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Abstract. Let X, Y be the normed spaces, C ⊂ X a convex set, and T :
C → Y a continuous mapping. Some weak conditions implying the Lipschitz
continuity of T are presented. Applications to the fixed point theory and theory
of composition operators are presented.

1. Introduction

Lipschitzian mappings play important role in the fixed-point theory and its
applications to nonlinear functional equation (cf. for instance J. Dugundij and
A. Granas [2], also D.H. Hyers, G. Isac, Th.M. Rassias [4]). The contractions
and nonexpansive mappings are the typical examples. It turns out however that
sometime the Lipschitz condition forces a map to be affine. For instance, if the
substitution (or Nemytskii) operator T : Lip[0, 1] → Lip[0, 1], generated by a
function h : [0, 1]× R → R, given by the formula

T (ϕ)(x) := h(x, ϕ(x)), ϕ ∈ Lip[0, 1], (x ∈ [0, 1]),

is globally Lipschitzian with respect to the norm of the Banach space Lip[0, 1],
i.e. if, for some nonnegative real L,

‖T (ϕ1)− T (ϕ2)‖Lip ≤ L ‖ϕ1 − ϕ2‖Lip , ϕ1, ϕ2 ∈ Lip[0, 1],
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then there exist a, b ∈ Lip[0, 1] such that

h(x, y) = a(x)y + b(x), x ∈ [0, 1], y ∈ R,

and, consequently, the operator T −b is linear (cf. [5]). Similar facts hold true for
the substitution operator in some other function Banach spaces Hölder spaces,
BV spaces, Cn (cf. [1], Chapters 6, and 7). In these cases the Banach contrac-
tion principle as well as its generalizations (including the Boyd-Wong theorem)
which implicitly assume the Lipschitz continuity of the mapping, are not directly
applicable for the relevant nonlinear problems.

In this context an open question arises wether the contractivity condition in
some fixed point theorems can be modified in a way allowing to solve the above
mentioned problems.

In this note we show that even a very weak substitute of the Lipschitz continuity
of a map implies its Lipschitz continuity. As a by-product, we obtain purely
formal generalizations of some fixed point theorems.

Let X, Y be the normed spaces, C ⊂ X a convex, set and T : C → Y a
continuous mapping. In the first section we show that the existence of a real
c ≥ 0 and a sequence of positive real numbers (tn), limn→∞ tn = 0, such that for
all n ∈ N, x, y ∈ C,

‖x− y‖ = tn =⇒ ‖T (x)− T (y)‖ ≤ ctn,

implies the Lipschitz continuity of T with the constant c (cf. Theorem 1). This
results improves a result in [6] where the uniform continuity of T is assumed).
With the aid of some properties of subadditive functions, the above condition is
replaced by a weaker one (Theorem 2).

In section 2, applying these results for a selfmapping T of a nonempty bounded
and closed subset C of a uniformly convex Banach space, we present a (for-
mal) generalization of the Browder-Goehde-Kirk theorem (Theorem 3) and its
counterpart which guarantees the uniqueness of the fixed point. Instead of the
nonexpansivity of T , the existence of a sequence of positive real numbers (tn),
limn→∞ tn = 0, such that

lim inf
n→∞

sup {‖T (x)− T (y)‖ : ‖x− y‖ = tn, x, y ∈ C}
tn

≤ 1

is required. As a corollary we obtain the following result. Let X be a uniformly
convex Banach space and let C ⊂ X be a nonempty bounded closed and convex
set. If T : C → C and

lim sup
‖x−y‖→0

‖T (x)− T (y)‖
‖x− y‖

≤ 1,

then there exists a fixed-point of T in C. If, moreover, this inequality is strict,
then the fixed-point is unique.

2. Some results on Lipschitzian mappings

Theorem 2.1. Let X, Y be normed spaces and C ⊂ X a convex set. Suppose
T : C → Y is continuous. If there exist a real c ≥ 0 and a sequence of positive
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real numbers (tn), limn→∞ tn = 0, such that

‖x− y‖ = tn =⇒ ‖T (x)− T (y)‖ ≤ ctn (2.1)

for all n ∈ N, x, y ∈ C, then

‖T (x)− T (y)‖ ≤ c ‖x− y‖ , x, y ∈ C.

