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Abstract. The main purposes of this paper are to establish some new Brunn–
Minkowski inequalities for width-integrals of mixed projection bodies and affine
surface area of mixed bodies, together with their inverse forms.

1. Introduction

In recent years some authors including Ball [1], Bourgain [2], Gardner [3], Schnei-
der [4] and Lutwak [5]–[10] et al have given considerable attention to Brunn–
Minkowski theory, Brunn–Minkowski-Firey theory, and their various generaliza-
tions. In particular, Lutwak [7] generalized the Brunn–Minkowski inequality (1.1)
to mixed projection bodies and obtain inequality (1.2):

The Brunn–Minkowski inequality If K, L ∈ Kn, then

V (K + L)1/n ≥ V (K)1/n + V (L)1/n,

with equality if and only if K and L are homothetic.
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The Brunn–Minkowski inequality for mixed projection bodies If K, L ∈
Kn, then

V (Π(K + L))1/n(n−1) ≥ V (ΠK)1/n(n−1) + V (ΠL)1/n(n−1),

with equality if and only if K and L are homothetic.
On the other hand, width-integrals of convex bodies and affine surface areas

play an important role in Brunn–Minkowski theory. Width-integrals were first
considered by Blaschke [11] and later by Hadwiger [12]. In addition, Lutwak
established the following results for the width-integrals of convex bodies and
affine surface areas.

The Brunn–Minkowski inequality for width-integrals of convex bodies
[10]

If K, L ∈ Kn, i < n− 1,

Bi(K + L)1/(n−i) ≤ Bi(K)1/(n−i) + Bi(L)1/(n−i), (1.1)

with equality if and only if K and L have similar width.

The Brunn–Minkowski inequality for affine surface area [9]
If K, L ∈ Kn, and i ∈ R, then for i < −1,

Ωi(K+̃L)(n+1)/(n−i) ≤ Ωi(K)(n+1)/(n−i) + Ωi(L)(n+1)/(n−i), (1.2)

with equality if and only if K and L are homothetic, while for i > −1,

Ωi(K+̃L)(n+1)/(n−i) ≥ Ωi(K)(n+1)/(n−i) + Ωi(L)(n+1)/(n−i), (1.3)

with equality if and only if K and L are homothetic.
The purpose of this paper is two-fold. First, to generalize inequality (1.1) to

the context of to mixed projection bodies and also establish its inverse version.
Second, to obtain analogs of inequalities (1.2) and (1.3) for affine surface area of
mixed bodies.

2. Notations and Preliminary works

The setting for this paper is the n-dimensional Euclidean space Rn(n > 2). Let
Cn denote the set of non-empty convex figures(compact, convex subsets) and Kn

denote the subset of Cn consisting of all convex bodies (compact, convex subsets
with non-empty interiors) in Rn. For p ∈ Kn, let Kn

p denote the subset of Kn that
contains the centered (centrally symmetric with respect to p) bodies. We reserve
the letter u for unit vectors, and the letter B is reserved for the unit ball centered
at the origin. The boundary surface of B is Sn−1. For u ∈ Sn−1, let Eu denote
the hyperplane, through the origin, that is orthogonal to u. We will use Ku to
denote the image of K under an orthogonal projection onto the hyperplane Eu.

2.1. Mixed volumes. Let K ∈ Kn. We denote by V (K) the n-dimensional
volume of K. Let h(K, ·) : Sn−1 → R denote the support function of K, i.e.,

h(K, u) := Max{u · x : x ∈ K}, u ∈ Sn−1,

where u · x denotes the usual inner product of u and x in Rn.
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Let δ denote the Hausdorff metric on Kn, i.e., for K, L ∈ Kn,

δ(K, L) := |hK − hL|∞,

where | · |∞ denotes the sup-norm on the space of continuous functions C(Sn−1).
For any nonnegative scalar λ, we write λK := {λx : x ∈ K}. For Ki ∈ Kn, λi ≥

0, (i = 1, 2, . . . , r), the Minkowski linear combination
∑r

i=1 λiKi ∈ Kn is defined
by

λ1K1 + · · ·+ λrKr := {λ1x1 + · · ·+ λrxr ∈ Kn : xi ∈ Ki}.
It is trivial to verify that

h(λ1K1 + · · ·+ λrKr, ·) = λ1h(K1, ·) + · · ·+ λrh(Kr, ·). (2.1)

If Ki ∈ Kn and λi(i = 1, 2, . . . , r) are nonnegative real numbers, then of fun-
damental importance is the fact that the volume of

∑r
i=1 λiKi is a homogeneous

polynomial in λi given by [4]

