A SPECIAL GAUSSIAN RULE FOR TRIGONOMETRIC POLYNOMIALS

GRADIMIR V. MILOVANOVIĆ ${ }^{1 *}$, ALEKSANDAR S. CVETKOVIĆ ${ }^{2}$ AND MARIJA P. STANIĆ ${ }^{3}$
This paper is dedicated to Professor Themistocles M. Rassias.

Submitted by S. S. Dragomir

Abstract

Abram Haimovich Turetzkii [Uchenye Zapiski, 1 (149) (1959), 3155 (translation in English in East J. Approx. 11 (2005), 337-359)] considered interpolatory quadrature rules which have the following form $\int_{0}^{2 \pi} f(x) w(x) d x \approx$ $\sum_{\nu=0}^{2 n} w_{\nu} f\left(x_{\nu}\right)$, and which are exact for all trigonometric polynomials of degree less than or equal to n. Maximal trigonometric degree of exactness of such quadratures is $2 n$, and such kind of quadratures are known as quadratures of Gaussian type or Gaussian quadratures for trigonometric polynomials. In this paper we prove some interesting properties of a special Gaussian quadrature with respect to the weight function $w_{m}(x)=1+\sin m x$, where m is a positive integer.

1. Introduction

This paper is dedicated to Themistocles M. Rassias for our long and fruitful collaboration in mathematical research, including the writing of our book [4], published in 1994 by World Scientific Publishing Co., jointly with Professor Dragoslav S. Mitrinović.

Let the weight function $w(x)$ be integrable and nonnegative on the interval $[0,2 \pi)$, vanishing there only on a set of a measure zero.

[^0]By \mathcal{T}_{n} we denote the linear space of all trigonometric polynomials of degree less than or equal to n, and by $\mathcal{T}_{n}^{1 / 2}$ we denote the linear span of the following set $\{\cos (\nu+1 / 2) x, \sin (\nu+1 / 2) x, \nu=0,1, \ldots, n\}$. Trigonometric functions from $\mathcal{T}_{n}^{1 / 2}$, i.e., trigonometric functions of the following form

$$
\begin{equation*}
\sum_{\nu=0}^{n}\left[c_{\nu} \cos \left(\nu+\frac{1}{2}\right) x+d_{\nu} \sin \left(\nu+\frac{1}{2}\right) x\right], \tag{1.1}
\end{equation*}
$$

where $c_{\nu}, d_{\nu} \in \mathbb{R},\left|c_{n}\right|+\left|d_{n}\right| \neq 0$, are known as trigonometric polynomials of semi-integer degree $n+1 / 2$ (see [5], [2]). This kind of trigonometric functions are important for construction of the Gaussian quadrature rules for trigonometric polynomials.

It is obvious that

$$
\begin{equation*}
A_{n+1 / 2}(x)=A \prod_{k=0}^{2 n} \sin \frac{x-x_{k}}{2} \quad(A \text { is a non-zero constant }) \tag{1.2}
\end{equation*}
$$

is trigonometric polynomial of semi-integer degree $n+1 / 2$. Also, every trigonometric polynomial of semi-integer degree $n+1 / 2$ of the form (1.1) can be represented in the form (1.2) (see [5, Lemma 1]).

For any positive integer n, the quadrature rule of the Gaussian type is the following one

$$
\begin{equation*}
\int_{0}^{2 \pi} t(x) w(x) d x=\sum_{\nu=0}^{2 n} w_{\nu} t\left(x_{\nu}\right), \quad t \in \mathcal{T}_{2 n} \tag{1.3}
\end{equation*}
$$

where weights w_{ν} are given by

$$
\begin{equation*}
w_{\nu}=\int_{0}^{2 \pi} \frac{A_{n+1 / 2}(x)}{2 \sin \frac{x-x_{\nu}}{2} A_{n+1 / 2}^{\prime}\left(x_{\nu}\right)} w(x) d x, \quad \nu=0,1, \ldots, 2 n \tag{1.4}
\end{equation*}
$$

