ON STEINER LOOPS AND POWER ASSOCIATIVITY

PALANIAPPAN KANNAPPAN ${ }^{1}$
This paper is dedicated to Professor Themistocles M. Rassias.
Submitted by K. Ciesielski

Abstract

In this paper we investiagte Steiner loops introduced by N.S. Mendelsohn [Aeq. Math. 6 (1991), 228-230] and provide six (seven) equivalent identities to characterize it. We also prove the power associativity of Bol loops by using closure (Hexagonal) conditions.

1. Steiner loops

In 99 Mendelsohn has defined the concept of a generalized triple system as follows. Let S be a set of ν elements. Let T be a collection of b subsets of S, each of which contains three elements arranged cyclically, and such that any ordered pair of elements of S appears in exactly a cyclic triplet (note the cyclic triplet $\{a, b, c\}$ contains the ordered pairs $a b, b c, c a$ but not $b a, c b, a c)$. When such a configuration exists we will refer to it as a generalized triple system. If we ignore the cyclic order of the triples, the generalized triple system is a B.I.B.D.

There is one to one correspondence between generalized triple systems of order ν and quasigroups of order ν satisfying the identities $x^{2}=e \cdot(x y) x=x(y x)=y$. The term generalized Steiner quasigroup means a quasigroup which satisfies the above identities.

Let G be a generalized Steiner Quasigroup of order ν. From G a loop G^{*} with operator $*$ is constructed as follows. The elements of G^{*} are the same as those of G together with an extra element e. Multiplication in G^{*} is defined as follows: $a * e=e * a=a ; a * a=e$ and for $a, b \in G$, with $a \neq b$ define $a * b=a \cdot b$. It

Date: Received: 20 August 2007; Accepted: 1 November 2007.
2000 Mathematics Subject Classification. 20N05.
Key words and phrases. Steiner loop, power associativity, closure condition, Bol loop.
follows easily that G^{*} is a loop satisfying the identities $x * e=e * x=x, x * x=$ $e, x *(y * x)=(x * y) * x=y$ for $x, y \in G$. Also, the correspondence between generalized Steiner quasigroups and generalized Steiner loops is a bijection.

A loop which satisfies the identities

$$
\begin{equation*}
x x=e, \quad x e=x=e x, \quad x \cdot y x=y=x y \cdot x \quad \text { for } x, y \in G, \tag{1.1}
\end{equation*}
$$

is called a generalized Steiner loop (g.s.l.). In [9] the identity (2) characterizing g.s.l. is given. Five (six) equivalent identities were found immediately afterwards in 1970 to characterize g.s.l. Now we present them in the following theorem:
Theorem 1.1. A groupoid $G(\cdot)$ is a generalized Steiner loop if an only if G satisfies any one of the following identities:

$$
\begin{align*}
a \cdot[((b b) \cdot c) \cdot a] & =c, \tag{1.2}\\
{[a \cdot c(b b)] \cdot a } & =c, \tag{2a}\\
a \cdot(c a \cdot b b) & =c, \tag{2b}\\
(a \cdot c a) \cdot b b & =c, \tag{2c}\\
b b \cdot(a \cdot c a) & =c, \tag{2d}\\
(b b \cdot a) \cdot(c a \cdot d d) & =c, \tag{2e}
\end{align*}
$$

for $a, b, c, d \in G$.
Proof. First we consider (2) investigated in [9], here we present a different simpler proof to show that $G(\cdot)$ satisfying (2) is a g.s.l.