V (λ1K1 + · · ·+ λrKr) =
∑

i1,...,in

λi1 · · ·λinVi1...in , (2.2)

where the sum is taken over all n-tuples (i1, . . . , in) of positive integers not ex-
ceeding r. The coefficient Vi1...in depends only on the bodies Ki1 , . . . , Kin , and is
uniquely determined by (2.2). It is called the mixed volume of Ki1 , . . . , Kin , and
is also written as V (Ki1 , . . . , Kin). If Ki1 = · · · = Kn−i = K and Kn−i+1 = · · · =
Kn = L, then the mixed volume V (K1 . . . Kn) is usually written as Vi(K, L).
If L = B, then Vi(K, B) is the ith projection measure(Quermassintegral) of K
and is written as Wi(K). With this notation, W0 = V (K), while nW1(K) is the
surface area S(K) of K.

2.2. Width-integrals of convex bodies. For u ∈ Sn−1, b(K,u) is defined to
be half the width of K in the direction u. Two convex bodies K and L are said to
have similar width if there exists a constant λ > 0 such that b(K, u) = λb(L, u)
for all u ∈ Sn−1. For K ∈ Kn and p ∈ intK, we use Kp to denote the polar
reciprocal of K with respect to the unit sphere centered at p. The width-integral
of index i is defined by Lutwak [10]: For K ∈ Kn and i ∈ R,

Bi(K) :=
1

n

∫
Sn−1

b(K, u)n−idS(u), (2.3)

where dS is the (n− 1)-dimensional volume element on Sn−1.
The width-integral of index i is hence a map

Bi : Kn → R
which is positive, continuous, homogeneous of degree n − i and invariant under
rigid motions. In addition, for i ≤ n, it is also bounded and monotone under set
inclusion.

The following results (cf. [10]) will be used later:

b(K + L, u) = b(K, u) + b(L, u), (2.4)

B2n(K) ≤ V (Kp), (2.5)
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with equality if and only if K is symmetric with respect to p.

2.3. The radial function and the Blaschke linear combination. The radial
function of the convex body K is the function ρ(K, ·) : Sn−1 → R defined for
u ∈ Sn−1 by

ρ(K, ·) := Max{λ ≥ 0 : λµ ∈ K}.
If ρ(K, ·) is positive and continuous, K will be called a star body. Let ϕn denote
the set of star bodies in Rn.

A convex body K is said to have a positive continuous curvature function [5]

f(K, ·) : Sn−1 → [0,∞),

if for each L ∈ ϕn, the mixed volume V1(K, L) has the integral representation

V1(K, L) =
1

n

∫
Sn−1

f(K, u)h(L, u)dS(u).

The subset of Kn consisting of convex bodies which have a positive continuous
curvature function will be denoted by κn. Let κn

c denote the set of centrally
symmetric members of κn.

For K ∈ κn, it is shown in [6] that∫
Sn−1

uf(K, u)dS(u) = 0.

Suppose K, L ∈ κn and λ, µ ≥ 0 be not both zero. From above it follows that
the function λf(K, ·) + µf(L, ·) satisfies the hypothesis of Minkowski’s existence
theorem (see [13]). The solution of the Minkowski problem for this function is
denoted by λ ·K+̃µ · L, that is,

f(λ ·K+̃µ · L, ·) = λf(K, ·) + µf(L, ·), (2.6)

where the linear combination λ ·K+̃µ ·L is called a Blaschke linear combination.
The relationship between Blaschke and Minkowski scalar multiplication is given

by
λ ·K = λ1/(n−1)K.

2.4. Mixed affine area and mixed bodies. The affine surface area Ω(K) of
K ∈ κn is defined by

Ω(K) :=

∫
Sn−1

f(K,u)n/(n+1)dS(u).

It is well known that this functional is invariant under unimodular affine trans-
formations. For K, L ∈ κn and i ∈ R, the ith mixed affine surface area Ωi(K, L)
of K and L was defined in [5] by

Ωi(K,L) :=

∫
Sn−1

f(K, u)(n−i)/(n+1)f(L, u)i/(n+1)dS(u).

Now, we define the ith affine area Ωi(K) of K ∈ κn to be Ωi(K, B). Since
f(B, ·) = 1, one has

Ωi(K) =

∫
Sn−1

f(K, u)(n−i)/(n+1)dS(u), i ∈ R. (2.7)
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Lutwak [8] defined mixed bodies of convex bodies K1, . . . , Kn−1 as [K1, . . . , Kn−1].
The following property will be used later:

[K1 + K2, K3, . . . , Kn] = [K1, K3, . . . , Kn]+̃[K2, K3, . . . , Kn]. (2.8)

2.5. Mixed projection bodies and their polars. If K is a convex body that
contains the origin in its interior, we define the polar body K∗ of K by

K∗ := {x ∈ Rn|x · y ≤ 1, y ∈ K}.

