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Abstract. Cădariu and Radu applied the fixed point method to the inves-
tigation of Cauchy and Jensen functional equations. In this paper, we adopt
the idea of Cădariu and Radu to prove the Hyers-Ulam-Rassias stability of a
functional equation of the square root spiral, f

(√
r2 + 1

)
= f(r)+ tan−1(1/r).

1. Introduction

In 1940, Ulam [16] gave a wide ranging talk before the mathematics club of the
University of Wisconsin in which he discussed a number of important unsolved
problems. Among those was the question concerning the stability of group ho-
momorphisms: Let G1 be a group and let G2 be a metric group with the metric d(·, ·).
Given ε > 0, does there exist a δ > 0 such that if a function h : G1 → G2 satisfies the
inequality d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1, then there exists a homomorphism
H : G1 → G2 with d(h(x),H(x)) < ε for all x ∈ G1?

The case of approximately additive functions was solved by Hyers [6] under
the assumption that G1 and G2 are Banach spaces. Indeed, he proved that each
solution of the inequality ‖f(x + y) − f(x) − f(y)‖ ≤ ε, for all x and y, can
be approximated by an exact solution, say an additive function. Rassias [14]
attempted to weaken the condition for the bound of the norm of the Cauchy
difference as follows

‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)
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and generalized the result of Hyers. Since then, the stability of several functional
equations has been extensively investigated.

The terminology Hyers-Ulam-Rassias stability originates from these historical
backgrounds. The terminology can also be applied to the case of other functional
equations. For more detailed definitions of such terminologies, we can refer to
[4, 7, 8, 9, 10, 15].

Recently, Cădariu and Radu [2] applied the fixed point method to the inves-
tigation of the Cauchy additive functional equation (ref. [1, 13]). Using such a
clever idea, they could present a short and simple proof for the stability of the
Cauchy functional equation.

Assume that a function f : [1,∞) → R is monotonically increasing and satisfies
f(1) = 0. If f satisfies

f
(√

r2 + 1
)

= f(r) + tan−1 1

r
(1.1)

for all r ≥ 1, then the resulting curve θ = f(r) is a continuous square root
spiral, where (r, θ) are the polar coordinates. So the functional equation (1.1) is
naturally called a functional equation of the square root spiral.

In 2000, Heuvers, Moak and Boursaw [5] investigated the general solution of
Eq. (1.1) as follows:

Theorem 1.1. (Heuvers, et al.) The general solution f : [1,∞) → R of Eq.
(1.1) is given by

f(r) = p(r2) +
∞∑
i=0

(
tan−1 1√

1 + i
− tan−1 1√

r2 + i

)
,

where p is an arbitrary periodic function of period 1. If f is monotonically in-
creasing, then p is a constant function. In particular, if f(1) = 0 then p ≡ 0 and
the curve θ = f(r) is the continuous square root spiral.

The Hyers-Ulam-Rassias stability of Eq. (1.1) was recently proved by using an
elementary method (see [12]). In this paper, we will adopt the idea of Cădariu
and Radu and apply a fixed point method for proving the Hyers-Ulam-Rassias
stability of the same equation.

2. Preliminaries

Let X be a set. A function d : X ×X → [0,∞] is called a generalized metric on
X if and only if d satisfies

(M1) d(x, y) = 0 if and only if x = y;
(M2) d(x, y) = d(y, x) for all x, y ∈ X;
(M3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Note that the only substantial difference of the generalized metric from the metric
is that the range of generalized metric includes the infinity.

We now introduce one of fundamental results of fixed point theory. For the
proof, refer to [3].
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Theorem 2.1. Let (X, d) be a generalized complete metric space. Assume that
Λ : X → X is a strictly contractive operator with the Lipschitz constant L < 1.
If there exists a nonnegative integer k such that d(Λk+1f, Λkf) < ∞ for some
f ∈ X, then the following properties are true:

(a) The sequence {Λnf} converges to a fixed point F of Λ;
(b) F is the unique fixed point of Λ in

X∗ = {g ∈ X | d(Λkf, g) < ∞} ;

(c) If h ∈ X∗, then

d(h, F ) ≤ 1

1− L
d(Λh, h).