In (2) replace c by $(d d \cdot k) \cdot b b$ and use (2) to get

$$
\begin{align*}
a \cdot k a & =(d d \cdot k) \cdot b b \tag{1.3}\\
\text { and } \quad b b \cdot(a \cdot k a) & =k, \quad \text { for } a, b, k, \in G . \tag{3a}
\end{align*}
$$

Suppose $\nu a=u a$. Then (3a) shows that $\nu=u$, that is, (\cdot) is right cancellative (r.c.). Apply r.c. in (3a) to obtain $b b=$ constant $=e$ (say). Then (2) becomes

$$
a \cdot(e c \cdot a)=c
$$

Put $c=e$ to obtain $a \cdot e a=e=e a \cdot e a$ implying $e a=a$. So $a \cdot c a=c$.
First $a=e$ in (2) yields $c e=c$ showing thereby that e is an identity and then replacing a by $a c$ gives $a c \cdot(c \cdot a c)=c$, that is $a c \cdot a=c$. This proves g.s.l.

Second we prove the implication of the identities in the order written above; that is, we prove that

$$
(2) \Rightarrow(2 \mathrm{a}) \Rightarrow(2 \mathrm{~b}) \Rightarrow(2 \mathrm{c})\left(\left(2 c^{\prime}\right)\right) \Rightarrow(2 \mathrm{~d}) \Rightarrow(2 \mathrm{e}) \text { finally } \Rightarrow(2)
$$

to complete the cycle.

To prove (2) \Rightarrow (2a)

Suppose (2) $a \cdot[(b b \cdot c) \cdot a]=c$ holds.
From the above prove we see that

$$
b b=e, \quad a e=a, \quad a c \cdot a=e
$$

Now $[a \cdot c(b b)] \cdot a=(a \cdot c e) \cdot a=a c \cdot a=c$ which is (2a).
To prove (2a) $\Rightarrow(2 \mathrm{~b})$

Now $[a \cdot c(b b)] \cdot a=c$ holds.
Replace c by $b b \cdot(c \cdot d d)$ in (2b) and use (2b) to get

$$
[a \cdot \underbrace{\{(b b \cdot(c \cdot d d)) \cdot b b\}}] \cdot a=b b \cdot(c \cdot d d)
$$

that is

$$
\begin{align*}
a c \cdot a & =b b \cdot(c \cdot d d) \tag{1.4}\\
(a c \cdot a) \cdot b b & =[b b \cdot(c \cdot d d)] \cdot b b=c \quad \text { by }(2 \mathrm{a}) . \tag{4a}
\end{align*}
$$

Let $a c=a u$. (4a) yields $c=u$ implying l.c. (left cancellative). (4) is $a c \cdot a=$ $b b \cdot(c \cdot d d)=b b \cdot(c \cdot w w)$ giving $d d=$ constant $=e$ (say) by l.c. (4) becomes

$$
\begin{equation*}
a c \cdot a=e \cdot(c e) . \tag{4b}
\end{equation*}
$$

Let $a c=u c$. Then (4b) shows that $u=a$, that is,(\cdot) is r.c. $c=e$ in (4b) gives $a e \cdot a=e=a \cdot a$, that is, $a e=a$ (using r.c.). Then (4a) gives $a c \cdot a=c$. Now $a \cdot(c a \cdot b b)=a \cdot(c a \cdot e)=a \cdot c a=c$ which is $(2 \mathrm{~b})$. This proves that $(2 \mathrm{a}) \Rightarrow(2 \mathrm{~b})$.
Next we prove (2b) \Rightarrow (2c)
(2b) $a \cdot(c a \cdot b b)=c$ holds.
Let $c a=d a$. This in (2b) shows $c=d$, that is r.c. Let $c a=c d$. Then $a \cdot(c a \cdot b b)=d \cdot(c d \cdot b b)$ implying $a=d$, (use r.c.), that is, l.c. l.c. in (2b) gives $b b=e$ (say). Thus, $a \cdot(c a \cdot e)=c$.

$$
\begin{equation*}
c=a \quad \text { gives } a e=a \quad \text { and } a \cdot c a=c . \tag{1.5}
\end{equation*}
$$