If Ki(i = 1, 2, . . . , n − 1) ∈ Kn, then the mixed projection body of Ki(i =
1, 2, . . . , n − 1) is denoted by Π(K1, . . . , Kn−1), and whose support function is
given, for u ∈ Sn−1, by [7]

h (Π(K1, . . . , Kn−1), u) := v(Ku
1 , . . . , Ku

n−1).

It is easy to see that Π(K1, . . . , Kn−1) is centered.
We use Π∗(K1, . . . , Kn−1) to denote the polar body of Π(K1, . . . , Kn−1). It

is also called the polar of mixed projection body of Ki(i = 1, 2, . . . , n − 1). If
K1 = · · · = Kn−1−i = K and Kn−i = · · · = Kn−1 = L, then Π(K1, . . . , Kn−1) will
be written as Πi(K, L). If L = B, then Πi(K, B) is called the ith projection body
of K and is denoted by ΠiK. We write Π0K as ΠK. We will simply write Π∗i K
and Π∗K rather than (ΠiK)∗ and (ΠK)∗, respectively.

The following property will be used:

Π(K3, . . . , Kn, K1 + K2) = Π(K3, . . . , Kn, K1) + Π(K3, . . . , Kn, K2). (2.9)

3. Main results

Our main results are the following Theorems.

Theorem 3.1. Let K1, K2, . . . , Kn ∈ Kn and C = (K3, . . . , Kn).
(i) For i < n− 1,

Bi(Π(C, K1 + K2))
1/(n−i) ≤ Bi(Π(C, K1))

1/(n−i) + Bi(Π(C, K2)
1/(n−i), (3.1)

with equality if and only if Π(C, K1) and Π(C, K2) are homothetic.
(ii) For i > n,

Bi(Π(C, K1 + K2))
1/(n−i) ≥ Bi(Π(C, K1))

1/(n−i) + Bi(Π(C, K2)
1/(n−i), (3.2)

with equality if and only if Π(C, K1) and Π(C, K2) are homothetic.

Proof. Here, we only give a proof of (ii).
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From (2.1), (2.3), (2.4), (2.9) and applying the Minkowski inequality for inte-
grals [14, p. 147], we obtain

Bi(Π(C, K1 + K2))
1/(n−i)

=

(
1

n

∫
Sn−1

b(Π(C, K1 + K2), u)n−idS(u)

)1/(n−i)

=

(
1

n

∫
Sn−1

b(Π(C, K1) + Π(C, K2), u)n−idS(u)

)1/(n−i)

=

(
1

n

∫
Sn−1

(b(Π(C, K1), u) + b(Π(C, K2), u))n−idS(u)

)1/(n−i)

≥
(

1

n

∫
Sn−1

b(Π(C, K1), u)n−idS(u)

)1/(n−i)

+

(
1

n

∫
Sn−1

b(Π(C, K1), u)n−idS(u)

)1/(n−i)

= Bi(Π(C, K1))
1/(n−i) + Bi(Π(C, K2))

1/(n−i),

with equality if and only if Π(C, K1) and Π(C, K2) have similar width. In view of
Π(C, K1) and Π(C, K2) are centered (centrally symmetric with respect to origin),
we conclude that the equality holds if and only if Π(C, K1) and Π(C, K2) are
homothetic. �

Taking i = 0, inequality (3.1) reduces to the following result:

Corollary 3.2. If K1, K2, . . . , Kn ∈ Kn, and C = (K3, . . . , Kn), then

B(Π(C, K1 + K2))
1/n ≤ B(Π(C, K1))

1/n + B(Π(C, K2)
1/n,

with equality if and only if Π(C, K1) and Π(C, K2) are homothetic.

Taking i = 2n, inequality (3.2) reduces to the following result:

Corollary 3.3. If K1, K2, . . . , Kn ∈ Kn, and C = (K3, . . . , Kn), then

B2n(Π(C, K1 + K2))
−1/n ≥ B2n(Π(C, K1))

−1/n + B2n(Π(C, K2)
−1/n, (3.3)

with equality if and only if Π(C, K1) and Π(C, K2) are homothetic.

From (2.5), (3.3), and noting that the projection body is centered(centrally
symmetric with respect to origin), we obtain the following Brunn–Minkowski
inequality of polars of mixed projection bodies.

