

Banach J. Math. Anal. 1 (2007), no. 2, 216–220

BANACH JOURNAL OF MATHEMATICAL ANALYSIS ISSN: 1735-8787 (electronic) http://www.math-analysis.org

ON STEINER LOOPS AND POWER ASSOCIATIVITY

PALANIAPPAN KANNAPPAN¹

This paper is dedicated to Professor Themistocles M. Rassias.

Submitted by K. Ciesielski

ABSTRACT. In this paper we investigate Steiner loops introduced by N.S. Mendelsohn [Aeq. Math. 6 (1991), 228–230] and provide six (seven) equivalent identities to characterize it. We also prove the power associativity of Bol loops by using closure (Hexagonal) conditions.

1. Steiner loops

In [9] Mendelsohn has defined the concept of a generalized triple system as follows. Let S be a set of ν elements. Let T be a collection of b subsets of S, each of which contains three elements arranged cyclically, and such that any ordered pair of elements of S appears in exactly a cyclic triplet (note the cyclic triplet $\{a, b, c\}$ contains the ordered pairs ab, bc, ca but not ba, cb, ac). When such a configuration exists we will refer to it as a *generalized triple system*. If we ignore the cyclic order of the triples, the generalized triple system is a B.I.B.D.

There is one to one correspondence between generalized triple systems of order ν and quasigroups of order ν satisfying the identities $x^2 = e \cdot (xy)x = x(yx) = y$. The term *generalized Steiner quasigroup* means a quasigroup which satisfies the above identities.

Let G be a generalized Steiner Quasigroup of order ν . From G a loop G^* with operator * is constructed as follows. The elements of G^* are the same as those of G together with an extra element e. Multiplication in G^* is defined as follows: a * e = e * a = a; a * a = e and for $a, b \in G$, with $a \neq b$ define $a * b = a \cdot b$. It

Date: Received: 20 August 2007; Accepted: 1 November 2007.

²⁰⁰⁰ Mathematics Subject Classification. 20N05.

Key words and phrases. Steiner loop, power associativity, closure condition, Bol loop.

follows easily that G^* is a loop satisfying the identities x * e = e * x = x, x * x = e, x * (y * x) = (x * y) * x = y for $x, y \in G$. Also, the correspondence between generalized Steiner quasigroups and generalized Steiner loops is a bijection.

A loop which satisfies the identities

$$xx = e, \quad xe = x = ex, \quad x \cdot yx = y = xy \cdot x \quad \text{for } x, y \in G, \qquad (1.1)$$

is called a *generalized Steiner loop* (g.s.l.). In [9] the identity (2) characterizing g.s.l. is given. Five (six) equivalent identities were found immediately afterwards in 1970 to characterize g.s.l. Now we present them in the following theorem:

Theorem 1.1. A groupoid $G(\cdot)$ is a generalized Steiner loop if an only if G satisfies any one of the following identities:

$$a \cdot \left[((bb) \cdot c) \cdot a \right] = c, \tag{1.2}$$

$$[a \cdot c(bb)] \cdot a = c, \tag{2a}$$

$$a \cdot (ca \cdot bb) = c, \tag{2b}$$

$$(a \cdot ca) \cdot bb = c, \tag{2c}$$

$$bb \cdot (a \cdot ca) = c, \tag{2d}$$

$$(bb \cdot a) \cdot (ca \cdot dd) = c, \tag{2e}$$

for $a, b, c, d \in G$.

Proof. First we consider (2) investigated in [9], here we present a different simpler proof to show that $G(\cdot)$ satisfying (2) is a g.s.l.

In (2) replace c by $(dd \cdot k) \cdot bb$ and use (2) to get

$$a \cdot ka = (dd \cdot k) \cdot bb \tag{1.3}$$

and
$$bb \cdot (a \cdot ka) = k$$
, for $a, b, k \in G$. (3a)

Suppose $\nu a = ua$. Then (3a) shows that $\nu = u$, that is, (\cdot) is right cancellative (r.c.). Apply r.c. in (3a) to obtain bb = constant = e (say). Then (2) becomes

$$a \cdot (ec \cdot a) = c.$$

Put c = e to obtain $a \cdot ea = e = ea \cdot ea$ implying ea = a. So $a \cdot ca = c$.

First a = e in (2) yields ce = c showing thereby that e is an identity and then replacing a by ac gives $ac \cdot (c \cdot ac) = c$, that is $ac \cdot a = c$. This proves g.s.l.

Second we prove the implication of the identities in the order written above; that is, we prove that

$$(2) \Rightarrow (2a) \Rightarrow (2b) \Rightarrow (2c) ((2c')) \Rightarrow (2d) \Rightarrow (2e) \text{ finally } \Rightarrow (2)$$

to complete the cycle.