Proof. Put

A := {t ≥ 0 : ‖x− y‖ = t =⇒ ‖T (x)− T (y)‖ < ctn, (x, y ∈ C)}.
If t ≥ diamC and t <∞ then, of course, t ∈ A. Moreover, by assumption,

tn ∈ A, n ∈ N. (2.2)

Let x, y ∈ C be such that, for some k, n ∈ N,

‖x− y‖ = ktn.

Taking

zj := x+
j

k
(y − x), j = 0, 1, ...k,

we have
z0 = x, zk = y; ‖zj − zj−1‖ = tn, j = 1, ...k,

and, making use of (2.2),

‖T (x)− T (y)‖ =

∥∥∥∥∥
k∑

j=1

T (zj)− T (zj−1)

∥∥∥∥∥ ≤
k∑

j=1

‖T (zj)− T (zj−1)‖

≤ c
k∑

j=1

‖zj − zj−1‖ = cktn.

This proves that ktn ∈ A for all k, n ∈ N. Since the set {ktn : k, n ∈ N} is dense
in [0,+∞), we infer that so is A.

Now take arbitrary x, y ∈ C, x 6= y, and put

t = ‖x− y‖ .
By the density of A there is a sequence (sn) of real numbers such that

sn ∈ A, 0 < sn < t for all n ∈ N; lim
n→∞

sn = t.

Put
xn :=

sn

t
x+ (1− sn

t
)y, n ∈ N.

Of course we have

xn ∈ C for all n ∈ N, and lim
n→∞

xn = x.

Since sn ∈ A we have

‖T (xn)− T (y)‖ ≤ c ‖xn − y‖ , n ∈ N.

From the assumed continuity of T, letting n→∞, we hence get

‖T (x)− T (y)‖ ≤ c ‖x− y‖ ,

which was to be shown. �
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The following example shows that the assumption of the continuity of the
mapping T cannot be omitted.

Example 2.2. Let X = Y = C = R, and let T : C → R be defined by

T (x) :=

{
x+ 1 for x ∈ Q
x+ 2 for x /∈ Q ,

where Q denotes the set of rational numbers. Then, for all x, y ∈ C,
|x− y| ∈ Q =⇒ |T (x)− T (y)| = |x− y| .

In particular, with every sequence of positive rational numbers (tn), such that
lim n→∞tn, the mapping T satisfies condition (2.1).

Now we can prove the main result of this section.

Theorem 2.3. Let X, Y be the normed spaces, C ⊂ X a convex set, and T :
C → Y a continuous map. If there exists a sequence of positive real numbers
(tn), limn→∞ tn = 0, such that

c0 := lim inf
n→∞

sup {‖T (x)− T (y)‖ : ‖x− y‖ = tn, x, y ∈ C}
tn

<∞,

then

‖T (x)− T (y)‖ ≤ c0 ‖x− y‖ , x, y ∈ C.

Proof. Replacing, if necessary, the sequence (tn) by a subsequence, we can assume
that

c0 = lim
n→∞

sup {‖T (x)− T (y)‖ : ‖x− y‖ = tn, x, y ∈ C}
tn

<∞

and that, for some c ≥ c0,

sup {‖T (x)− T (y)‖ : ‖x− y‖ = tn, x, y ∈ C}
tn

≤ c, n ∈ N.

It follows that condition (2.1) is satisfied. Applying Theorem 1 we obtain

‖T (x)− T (y)‖ ≤ c ‖x− y‖ , x, y ∈ C. (2.3)

Put

P := {‖x− y‖ : x, y ∈ C}.
The convexity of C implies that either P= [0, b] for some b < +∞ or P= [0, b)
for some b ≤ +∞. Define the function f : [0,+∞) → [0,+∞] by

f(t) :=

{
sup {‖T (x)− T (y)‖ : ‖x− y‖ = t; x, y ∈ C} for t ∈ P

0 for t /∈ P .