and nodes are zeros of $A_{n+1 / 2}(x)$, which is orthogonal on $[0,2 \pi)$ with respect to the weight function $w(x)$ to every trigonometric polynomial of the semi-integer degree from $\mathcal{T}_{n-1}^{1 / 2}$ (see [5], [2]). It is known that such orthogonal trigonometric polynomial of semi-integer degree $A_{n+1 / 2}(x)$ has in $[0,2 \pi)$ exactly $2 n+1$ distinct simple zeros (see [5, Theorem 3]) and $A_{n+1 / 2}$ with given leading coefficients c_{n} and d_{n} is uniquely determined (see [5, §3.]). In [2] and [3] two choices of leading coefficients were considered. For the choice $c_{n}=1, d_{n}=0$, we denote an orthogonal trigonometric polynomial of semi-integer degree by $A_{n+1 / 2}^{C}$, and for the choice $c_{n}=0$ and $d_{n}=1$ by $A_{n+1 / 2}^{S}$.

The Gaussian quadrature (1.3) is not given uniquely since it is possible to use any orthogonal polynomial of semi-integer degree $A_{n+1 / 2} \in \mathcal{T}_{n}^{1 / 2}$. In [2] a numerical method for constructing the Gaussian quadratures using $A_{n+1 / 2}^{C}$ is given. That method is based on five-term recurrence relations for $A_{n+1 / 2}^{C}$ and $A_{n+1 / 2}^{S}$. The main problem in that method is the calculation of five-term recurrence coefficients. Explicit formulas for five-term recurrence coefficients for some weight functions are given in [3].

In this paper, in Section 2, we prove some interesting properties for Gaussian quadratures (1.3) with respect to the weight function $w_{m}(x)=1+\sin m x, m \in \mathbb{N}$, and in Section 3 we give a numerical example.

2. Main Results

As an example, the nodes x_{ν} and weight $w_{\nu}, \nu=0,1, \ldots, 2 n$, for the Gaussian quadrature for $n=25$ and $w_{15}(x)=1+\sin 15 x$ are given in [2]. In that case we have seen some kind of symmetry, since $w_{\nu}=w_{\nu+17 j}$ and $x_{\nu+17 j}=x_{\nu}+2 j \pi / 3$, $j=1,2, \nu=0,1, \ldots, 16$. This symmetry is not an isolated case, namely Gaussian quadratures (1.3) with respect to the weight functions $w_{m}(x)=1+\sin m x, m \in \mathbb{N}$, have interesting properties, which are presented in Theorem 2.1. If we want to construct a Gaussian quadrature rule with $2 n_{1}+1$ nodes for the weight function $w_{m_{1}}(x)=1+\sin m_{1} x$ where $\operatorname{gcd}\left(m_{1}, 2 n_{1}+1\right)=d \neq 1$ we can obtain nodes and weights for such quadrature directly from nodes and weights of the Gaussian quadrature rule with $\left(2 n_{1}+1\right) / d$ nodes with respect to the weight $w_{m_{1} / d}$. In a given example in [2] we have $n_{1}=25, m_{1}=15$ and $\operatorname{gcd}(15,51)=3$.

Theorem 2.1. Let denote by $x_{\nu}, w_{\nu}, \nu=1, \ldots, 2 n+1$, the nodes and weights for the Gaussian quadrature rule with respect to the weight function $w_{m}(x)=$ $1+\sin m x$. Then

$$
\widehat{x}_{j(2 n+1)+\nu}=\frac{x_{\nu}}{q}+\frac{2 j \pi}{q}, \widehat{w}_{j(2 n+1)+\nu}=\frac{w_{\nu}}{q},
$$

for $j=0,1, \ldots, q-1, \nu=1, \ldots, 2 n+1$, are nodes and weights for the Gaussian quadrature rule with $(2 n+1) q$ nodes with respect to the weight function $w_{m q}(x)=$ $1+\sin m q x$, where q is an odd positive integer.

