \varphi\left(0, \frac{x}{\beta}\right)$$

for all $x, y \in X$. Hence

$$\left\|f(x) - 2f\left(\frac{x}{2}\right)\right\| \le \psi(x) \tag{2.11}$$

108

for all $x \in X$. Let $E := \{ g : X \to Y \mid g(0) = 0 \}$. We introduce a generalized metric on E as follows:

$$d(g,h) := \inf\{ C \in [0,\infty] : ||g(x) - h(x)|| \le C\psi(x) \text{ for all } x \in X \}.$$

It is easy to show that (E, d) is a generalized complete metric space [3].

Now we consider the mapping $\Lambda: E \to E$ defined by

$$(\Lambda g)(x) = 2g\left(\frac{x}{2}\right), \text{ for all } g \in E \text{ and } x \in X.$$

Let $g, h \in E$ and let $C \in [0, \infty]$ be an arbitrary constant with $d(g, h) \leq C$. From the definition of d, we have

$$\|g(x) - h(x)\| \le C\psi(x)$$

for all $x \in X$. By the assumption and last inequality, we have

$$\left\| (\Lambda g)(x) - (\Lambda h)(x) \right\| = 2 \left\| g\left(\frac{x}{2}\right) - h\left(\frac{x}{2}\right) \right\| \le 2C\psi\left(\frac{x}{2}\right) \le CL\psi(x)$$

for all $x \in X$. So

$$d(\Lambda g, \Lambda h) \le Ld(g, h)$$

for any $g, h \in E$. It follows from (2.11) that $d(\Lambda f, f) \leq 1$. Therefore according to Theorem 1.2, the sequence $\{\Lambda^n f\}$ converges to a fixed point T of Λ , i.e.,

$$T: X \to Y, \quad T(x) = \lim_{n \to \infty} (\Lambda^n f)(x) = \lim_{n \to \infty} 2^n f\left(\frac{x}{2^n}\right)$$

and T(2x) = 2T(x) for all $x \in X$. Also T is the unique fixed point of Λ in the set $E^* = \{g \in E : d(f,g) < \infty\}$ and

$$d(T,f) \le \frac{1}{1-L}d(\Lambda f,f) \le \frac{1}{1-L}$$

i.e., inequality (2.7) holds true for all $x \in X$. It follows from the definition of T, (2.5) and (2.6) that

$$\|D_a T(x, y)\| = \lim_{n \to \infty} 2^n \left\| D_a f\left(\frac{x}{2^n}, \frac{y}{2^n}\right) \right\|$$
$$\leq \lim_{n \to \infty} 2^n \varphi\left(\frac{x}{2^n}, \frac{y}{2^n}\right) = 0$$

for all $x, y \in X$ and all $a \in U(A)$. By Lemma 2.1, the mapping $T : X \to Y$ is *A*-linear. Finally it remains to prove the uniqueness of *T*. Let $P : X \to Y$ be another *A*-linear mapping satisfying (2.7). Since $d(f, P) \leq \frac{1}{1-L}$ and *P* is additive, $P \in E^*$ and $(\Lambda P)(x) = 2P(x/2) = P(x)$ for all $x \in X$, i.e., *P* is a fixed point of Λ . Since *T* is the unique fixed point of Λ in E^* , P = T. \Box

Corollary 2.3. Let r > 1 and θ be non-negative real numbers and let $f : X \to Y$ be a mapping satisfying f(0) = 0 and the inequality

$$||D_a f(x, y)|| \le \theta(||x||^r + ||y||^r)$$

for all $x, y \in X$ and all $a \in U(A)$. Then there exists a unique A-linear mapping $T: X \to Y$ such that

$$||f(x) - T(x)|| \le \frac{2(|\alpha|^r + |\beta|^r)\theta}{(2^r - 2)|\alpha\beta|^r} ||x||^r$$

for all $x \in X$.

Proof. The proof follows from Theorem 2.2 by taking

$$\varphi(x,y) := \theta(\|x\|^r + \|y\|^r)$$

for all $x, y \in X$. Then we can choose $L = 2^{1-r}$ and we get the desired result. \Box

Theorem 2.4. Let $f: X \to Y$ be a mapping with f(0) = 0 for which there exists a function $\Phi: X^2 \to [0, \infty)$ such that

$$\lim_{n \to \infty} \frac{1}{2^n} \Phi(2^n x, 2^n y) = 0,$$
$$\|D_a f(x, y)\| \le \Phi(x, y)$$

for all $x, y \in X$ and all $a \in U(A)$. If there exists a constant L < 1 such that the function

$$x \mapsto \Psi(x) := \Phi\left(\frac{x}{\alpha}, \frac{x}{\beta}\right) + \Phi\left(\frac{x}{\alpha}, 0\right) + \Phi\left(0, \frac{x}{\beta}\right)$$

has the property

 $\Psi(2x) \le 2L\Psi(x)$

for all $x \in X$, then there exists a unique A-linear mapping $T: X \to Y$ such that

$$\|f(x) - T(x)\| \le \frac{1}{2 - 2L} \Psi(x)$$
(2.12)

for all $x \in X$.