Now from (5) results $(a \cdot c a) \cdot b b=(a \cdot c a) \cdot e=a \cdot c a=e$ which is (2c).
Remark 1.2. Instead of (2c) we consider

$$
(a c \cdot a) \cdot b b=c
$$

From (5) $a \cdot c a=c$, replacing c by $a c$ we get $a \cdot(a c \cdot a)=a c$, that is $a c \cdot a=c$ (use l.c.. Then

$$
(a c \cdot a) \cdot b b=(a c \cdot a) \cdot e=a c \cdot a=c
$$

which is $\left(2 c^{\prime}\right)$. That is $(2 b) \Rightarrow\left(2 c^{\prime}\right)$.
Next we take (2c) \Rightarrow (2d)
(2c) $(a \cdot c a) \cdot b b=c$ holds.
Set $c a=d a$ in (2c) to obtain $c=d$, that is, r.c. Let $c a=c d$. Then (2c) and r.c. yields l.c. l.c. in (2c) gives $b b=$ constant $=e$ (say). Hence (2c) becomes

$$
\begin{gather*}
(a \cdot c a) \cdot e=c \tag{1.6}\\
c=e \quad \text { in (6) gives } \quad(a \cdot e a) \cdot e=e \Rightarrow a \cdot e a=e \Rightarrow e a=a . \tag{6a}
\end{gather*}
$$

With $a=e,(6)$ shows that $c e \cdot e=c$ and

$$
a \cdot c a=c e .
$$

Now c replaced by $a c$ gives

$$
\begin{aligned}
a \cdot(a c \cdot a) & =a c \cdot e, \\
\text { that is, } \quad a \cdot c e & =a c \cdot e
\end{aligned}
$$

Then $c=e$ gives $a e=a e \cdot e=a$ by (6).

Now, $b b \cdot(a \cdot c a)=e \cdot(a \cdot c a)=a \cdot c a=c e=e$ which is $(2 \mathrm{~d})$.
Remark 1.3. Suppose (2c') holds.
With $a c=a u,\left(2 \mathrm{c}^{\prime}\right)$ gives l.c. Then changing b in $\left(2 \mathrm{c}^{\prime}\right)$ yields $b b=$ constant $=e$. $c=e$ in (2c') gives $a e \cdot a=e$, that is, $a e=a$. With $a=e\left(2 \mathrm{c}^{\prime}\right)$ shows $e c=c, a c \cdot a=c$ and $a \cdot c a=c$ (replace c by $c a)$. Now $b b \cdot(a \cdot c a)=a \cdot c a=c$ which is $(2 \mathrm{~d})$. Thus $\left(2 \mathrm{c}^{\prime}\right) \Rightarrow(2 \mathrm{~d})$.
Next we tackle (2d) \Rightarrow (2e)
(2d) $b b \cdot(a \cdot c a)=c$ holds.
$c a=d a$ in (2d) gives $c=d$, that is, r.c. Then (2d) yields $b b=$ constant $=e$ (using r.c.).
$(2 \mathrm{~d})$ is $e \cdot(a \cdot c a)=c . c=e$ gives $a \cdot e a=e$ or $e a=a$ and $a \cdot c a=c$. Then $a=e$ results to $c e=c$.

Now $(b b \cdot a) \cdot(c a \cdot d d)=a \cdot c a=c$ which is $(2 \mathrm{e})$.
Finally, to complete the cycle, we prove that (2e) \Rightarrow (2)
$(2 \mathrm{e})(b b \cdot a) \cdot(c a \cdot d d)=c$ holds.
$c a=u a$ in (2e) gives r.c. and $b b=$ constant $=e$.
$(2 \mathrm{e})$ is $e a \cdot(c a \cdot e)=c$.
First $c=e$ yields $e a=e a \cdot e$. Second $c=a$ gives $e a \cdot e=a=e a$ and then $a e=a$. Further $a \cdot c a=c$. Now $a \cdot[(b b \cdot c) \cdot a]=a \cdot c a=c$ which is (2).

This completes the proof of the theorem.

2. Bol Loop and power associativity

There are several closure conditions in Quasigroups and Loops theory [1, 2, 3, 4, [5, 6, 7, 8] of which R-condition (Reidemeister condition) connected to groups, T condition (Thomsen condition) connected to Abelian groups, H-condition (Hexagonal condition) connected to power associativity are well known.