Proof. According to orthogonality conditions for trigonometric polynomials of semi-integer degree with respect to the weight function $w_{m}(x)=1+\sin m x$, we obtain

$$
\begin{aligned}
& \int_{0}^{2 \pi} A_{n+1 / 2}^{C}(x) \cos (k+1 / 2) x(1+\sin m x) d x=0, \quad 0 \leq k \leq n-1 \\
& \int_{0}^{2 \pi} A_{n+1 / 2}^{C}(x) \sin (k+1 / 2) x(1+\sin m x) d x=0, \quad 0 \leq k \leq n-1
\end{aligned}
$$

If we introduce $x:=q x$, we have

$$
\begin{aligned}
& \int_{0}^{2 \pi / q} A_{n+1 / 2}^{C}(q x) \cos (k+1 / 2) q x(1+\sin m q x) d x=0, \quad 0 \leq k \leq n-1 \\
& \int_{0}^{2 \pi / q} A_{n+1 / 2}^{C}(q x) \sin (k+1 / 2) q x(1+\sin m q x) d x=0, \quad 0 \leq k \leq n-1
\end{aligned}
$$

Substituting $t=x+2 j \pi / q, j=1, \ldots, q-1$, we get

$$
\begin{array}{r}
\int_{\frac{2 j \pi}{q}}^{\frac{2(j+1) \pi}{q}} A_{n+1 / 2}^{C}(q t-2 j \pi) \cos (k+1 / 2)(q t-2 j \pi)(1+\sin m(q t-2 j \pi)) d t \\
=0
\end{array}
$$

$$
\begin{array}{r}
\int_{\frac{2 j \pi}{q}}^{\frac{2(j+1) \pi}{q}} A_{n+1 / 2}^{C}(q t-2 j \pi) \sin (k+1 / 2)(q t-2 j \pi)(1+\sin m(q t-2 j \pi)) d t \\
=0,
\end{array}
$$

for $0 \leq k \leq n-1$, i.e.,

$$
\begin{aligned}
& \int_{2 j \pi / q}^{2(j+1) \pi / q} A_{n+1 / 2}^{C}(q t) \cos (k+1 / 2) q t(1+\sin m q t) d t=0 \\
& \int_{2 j \pi / q}^{2(j+1) \pi / q} A_{n+1 / 2}^{C}(q t) \sin (k+1 / 2) q t(1+\sin m q t) d t=0
\end{aligned}
$$

because of

$$
\cos (k+1 / 2)(q t-2 j \pi)=(-1)^{j} \cos (k+1 / 2) q t
$$

and

$$
\sin (k+1 / 2)(q t-2 j \pi)=(-1)^{j} \sin (k+1 / 2) q t
$$

for $j=1, \ldots, q-1$.
Thus, we have

$$
\begin{aligned}
& \int_{0}^{2 \pi} A_{n+1 / 2}^{C}(q x) \cos (k+1 / 2) q x(1+\sin m q x) d x=0, \quad 0 \leq k \leq n-1 \\
& \int_{0}^{2 \pi} A_{n+1 / 2}^{C}(q x) \sin (k+1 / 2) q x(1+\sin m q x) d x=0, \quad 0 \leq k \leq n-1
\end{aligned}
$$

Let denote by \mathfrak{T}^{q} the linear span of the following functions

$$
\begin{aligned}
\cos (k+1 / 2) q x=\cos (k q+(q-1) / 2+1 / 2) x, & k=0,1, \ldots, n \\
\sin (k+1 / 2) q x=\sin (k q+(q-1) / 2+1 / 2) x, & k=0,1, \ldots, n .
\end{aligned}
$$

Obviously, $\mathcal{T}^{q} \subseteq \mathcal{T}_{n q+(q-1) / 2}^{1 / 2}$. Using integrals

$$
\begin{aligned}
& \int_{0}^{2 \pi} \cos (\nu+1 / 2) x \cos (\ell+1 / 2) x w_{q m}(x) d x=\pi \delta_{\nu, \ell} \\
& \int_{0}^{2 \pi} \sin (\nu+1 / 2) x \sin (\ell+1 / 2) x w_{q m}(x) d x=\pi \delta_{\nu, \ell} \\
& \int_{0}^{2 \pi} \cos (\nu+1 / 2) x \sin (\ell+1 / 2) x w_{q m}(x) d x \\
& \quad=\frac{\pi}{2}\left(\delta_{\nu, \ell-q m}+\delta_{\nu, q m-\ell-1}-\delta_{\nu, \ell+q m}\right)
\end{aligned}
$$

