
Banach J. Math. Anal. 1 (2007), no. 2, 216–220

Banach Journal of Mathematical Analysis

ISSN: 1735-8787 (electronic)
http://www.math-analysis.org

ON STEINER LOOPS AND POWER ASSOCIATIVITY

PALANIAPPAN KANNAPPAN1

This paper is dedicated to Professor Themistocles M. Rassias.

Submitted by K. Ciesielski

Abstract. In this paper we investiagte Steiner loops introduced by N.S. Mendel-
sohn [Aeq. Math. 6 (1991), 228–230] and provide six (seven) equivalent iden-
tities to characterize it. We also prove the power associativity of Bol loops by
using closure (Hexagonal) conditions.

1. Steiner loops

In [9] Mendelsohn has defined the concept of a generalized triple system as follows.
Let S be a set of ν elements. Let T be a collection of b subsets of S, each of
which contains three elements arranged cyclically, and such that any ordered
pair of elements of S appears in exactly a cyclic triplet (note the cyclic triplet
{a, b, c} contains the ordered pairs ab, bc, ca but not ba, cb, ac). When such a
configuration exists we will refer to it as a generalized triple system. If we ignore
the cyclic order of the triples, the generalized triple system is a B.I.B.D.

There is one to one correspondence between generalized triple systems of order
ν and quasigroups of order ν satisfying the identities x2 = e · (xy)x = x(yx) = y.
The term generalized Steiner quasigroup means a quasigroup which satisfies the
above identities.

Let G be a generalized Steiner Quasigroup of order ν. From G a loop G∗ with
operator ∗ is constructed as follows. The elements of G∗ are the same as those
of G together with an extra element e. Multiplication in G∗ is defined as follows:
a ∗ e = e ∗ a = a; a ∗ a = e and for a, b ∈ G, with a 6= b define a ∗ b = a · b. It
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follows easily that G∗ is a loop satisfying the identities x ∗ e = e ∗ x = x, x ∗ x =
e, x ∗ (y ∗ x) = (x ∗ y) ∗ x = y for x, y ∈ G. Also, the correspondence between
generalized Steiner quasigroups and generalized Steiner loops is a bijection.

A loop which satisfies the identities

xx = e, xe = x = ex, x · yx = y = xy · x for x, y ∈ G, (1.1)

is called a generalized Steiner loop (g.s.l.). In [9] the identity (2) characterizing
g.s.l. is given. Five (six) equivalent identities were found immediately afterwards
in 1970 to characterize g.s.l. Now we present them in the following theorem:

Theorem 1.1. A groupoid G(·) is a generalized Steiner loop if an only if G
satisfies any one of the following identities:

a · [((bb) · c) · a] = c, (1.2)

[a · c(bb)] · a = c, (2a)

a · (ca · bb) = c, (2b)

(a · ca) · bb = c, (2c)

bb · (a · ca) = c, (2d)

(bb · a) · (ca · dd) = c, (2e)

for a, b, c, d ∈ G.

Proof. First we consider (2) investigated in [9], here we present a different simpler
proof to show that G(·) satisfying (2) is a g.s.l.

In (2) replace c by (dd · k) · bb and use (2) to get

a · ka = (dd · k) · bb (1.3)

and bb · (a · ka) = k, for a, b, k,∈ G. (3a)

Suppose νa = ua. Then (3a) shows that ν = u, that is, (·) is right cancellative
(r.c.). Apply r.c. in (3a) to obtain bb = constant = e (say). Then (2) becomes

a · (ec · a) = c.

Put c = e to obtain a · ea = e = ea · ea implying ea = a. So a · ca = c.
First a = e in (2) yields ce = c showing thereby that e is an identity and then

replacing a by ac gives ac · (c · ac) = c, that is ac · a = c. This proves g.s.l.
Second we prove the implication of the identities in the order written above;

that is, we prove that

(2) ⇒ (2a) ⇒ (2b) ⇒ (2c) ((2c′)) ⇒ (2d) ⇒ (2e) finally ⇒ (2)

to complete the cycle.

To prove (2) ⇒ (2a)

Suppose (2) a · [(bb · c) · a] = c holds.
From the above prove we see that

bb = e, ae = a, ac · a = e.

Now [a · c(bb)] · a = (a · ce) · a = ac · a = c which is (2a).

To prove (2a) ⇒ (2b)
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Now [a · c(bb)] · a = c holds.
Replace c by bb · (c · dd) in (2b) and use (2b) to get

[a · {(bb · (c · dd)) · bb}︸ ︷︷ ︸] · a = bb · (c · dd)

that is

ac · a = bb · (c · dd) (1.4)

(ac · a) · bb = [bb · (c · dd)] · bb = c by (2a). (4a)

Let ac = au. (4a) yields c = u implying l.c. (left cancellative). (4) is ac · a =
bb · (c · dd) = bb · (c · ww) giving dd = constant = e (say) by l.c. (4) becomes

ac · a = e · (ce). (4b)

Let ac = uc. Then (4b) shows that u = a, that is , (·) is r.c. c = e in (4b) gives
ae · a = e = a · a, that is, ae = a (using r.c.). Then (4a) gives ac · a = c. Now
a · (ca · bb) = a · (ca · e) = a · ca = c which is (2b). This proves that (2a) ⇒ (2b).