Proof. Using the same method as in the proof of Theorem 2.2, we have

$$\left\|\frac{1}{2}f(2x) - f(x)\right\| \le \frac{1}{2}\Psi(x)$$
(2.13)

for all $x \in X$. We introduce the same definitions for E and d (replacing Ψ by ψ) as in the proof of Theorem 2.2 such that (E, d) becomes a generalized complete metric space. Let $\Lambda : E \to E$ be the mapping defined by

$$(\Lambda g)(x) = \frac{1}{2}g(2x), \text{ for all } g \in E \text{ and } x \in X.$$

One can show that $d(\Lambda g, \Lambda h) \leq Ld(g, h)$ for any $g, h \in E$. It follows from (2.13) that $d(\Lambda f, f) \leq \frac{1}{2}$. Due to Theorem 1.2, the sequence $\{\Lambda^n f\}$ converges to a fixed point T of Λ , i.e.,

$$T: X \to Y, \quad T(x) = \lim_{n \to \infty} (\Lambda^n f)(x) = \lim_{n \to \infty} \frac{1}{2^n} f(2^n x)$$

and T(2x) = 2T(x) for all $x \in X$. Also

$$d(T,f) \le \frac{1}{1-L} d(\Lambda f,f) \le \frac{1}{2-2L},$$

i.e., inequality (2.12) holds true for all $x \in X$.

The rest of the proof is similar to the proof of Theorem 2.2 and we omit the details. $\hfill \Box$

Corollary 2.5. Let 0 < r < 1 and θ, δ be non-negative real numbers and let $f: X \to Y$ be a mapping satisfying f(0) = 0 and the inequality

$$||D_a f(x, y)|| \le \delta + \theta(||x||^r + ||y||^r)$$

for all $x, y \in X$ and all $a \in U(A)$. Then there exists a unique A-linear mapping $T: X \to Y$ such that

$$||f(x) - T(x)|| \le \frac{3\delta}{2 - 2^r} + \frac{2(|\alpha|^r + |\beta|^r)\theta}{(2 - 2^r)|\alpha\beta|^r} ||x||^r$$

for all $x \in X$.

Proof. The proof follows from Theorem 2.4 by taking

$$\Phi(x, y) := \delta + \theta(\|x\|^r + \|y\|^r)$$

for all $x, y \in X$. Then we can choose $L = 2^{r-1}$ and we get the desired result. \Box

Acknowledgment

The authors would like to thank the referee for a number of valuable suggestions regarding a previous version of this paper.

References

- M. Amyari and M.S. Moslehian, Hyers-Ulam-Rassias stability of derivations on Hilbert C^{*}-modules, Contemporary Math. 427 (2007), 31–39.
- [2] T. Aoki, On the stability of the linear transformation Banach spaces, J. Math. Soc. Japan 2 (1950) 64–66.
- [3] L. Cădariu and V. Radu, On the stability of the Cauchy functional equation: A fixed point approach, Grazer Math. Ber. 346 (2004) 43–52.
- [4] P. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore and London, 2002.
- [5] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431–436.
- [6] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222–224.
- [7] D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkh" auser, Basel, 1998.
- [8] G. Isac and Th. M. Rassias, Stability of Ψ-additive mappings: applications to nonlinear analysis, Internat. J. Math. Math. Sci., 19 (1996), 219–228.
- S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press Inc., Palm Harbor, Florida, 2001.
- [10] S.-M. Jung and T.-S. Kim, A fixed point approach to stability of cubic functional equation, Bol. Soc. Mat. Mexicana, 12 (2006), 51–57.
- [11] R.V. Kadison and G. Pedersen, Means and convex combinations of unitary operators, Math. Scand., 57 (1985), 249–266.
- [12] B. Margolis, J.B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305–309.
- [13] M. Mirzavaziri and M.S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc., 37 (2006), 361–376.
- [14] M.S. Moslehian and Th.M. Rassias, Stability of functional equations in non-Archimedian spaces, Appl. Anal. Disc. Math., 1 (2007), 325–334.
- [15] A. Najati, Hyers-Ulam stability of an n-Apollonius type quadratic mapping, Bulletin of the Belgian Mathematical Society-Simon Stevin, 14 (2007), 755–774.

- [16] A. Najati, On the stability of a quartic functional equation, J. Math. Anal. Appl., 340 (2008), 569–574.
- [17] A. Najati and M.B. Moghimi, Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl., 337 (2008), 399–415.
- [18] A. Najati and C. Park, Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras associated to the Pexiderized Cauchy functional equation, J. Math. Anal. Appl., 335 (2007), 763–778.
- [19] C. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl., 275 (2002), 711–720.
- [20] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300.
- [21] Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers Co., Dordrecht, Boston, London, 2003.
- [22] S.M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.

¹ Department of Mathematics, University of Mohaghegh Ardabili, Ardabil, Iran

E-mail address: a.nejati@yahoo.com

 2 Department of Mathematics, University of Maragheh, Maragheh, IranE-mail address: asgharrahimi@yahoo.com