H-condition

For $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}$ in G, a groupoid if

$$
\begin{equation*}
x_{1} y_{2}=x_{2} y_{1}, \quad x_{1} y_{3}=x_{2} y_{2}=x_{3} y_{1} \quad \text { implies } \quad x_{2} y_{3}=x_{3} y_{2}, \tag{2.1}
\end{equation*}
$$

then G is said to satisfy the closure condition known as Hexagonal condition.
Geometrically, H-condition means the following:

H-condition implies power associativity, that is,

$$
x \cdot y^{n+m}=x y^{n} \cdot y^{m}
$$

for all $x, y \in G$ and all $m, n \in Z$, integers.

(Left) Bol Loop

A loop $G(\cdot)$ is said to be a (left) Bol loop provided

$$
\begin{equation*}
x \cdot(y \cdot x z)=(x \cdot y x) \cdot z, \quad \text { for } x, y, z \in G \tag{2.2}
\end{equation*}
$$

holds.
It is well known that left (right) Bol loop is power associative. Here we prove it by using H-condition.

Theorem 2.1. The left Bol loop is power associative (by using the hexagonal closure condition).

Proof. Suppose (8) holds.
Set $y=x^{-1}$ (inverse of x) in (9) to obtain $x \cdot\left(x^{-1} \cdot x z\right)=x z \Rightarrow x^{-1} \cdot x z=z$, that is $G(\cdot)$ satisfies l.i.p. (left inverse property) or $G(\cdot)$ is a left inverse property loop. Suppose

$$
x_{1}, y_{2}=x_{2} y_{1}, \quad x_{1} y_{3}=x_{2} y_{2}=x_{3} y_{1} \quad \text { holds in } G .
$$

First use (7^{\prime}) to get

$$
x_{3}^{-1} x_{2}=y_{1}^{-1} y_{2}, \quad x_{1}=x_{2} y_{1}^{-1} y_{2}=x_{2}\left(x_{3}^{-1} x_{2}\right) .
$$

Now

$$
x_{1} y_{3}=\left(x_{2}\left(x_{3}^{-1} x_{2}\right)\right) \cdot y_{3} \stackrel{\text { by }(8)}{=} x_{2}\left(x_{3}^{-1} \cdot x_{2} y_{3}\right) \stackrel{\text { also }}{=} x_{2} y_{2} .
$$

Thus

$$
x_{3}^{-1} \cdot x_{2} y_{3}=y_{2} \quad \text { or } \quad x_{2} y_{3}=x_{3} y_{2} \quad \text { (using l.i.p.). }
$$

Thus H-condition holds. Hence G is power associative.
A loop in which $x y \cdot x=x \cdot y x$ holds is said to satisfy elasticity law. In passing, we mention that a loop satisfying elasticity law is power associative.

References

1. J. Aczel, Quasigroups, nets and nomographsm, Advances in Math. 1 (1965), 383-450.
2. V.D. Belousov, Theory of quasigroups and loops (Russian), 1967.
3. V.D. Belousov, Algebraic nets and quasigroups (Russian), 1971.
4. R.H. Bruck, A survey of binary system, Springer-Verlag, 1966.
5. R.H. Bruck, What is a loop?, Studies in Modern Algebra, Vol. 2, edited by A. Albert.
6. Pl. Kannappan, Groupoids and groups, Iber. Deutsch. Math. Verein 75 (1972), 95-100.
7. Pl. Kannappan, On some identities, Math. Student 40 (1972), 260-264.
8. Pl. Kannappan and M.A. Taylor, On closure conditions, Canad. Math. Bull. 19 (1976), 291-296.
9. N.S. Mendelsohn, A single groupoid identity for Steiner loops, Aeq. Math. 6 (1991), 228230.
${ }^{1}$ Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.

E-mail address: plkannap@math.uwaterloo.ca