Next we prove (2b) ⇒ (2c)

(2b) a · (ca · bb) = c holds.
Let ca = da. This in (2b) shows c = d, that is r.c. Let ca = cd. Then

a · (ca · bb) = d · (cd · bb) implying a = d, (use r.c.), that is, l.c. l.c. in (2b) gives
bb = e (say). Thus, a · (ca · e) = c.

c = a gives ae = a and a · ca = c. (1.5)

Now from (5) results (a · ca) · bb = (a · ca) · e = a · ca = e which is (2c).

Remark 1.2. Instead of (2c) we consider

(ac · a) · bb = c. (2c’)

From (5) a · ca = c, replacing c by ac we get a · (ac · a) = ac, that is ac · a = c
(use l.c.. Then

(ac · a) · bb = (ac · a) · e = ac · a = c

which is (2c’). That is (2b) ⇒ (2c’).

Next we take (2c) ⇒ (2d)

(2c) (a · ca) · bb = c holds.
Set ca = da in (2c) to obtain c = d, that is, r.c. Let ca = cd. Then (2c) and

r.c. yields l.c. l.c. in (2c) gives bb = constant = e (say). Hence (2c) becomes

(a · ca) · e = c (1.6)

c = e in (6) gives (a · ea) · e = e ⇒ a · ea = e ⇒ ea = a. (6a)

With a = e, (6) shows that ce · e = c and

a · ca = ce.

Now c replaced by ac gives

a · (ac · a) = ac · e,
that is, a · ce = ac · e.

Then c = e gives ae = ae · e = a by (6).
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Now, bb · (a · ca) = e · (a · ca) = a · ca = ce = e which is (2d).

Remark 1.3. Suppose (2c′) holds.
With ac = au, (2c′) gives l.c. Then changing b in (2c′) yields bb = constant = e.
c = e in (2c′) gives ae · a = e, that is, ae = a. With a = e (2c′) shows

ec = c, ac · a = c and a · ca = c (replace c by ca). Now bb · (a · ca) = a · ca = c
which is (2d). Thus (2c′) ⇒ (2d).

Next we tackle (2d) ⇒ (2e)

(2d) bb · (a · ca) = c holds.
ca = da in (2d) gives c = d, that is, r.c. Then (2d) yields bb = constant = e

(using r.c.).
(2d) is e · (a · ca) = c. c = e gives a · ea = e or ea = a and a · ca = c. Then a = e

results to ce = c.
Now (bb · a) · (ca · dd) = a · ca = c which is (2e).

Finally, to complete the cycle, we prove that (2e) ⇒ (2)

(2e) (bb · a) · (ca · dd) = c holds.
ca = ua in (2e) gives r.c. and bb = constant = e.
(2e) is ea · (ca · e) = c.
First c = e yields ea = ea · e. Second c = a gives ea · e = a = ea and then

ae = a. Further a · ca = c. Now a · [(bb · c) · a] = a · ca = c which is (2).

This completes the proof of the theorem. �

2. Bol loop and power associativity

There are several closure conditions in Quasigroups and Loops theory [1, 2, 3, 4,
5, 6, 7, 8] of which R-condition (Reidemeister condition) connected to groups, T -
condition (Thomsen condition) connected to Abelian groups, H-condition (Hexag-
onal condition) connected to power associativity are well known.

H-condition

For x1, x2, x3, y1, y2, y3 in G, a groupoid if

x1y2 = x2y1, x1y3 = x2y2 = x3y1 implies x2y3 = x3y2, (2.1)

then G is said to satisfy the closure condition known as Hexagonal condition.
Geometrically, H-condition means the following:

y1
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y3

x1 x2 x3
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H-condition implies power associativity, that is,

x · yn+m = xyn · ym

for all x, y ∈ G and all m, n ∈ Z, integers.

(Left) Bol Loop

A loop G(·) is said to be a (left) Bol loop provided

x · (y · xz) = (x · yx) · z, for x, y, z ∈ G (2.2)

holds.
It is well known that left (right) Bol loop is power associative. Here we prove

it by using H-condition.

Theorem 2.1. The left Bol loop is power associative (by using the hexagonal
closure condition).

Proof. Suppose (8) holds.
Set y = x−1 (inverse of x) in (9) to obtain x · (x−1 · xz) = xz ⇒ x−1 · xz = z,

that is G(·) satisfies l.i.p. (left inverse property) or G(·) is a left inverse property
loop. Suppose

x1, y2 = x2y1, x1y3 = x2y2 = x3y1 holds in G. (7’)

First use (7’) to get

x−1
3 x2 = y−1

1 y2, x1 = x2y
−1
1 y2 = x2(x

−1
3 x2).

Now

x1y3 = (x2(x
−1
3 x2)) · y3

by (8)
= x2(x

−1
3 · x2y3)

also
= x2y2.

Thus
x−1

3 · x2y3 = y2 or x2y3 = x3y2 (using l.i.p.).

Thus H-condition holds. Hence G is power associative. �

A loop in which xy ·x = x · yx holds is said to satisfy elasticity law. In passing,
we mention that a loop satisfying elasticity law is power associative.
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