3. Main results

In the following theorem, by using the idea of Cădariu and Radu (see [1, 2]), we
will prove the Hyers-Ulam-Rassias stability of the functional equation (1.1) for
square root spirals.

Theorem 3.1. Suppose ϕ : [1,∞) → [0,∞) is a given function and there exists
a constant L, 0 < L < 1, such that

ϕ
(√

r2 + 1
)
≤ Lϕ(r) (3.1)

for all r ≥ 1. If a function f : [1,∞) → R satisfies the inequality∣∣∣∣f(√
r2 + 1

)
− f(r)− tan−1 1

r

∣∣∣∣ ≤ ϕ(r) (3.2)

for all r ≥ 1, then there exists a unique solution F : [1,∞) → R of Eq. (1.1),
which satisfies

|F (r)− f(r)| ≤ 1

1− L
ϕ(r) (3.3)

for all r ≥ 1.

Proof. We set X = {h | h : [1,∞) → R is a function} and introduce a generalized
metric on X as follows,

d(g, h) = inf{C ∈ [0,∞] | |g(r)− h(r)| ≤ Cϕ(r) for all r ≥ 1}.
First, we will verify that (X, d) is a complete space. Let {gn} be a Cauchy

sequence in (X, d). According to the definition of Cauchy sequences, there exists,
for any given ε > 0, a positive integer Nε such that d(gm, gn) ≤ ε for all m, n ≥ Nε.
By considering the definition of the generalized metric d, we see that

∀ ε > 0 ∃ Nε ∈ N ∀ m, n ≥ Nε ∀ r ≥ 1 : |gm(r)− gn(r)| ≤ εϕ(r) (3.4)

If r ≥ 1 is fixed, (3.4) implies that {gn(r)} is a Cauchy sequence in (R, | · |).
Since (R, | · |) is complete, {gn(r)} converges in (R, | · |) for each r ≥ 1. Hence we
can define a function g : [1,∞) → R by

g(r) = lim
n→∞

gn(r).

If we let m increase to infinity, it follows from (3.4) that for any ε > 0, there
exists a positive integer Nε with |gn(r) − g(r)| ≤ εϕ(r) for all n ≥ Nε and all
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r ≥ 1; i.e., for any ε > 0, there exists a positive integer Nε such that d(gn, g) ≤ ε
for any n ≥ Nε. This fact leads us to the conclusion that {gn} converges in
(X, d). Hence (X, d) is a complete space (cf . the proof of [11, Theorem 3.1] or
[2, Theorem 2.5]).

We now define an operator Λ : X → X by

(Λh)(r) = h
(√

r2 + 1
)
− tan−1 1

r
(r ≥ 1) (3.5)

for any h ∈ X.
We assert that Λ is strictly contractive on X. Given g, h ∈ X, let C ∈ [0,∞]

be an arbitrary constant with d(g, h) ≤ C, i.e.,

|g(r)− h(r)| ≤ Cϕ(r)

for all r ≥ 1. If in the last inequality we replace r by
√

r2 + 1 and make use of
(3.1), then we have

|(Λg)(r)− (Λh)(r)| =
∣∣∣g(√

r2 + 1
)
− h

(√
r2 + 1

)∣∣∣ ≤ Cϕ
(√

r2 + 1
)
≤ LCϕ(r)

for every r ≥ 1, i.e., d(Λg, Λh) ≤ LC. Hence we conclude that d(Λg, Λh) ≤
Ld(g, h) for any g, h ∈ X.