To prove $(2) \Rightarrow (2a)$

Suppose (2) $a \cdot [(bb \cdot c) \cdot a] = c$ holds. From the above prove we see that

 $bb = e, \qquad ae = a, \qquad ac \cdot a = e.$

Now $[a \cdot c(bb)] \cdot a = (a \cdot ce) \cdot a = ac \cdot a = c$ which is (2a).

To prove $(2a) \Rightarrow (2b)$

Now $[a \cdot c(bb)] \cdot a = c$ holds.

Replace c by $bb \cdot (c \cdot dd)$ in (2b) and use (2b) to get

$$[a \cdot \underbrace{\{(bb \cdot (c \cdot dd)) \cdot bb\}}] \cdot a = bb \cdot (c \cdot dd)$$

that is

$$ac \cdot a = bb \cdot (c \cdot dd) \tag{1.4}$$

$$(ac \cdot a) \cdot bb = [bb \cdot (c \cdot dd)] \cdot bb = c \qquad by (2a).$$
(4a)

Let ac = au. (4a) yields c = u implying l.c. (left cancellative). (4) is $ac \cdot a = bb \cdot (c \cdot dd) = bb \cdot (c \cdot ww)$ giving dd = constant = e (say) by l.c. (4) becomes

$$ac \cdot a = e \cdot (ce).$$
 (4b)

Let ac = uc. Then (4b) shows that u = a, that is, (·) is r.c. c = e in (4b) gives $ae \cdot a = e = a \cdot a$, that is, ae = a (using r.c.). Then (4a) gives $ac \cdot a = c$. Now $a \cdot (ca \cdot bb) = a \cdot (ca \cdot e) = a \cdot ca = c$ which is (2b). This proves that (2a) \Rightarrow (2b).

Next we prove $(2b) \Rightarrow (2c)$

(2b) $a \cdot (ca \cdot bb) = c$ holds.

Let ca = da. This in (2b) shows c = d, that is r.c. Let ca = cd. Then $a \cdot (ca \cdot bb) = d \cdot (cd \cdot bb)$ implying a = d, (use r.c.), that is, l.c. l.c. in (2b) gives bb = e (say). Thus, $a \cdot (ca \cdot e) = c$.

$$c = a \quad \text{gives } ae = a \quad \text{and } a \cdot ca = c.$$
 (1.5)

Now from (5) results $(a \cdot ca) \cdot bb = (a \cdot ca) \cdot e = a \cdot ca = e$ which is (2c).

Remark 1.2. Instead of (2c) we consider

$$(ac \cdot a) \cdot bb = c. \tag{2c'}$$

From (5) $a \cdot ca = c$, replacing c by ac we get $a \cdot (ac \cdot a) = ac$, that is $ac \cdot a = c$ (use l.c.. Then

$$(ac \cdot a) \cdot bb = (ac \cdot a) \cdot e = ac \cdot a = c$$

which is (2c'). That is (2b) \Rightarrow (2c').

Next we take $(2c) \Rightarrow (2d)$

(2c) $(a \cdot ca) \cdot bb = c$ holds.

Set ca = da in (2c) to obtain c = d, that is, r.c. Let ca = cd. Then (2c) and r.c. yields l.c. l.c. in (2c) gives bb = constant = e (say). Hence (2c) becomes

$$(a \cdot ca) \cdot e = c \tag{1.6}$$

$$c = e$$
 in (6) gives $(a \cdot ea) \cdot e = e \Rightarrow a \cdot ea = e \Rightarrow ea = a.$ (6a)

With a = e, (6) shows that $ce \cdot e = c$ and

$$a \cdot ca = ce.$$

Now c replaced by ac gives

$$a \cdot (ac \cdot a) = ac \cdot e,$$

that is, $a \cdot ce = ac \cdot e.$

Then c = e gives $ae = ae \cdot e = a$ by (6).

218

Now, $bb \cdot (a \cdot ca) = e \cdot (a \cdot ca) = a \cdot ca = ce = e$ which is (2d).

Remark 1.3. Suppose (2c') holds.

With ac = au, (2c') gives l.c. Then changing b in (2c') yields bb = constant = e. c = e in (2c') gives $ae \cdot a = e$, that is, ae = a. With a = e (2c') shows ec = c, $ac \cdot a = c$ and $a \cdot ca = c$ (replace c by ca). Now $bb \cdot (a \cdot ca) = a \cdot ca = c$ which is (2d). Thus $(2c') \Rightarrow (2d)$.

Next we tackle $(2d) \Rightarrow (2e)$

(2d) $bb \cdot (a \cdot ca) = c$ holds.

ca = da in (2d) gives c = d, that is, r.c. Then (2d) yields bb = constant = e (using r.c.).