Of course we have f(0) = 0. From (2.3) we infer that f is finite, i.e. f : [0,+∞) →
[0,+∞), and that f is right-continuous at 0.

Take s, t ≥ 0. If s+ t /∈ P then, obviously,

0 = f(s+ t) ≤ f(s) + f(t).
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Suppose that s+ t ∈ P . Let x, y ∈ C be such that

‖x− y‖ = s+ t.

By the convexity of C,

z :=
t

s+ t
x+

s

s+ t
y ∈ C.

Moreover we have
‖x− z‖ = s, ‖z − y‖ = t.

By the triangle inequality,

‖T (x)− T (y)‖ ≤ ‖T (x)− T (z)‖+ ‖T (z)− T (y)‖ ,
whence, by the definition of f,

‖T (x)− T (y)‖ ≤ f(s) + f(t).

Taking the supremum of the left hand side over all x, y ∈ C such that ‖x− y‖ =
s+ t, we hence get

f(s+ t) ≤ f(s) + f(t),

which shows that f is subadditive in [0,+∞).
According to well-known properties of subadditive functions (cf. [3] where the

measurability of f is assumed), the limit

lim
t→0

f(t)

t
exists

and

lim
t→0

f(t)

t
= sup

{
f(t)

t
: t > 0

}
.

Since, by the definition of the function f and (2.3),

c0 = lim
n→∞

f(tn)

tn
,

we hence infer that

c0 = sup

{
f(t)

t
: t > 0

}
,

whence
f(t) ≤ c0t, t ≥ 0.

This inequality and the definition of f imply that

‖T (x)− T (y)‖ ≤ c0 ‖x− y‖ , x, y ∈ C,
which completes the proof. �

Theorem 2.4. Let X, Y be the normed spaces, C ⊂ X a convex set and T : C →
Y . If there exists a function γ : [0,∞) → [0,∞) such that

c0 := lim sup
t→0

γ(t)

t
<∞,

and
‖T (x)− T (y)‖ ≤ γ(‖x− y‖), x, y ∈ C,
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then
‖T (x)− T (y)‖ ≤ c0 ‖x− y‖ , x, y ∈ C.

Proof. The continuity of T follows from the inequality ‖T (x)− T (y)‖ ≤ γ(‖x− y‖)
for all x, y ∈ C. Taking a sequence of positive real numbers (tn), limn→∞ tn = 0,
such that

c0 = lim sup
n→∞

γ(tn)

tn
we obtain

lim inf
n→∞

sup {‖T (x)− T (y)‖ : ‖x− y‖ = tn, x, y ∈ C}
tn

= lim sup
n→∞

γ(tn)

tn
= c0,

and the result follows from Theorem 2. �

Note the following obvious

Corollary 2.5. Let X, Y be the normed spaces, C ⊂ X a convex set, T : C → Y
and γ : [0,∞) → [0,∞). Suppose that

‖T (x)− T (y)‖ ≤ γ(‖x− y‖), x, y ∈ C.
If one of the following conditions holds true:

(1)

lim sup
t→0

γ(t)

t
<∞,

(2) T is continuous and

c0 := lim inf
t→0

γ(t)

t
<∞,

then
‖T (x)− T (y)‖ ≤ c0 ‖x− y‖ , x, y ∈ C.

3. Some fixed point theorems

The following result is a formal generalization of Browder-Goehde-Kirk fixed
point theorem (cf. Dugundji-Granas [2, p. 34]).

Theorem 3.1. Let X be a uniformly convex Banach space and let C ⊂ X be a
nonempty bounded closed and convex set. Suppose that T : C → C is a continuous
map. If there exists a sequence of positive real numbers (tn), limn→∞ tn = 0, such
that

lim inf
n→∞

sup {‖T (x)− T (y)‖ : ‖x− y‖ = tn, x, y ∈ C}
tn

≤ 1,

then T has a fixed point in C.