Next, we assert that d(Λf, f) < ∞. In view of (3.2) and the definition of Λ,
we get

|(Λf)(r)− f(r)| ≤ ϕ(r)

for each r ≥ 1, i.e.,

d(Λf, f) ≤ 1. (3.6)

By using mathematical induction, we now prove that

(Λnf)(r) = f
(√

r2 + n
)
−

n−1∑
i=0

tan−1 1√
r2 + i

(3.7)

for all n ∈ N and all r ≥ 1. Since f ∈ X, the definition (3.5) implies that (3.7)
is true for n = 1. Now, assume that (3.7) holds for some n ≥ 1. It then follows
from (3.5) and (3.7) that(

Λn+1f
)
(r) = Λ(Λnf)(r)

= (Λnf)
(√

r2 + 1
)
− tan−1 1

r

= f
(√

r2 + n + 1
)
−

n−1∑
i=0

tan−1 1√
r2 + i + 1

− tan−1 1

r

= f
(√

r2 + n + 1
)
−

n∑
i=0

tan−1 1√
r2 + i

,

which is the case where n is replaced by n + 1 in (3.7).
Considering (3.6), if we set k = 0 in Theorem 2.1, then Theorem 2.1 (a)

implies that there exists a function F ∈ X, which is a fixed point of Λ, such that
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Λnf → F ; more precisely,

lim
n→∞

[
f
(√

r2 + n
)
−

n−1∑
i=0

tan−1 1√
r2 + i

]
= F (r) (3.8)

for all r ≥ 1.
Since k = 0 (see (3.6)) and f ∈ X∗ = {g ∈ X | d(f, g) < ∞} in Theorem 2.1,

by Theorem 2.1 (c) and (3.6), we obtain

d(f, F ) ≤ 1

1− L
d(Λf, f) ≤ 1

1− L
,

i.e., the inequality (3.3) is true for all r ≥ 1.
By (3.8), we get∣∣∣∣F(√

r2 + 1
)
− F (r)− tan−1 1

r

∣∣∣∣
= lim

n→∞

∣∣∣∣∣f(√
r2 + n + 1

)
−

n−1∑
i=0

tan−1 1√
r2 + i + 1

− f
(√

r2 + n
)

+
n−1∑
i=0

tan−1 1√
r2 + i

− tan−1 1

r

∣∣∣∣∣
= lim

n→∞

∣∣∣∣f(√
r2 + n + 1

)
− f

(√
r2 + n

)
− tan−1 1√

r2 + n

∣∣∣∣
for each r ≥ 1. If in (3.2) we replace r by

√
r2 + n and apply the resulting

inequality to the last equality, then we have∣∣∣∣F(√
r2 + 1

)
− F (r)− tan−1 1

r

∣∣∣∣ ≤ lim
n→∞

ϕ
(√

r2 + n
)

for all r ≥ 1.
On the other hand, by applying the mathematical induction to inequality (3.1),

we can easily prove that

ϕ
(√

r2 + n
)
≤ Lnϕ(r) → 0 as n →∞

for any r ≥ 1, which means that F is a solution of Eq. (1.1).
Assume that inequality (3.3) is also satisfied with another function G : [1,∞) →

R which is a solution of Eq. (1.1). (As G is a solution of Eq. (1.1), G satisfies
G(r) = G

(√
r2 + 1

)
− tan−1(1/r) = (ΛG)(r) for all r ≥ 1. That is, G is a fixed

point of Λ.) In view of (3.3) with G and the definition of d, we know that

d(f, G) ≤ 1

1− L
< ∞,

i.e., G ∈ X∗ = {g ∈ X | d(f, g) < ∞}. Thus, Theorem 2.1 (b) implies that
F = G. This proves the uniqueness of F . �

Corollary 3.2. For a constant a > 1, let ϕ : [1,∞) → [0,∞) be given by

ϕ(r) = a−r2

(r ≥ 1)
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for some constant a > 1. If a function f : [1,∞) → R satisfies inequality (3.2)
for all r ≥ 1, then there exists a unique solution F : [1,∞) → R of Eq. (1.1)
such that

|F (r)− f(r)| ≤ a1−r2

a− 1
for all r ≥ 1.

Proof. Since

ϕ
(√

r2 + 1
)

= a−r2−1 =
1

a
ϕ(r)

for all r ≥ 1, we can set L = 1/a and apply Theorem 3.1 to this case. �
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