(2d) is $e \cdot (a \cdot ca) = c$. c = e gives $a \cdot ea = e$ or ea = a and $a \cdot ca = c$. Then a = e results to ce = c.

Now $(bb \cdot a) \cdot (ca \cdot dd) = a \cdot ca = c$ which is (2e).

Finally, to complete the cycle, we prove that $(2e) \Rightarrow (2)$

(2e) $(bb \cdot a) \cdot (ca \cdot dd) = c$ holds. ca = ua in (2e) gives r.c. and bb = constant = e. (2e) is $ea \cdot (ca \cdot e) = c$. First c = e yields $ea = ea \cdot e$. Second c = a gives $ea \cdot e = a = ea$ and then ae = a. Further $a \cdot ca = c$. Now $a \cdot [(bb \cdot c) \cdot a] = a \cdot ca = c$ which is (2).

This completes the proof of the theorem.

2. Bol loop and power associativity

There are several closure conditions in Quasigroups and Loops theory [1, 2, 3, 4, 5, 6, 7, 8] of which *R*-condition (Reidemeister condition) connected to groups, *T*-condition (Thomsen condition) connected to Abelian groups, *H*-condition (Hexagonal condition) connected to power associativity are well known.

H-condition

For $x_1, x_2, x_3, y_1, y_2, y_3$ in G, a groupoid if

 $x_1y_2 = x_2y_1, \quad x_1y_3 = x_2y_2 = x_3y_1 \quad \text{implies} \quad x_2y_3 = x_3y_2, \quad (2.1)$

then G is said to satisfy the *closure condition* known as *Hexagonal condition*. Geometrically, *H*-condition means the following:

H-condition implies power associativity, that is,

$$x \cdot y^{n+m} = xy^n \cdot y^m$$

for all $x, y \in G$ and all $m, n \in Z$, integers.

(Left) Bol Loop

A loop $G(\cdot)$ is said to be a (left) Bol loop provided

$$x \cdot (y \cdot xz) = (x \cdot yx) \cdot z, \qquad \text{for } x, y, z \in G$$
(2.2)

holds.

It is well known that left (right) Bol loop is power associative. Here we prove it by using H-condition.

Theorem 2.1. The left Bol loop is power associative (by using the hexagonal closure condition).

Proof. Suppose (8) holds.

Set $y = x^{-1}$ (inverse of x) in (9) to obtain $x \cdot (x^{-1} \cdot xz) = xz \Rightarrow x^{-1} \cdot xz = z$, that is $G(\cdot)$ satisfies l.i.p. (left inverse property) or $G(\cdot)$ is a left inverse property loop. Suppose

$$x_1, y_2 = x_2 y_1, \quad x_1 y_3 = x_2 y_2 = x_3 y_1 \quad \text{holds in } G.$$
 (7)

First use (7') to get

$$x_3^{-1}x_2 = y_1^{-1}y_2, \quad x_1 = x_2y_1^{-1}y_2 = x_2(x_3^{-1}x_2).$$

Now

$$x_1y_3 = (x_2(x_3^{-1}x_2)) \cdot y_3 \stackrel{\text{by (8)}}{=} x_2(x_3^{-1} \cdot x_2y_3) \stackrel{\text{also}}{=} x_2y_2.$$

Thus

$$x_3^{-1} \cdot x_2 y_3 = y_2$$
 or $x_2 y_3 = x_3 y_2$ (using l.i.p.).
Thus *H*-condition holds. Hence *G* is power associative.

A loop in which $xy \cdot x = x \cdot yx$ holds is said to satisfy *elasticity law*. In passing, we mention that a loop satisfying elasticity law is power associative.

References

- 1. J. Aczel, Quasigroups, nets and nomographsm, Advances in Math. 1 (1965), 383-450.
- 2. V.D. Belousov, Theory of quasigroups and loops (Russian), 1967.
- 3. V.D. Belousov, Algebraic nets and quasigroups (Russian), 1971.
- 4. R.H. Bruck, A survey of binary system, Springer-Verlag, 1966.
- 5. R.H. Bruck, What is a loop?, Studies in Modern Algebra, Vol. 2, edited by A. Albert.
- 6. Pl. Kannappan, Groupoids and groups, Iber. Deutsch. Math. Verein 75 (1972), 95–100.
- 7. Pl. Kannappan, On some identities, Math. Student 40 (1972), 260-264.
- Pl. Kannappan and M.A. Taylor, On closure conditions, Canad. Math. Bull. 19 (1976), 291–296.
- N.S. Mendelsohn, A single groupoid identity for Steiner loops, Aeq. Math. 6 (1991), 228– 230.

¹ DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF WATERLOO, WATERLOO, ON-TARIO N2L 3G1, CANADA.

E-mail address: plkannap@math.uwaterloo.ca