Proof. By Theorem 2 the mapping T is nonexpansive Now the result is a conse-
quence of the Browder-Goehde-Kirk theorem. �

Now we prove the following
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Theorem 3.2. Let X be a uniformly convex Banach space and let C ⊂ X be a
nonempty bounded closed and convex set. Suppose that T : C → C is a continuous
map. If there exists a sequence of positive real numbers (tn), limn→∞ tn = 0, such
that, for all n ∈ N,

sup {‖T (x)− T (y)‖ : ‖x− y‖ = tn, x, y ∈ C} < tn (3.1)

then T has a unique fixed point in C.

Proof. The existence of a fixed point follows from Theorem 3. By Theorem 1 we
have

‖T (x)− T (y)‖ ≤ ‖x− y‖ , x, y ∈ C. (3.2)

Take arbitrary x, y ∈ C such that ‖x− y‖ > 0. Since limn→∞ tn = 0, there is a
k ∈ N such that tk < ‖x− y‖ . By the convexity of C,

z :=

(
1− tk

‖x− y‖

)
x+

tk
‖x− y‖

y ∈ C,

and

‖x− z‖ = tk, ‖z − y‖ = ‖x− y‖ − tk, .

whence, by (3.1),

‖T (x)− T (z)‖ < ‖x− z‖ = tk (3.3)

Now, making use of (3.2) and (3.3), we obtain

‖T (x)− T (y)‖ ≤ ‖T (x)− T (z)‖+ ‖T (z)− T (y)‖
< tk + (‖x− y‖ − tk) = ‖x− y‖ .

Thus we have shown that

‖T (x)− T (y)‖ < ‖x− y‖ , x, y ∈ C, x 6= y,

which implies the uniqueness of the fixed-point. This completes the proof. �

As an immediate consequence of Theorems 4 and 5 note the following

Corollary 3.3. Let X be a uniformly convex Banach space and let C ⊂ X be a
nonempty bounded closed and convex set. If T : C → C and

lim sup
‖x−y‖→0

‖T (x)− T (y)‖
‖x− y‖

≤ 1,

then there exists a fixed-point of T in C. If, moreover, this inequality is strict,
then the fixed-point is unique.

From Corollary 1 and the Browder-Goehde-Kirk fixed point theorem.we get

Corollary 3.4. Let X be a uniformly convex Banach space, C ⊂ X a nonempty
convex and closed set, T a selfmap of C and γ : [0,∞) → [0,∞). Suppose that

‖T (x)− T (y)‖ ≤ γ(‖x− y‖), x, y ∈ C.
If one of the following conditions holds true:
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(1)

lim sup
t→0

γ(t)

t
≤ 1,

(2) T is continuous and

c0 := lim inf
t→0

γ(t)

t
≤ 1

then T has a fixed point in C. If moreover

‖T (x)− T (y)‖ 6= ‖x− y‖ for all x, y ∈ C, x 6= y,

the fixed point is unique.

Remark 3.5. The arguments used in the proofs of Theorems 1 and 2 allow to
prove their counterparts in metrically convex spaces.

4. Remark on globally Lipschitzian substitution operators

Applying Theorem 2 and the main result of [5] we obtain the following

Corollary 4.1. Let a function h : [0, 1] × R → R. Suppose that the substitution
operator T defined by

T (ϕ)(x) := h(x, ϕ(x)), (x ∈ [0, 1]),

maps continuously the Banach space Lip[0, 1] into itself. If there exists a sequence
of positive real numbers (tn), limn→∞ tn = 0, such that, for all n ∈ N,

lim inf
n→∞

sup
{
‖T (ϕ)− T (ψ)‖lip : ‖ϕ− ψ‖lip = tn, ϕ, ψ ∈ Lip[0, 1]

}
tn

<∞,

then there are a, b ∈ Lip[0, 1] such that

h(x, y) = a(x)y + b(x), x ∈ [0, 1], y ∈ R.
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Góra, Poland;
Institute of Mathematics, Silesian University, PL-40007 Katowice, Poland.

E-mail address: J.Matkowski@im.uz.zgora.pl


	1. Introduction
	2. Some results on Lipschitzian mappings
	3. Some fixed point theorems
	4. Remark on globally Lipschitzian substitution operators
	References