Corollary 3.4. If K1, K2, . . . , Kn ∈ Kn and C = (K3, . . . , Kn), then

V (Π∗(C, K1 + K2))
−1/n ≥ V (Π∗(C, K1)

−1/n + V (Π∗(C, K2))
−1/n,

with equality if and only if Π(C, K1) and Π(C, K2) are homothetic.



76 W.S. CHEUNG, C. ZHAO

Theorem 3.5. Suppose K1, K2, . . . , Kn ∈ Kn and all mixed bodies of K1, . . . , Kn

have positive continuous curvature functions.
(i) For i < −1,

Ωi([K1 + K2, K3, . . . , Kn])(n+1)/(n−i)

≤ Ωi([K1, K3, K4 . . . , Kn])(n+1)/(n−i) + Ωi([K2, K3, . . . , Kn])(n+1)/(n−i),

with equality if and only if [K1, K3, K4, . . . , Kn] and [K2, K3 . . . , Kn] are homo-
thetic.
(ii) For i > −1,

Ωi([K1 + K2, K3, . . . , Kn])(n+1)/(n−i)

≥ Ωi([K1, K3, K4, . . . , Kn])(n+1)/(n−i) + Ωi([K2, K3, . . . , Kn])(n+1)/(n−i),

with equality if and only if [K1, K3, K4, . . . , Kn] and [K2, K3 . . . , Kn] are homo-
thetic.

Proof. (i) From (2.6), (2.7), (2.8) and in view of the Minkowski inequality for
integrals [14, p. 147], we obtain

Ωi([K1 + K2, K3, K4, . . . , Kn])(n+1)/(n−i)

=

(∫
Sn−1

f([K1 + K2, K3, K4, . . . , Kn], u)(n−i)/(n+1)dS(u)

)(n+1)/(n−i)

=

(∫
Sn−1

f([K1, K3, . . . , Kn]+̃[K2, K3, . . . , Kn], u)(n−i)/(n+1)dS(u)

)(n+1)/(n−i)

=

(∫
Sn−1

(f([K1, . . . , Kn], u) + f([K2, . . . , Kn], u))(n−i)/(n+1)dS(u)

)(n+1)/(n−i)

≤
(∫

Sn−1

f([K1, K3, K4, . . . , Kn], u)(n−i)/(n+1)dS(u)

)(n+1)/(n−i)

+

(∫
Sn−1

f([K2, K3, . . . , Kn], u)(n−i)/(n+1)dS(u)

)(n+1)/(n−i)

= Ωi([K1, K3, K4, . . . , Kn])(n+1)/(n−i) + Ωi([K2, K3, . . . , Kn])(n+1)/(n−i),

with equality if and only if [K1, K3, K4, . . . , Kn] and [K2, K3, . . . , Kn] are homo-
thetic.
(ii) Similarly, from (2.6), (2.7), (2.8) and in view of inverse Minkowski inequality
[14, p. 147], we can obtain (3.5). �

Taking i = 0 in (3.5), we have

Corollary 3.6. If K1, K2, . . . , Kn ∈ Kn and all mixed bodies of K1, K2, . . . , Kn

have positive continuous curvature functions, then

Ω([K1 + K2, K3, . . . , Kn])(n+1)/n

≥ Ω([K1, K3, K4, . . . , Kn])(n+1)/n + Ω([K2, K3, . . . , Kn])(n+1)/n,

with equality if and only if [K1, K3, K4, . . . , Kn] and [K2, K3 . . . , Kn] are homo-
thetic.
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Taking i = 2n in (3.5), we have

Corollary 3.7. If K1, K2, . . . , Kn ∈ Kn and all mixed bodies of K1, K2, . . . , Kn

have positive continuous curvature functions, then

Ω2n([K1 + K2, K3, . . . , Kn])−(n+1)/n

≥ Ω2n([K1, K3, K4 . . . , Kn])−(n+1)/n + Ω2n([K2, K3, . . . , Kn])−(n+1)/n,

with equality if and only if [K1, K3, K4, . . . , Kn] and [K2, K3 . . . , Kn] are homo-
thetic.

Taking i = −n in (3.5), we have

Corollary 3.8. If K1, K2, . . . , Kn ∈ Kn and all mixed bodies of K1, K2, . . . , Kn

have positive continuous curvature functions, then

Ω−n([K1 + K2, K3, . . . , Kn])(n+1)/2n

≤ Ω−n([K1, K3, K4 . . . , Kn])(n+1)/2n + Ω−n([K2, K3, . . . , Kn])(n+1)/2n,

with equality if and only if [K1, K3, K4, . . . , Kn] and [K2, K3 . . . , Kn] are homo-
thetic.
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