for $\nu=k q+(q-1) / 2$, we see that integrals might not be equal zero only under condition $\ell=i q+(q-1) / 2, i \in \mathbb{Z}$. With this argument we obtain the following orthogonality $\mathcal{T}^{q} \perp\left(\mathcal{T}_{n q+(q-1) / 2}^{1 / 2} \ominus \mathcal{T}^{q}\right)$ with respect to the inner product

$$
(f, q)=\int_{0}^{2 \pi} f(x) g(x) w_{m q}(x) d x
$$

Then, $A_{n+1 / 2}^{C}(q x)$ is orthogonal on $[0,2 \pi)$ to all trigonometric polynomials of semi-integer degree $t \in \mathcal{T}_{n q+(q-1) / 2-1}^{1 / 2}$ with respect to the weight function $w_{m q}(x)$.

Since $A_{n+1 / 2}^{C}(x)$ can be represented as

$$
A_{n+1 / 2}^{C}(x)=A \prod_{\nu=1}^{2 n+1} \sin \frac{x-x_{\nu}}{2}, \quad A \neq 0
$$

we get

$$
A_{n+1 / 2}^{C}(q x)=A \prod_{\nu=1}^{2 n+1} \sin \frac{q x-x_{\nu}}{2}=A \prod_{\nu=1}^{2 n+1} \sin \frac{q\left(x-x_{\nu} / q\right)}{2},
$$

so it is obvious that $\widehat{x}_{j(2 n+1)+\nu}, j=0,1, \ldots, q-1, \nu=1, \ldots, 2 n+1$, are zeros of $A_{n+1 / 2}^{C}(q x)$.

Formulas for weight coefficients $\widehat{w}_{j(2 n+1)+\nu}, j=0,1, \ldots, q-1, \nu=1, \ldots, 2 n+1$, can be easily obtained using (1.4).

3. Numerical example

We determine the nodes and weights for a Gaussian quadrature with 75 nodes and the weight function $w_{45}(x)=1+\sin 45 x$.

Since $\operatorname{gcd}(45,75)=15$, according to Theorem 2.1, we can obtain parameters for this Gaussian quadrature directly from the nodes and weights of a Gaussian quadrature with 5 nodes and the weight function $w_{3}(x)=1+\sin 3 x$.

The parameters x_{ν} and weight $w_{\nu}, \nu=0,1, \ldots, 2 n$, for $n=2$ and $w(x)=$ $1+\sin 3 x$ are given in Table 1. (Numbers in parentheses indicate decimal exponents.) We calculate these parameters using a numerical method described in [2] with explicit formulas for five-term recurrence coefficients given in [3]. All computations are performed in double precision arithmetic (16 decimal digits mantissa) in Mathematica, using the corresponding software package described in [1].

Now it is easy to obtain the nodes \widehat{x}_{ν} and the weights $\widehat{w}_{\nu}, \nu=0,1, \ldots, 74$, of the Gaussian quadrature for the $w_{45}(x)=1+\sin 45 x$. The nodes $\widehat{x}_{\nu}, \nu=0,1, \ldots, 4$, and the weights $\widehat{w}_{k}, k=0,1, \ldots, 74$, are given in Table 2. The other nodes x_{k}, $k=5,6, \ldots, 74$, are given by

$$
\widehat{x}_{5 j+\nu}=\widehat{x}_{\nu}+\frac{2 j \pi}{15}, \quad j=1, \ldots, 14, \nu=0,1, \ldots, 4
$$

Table 1. Nodes x_{ν} and weights $w_{\nu}, \nu=0,1, \ldots, 4$, for $w_{3}(x)=1+\sin 3 x$

ν	x_{ν}	w_{ν}
0	$5.717322718269771(-1)$	1.700722884785417
1	2.062284642241416	$9.534684415662144(-1)$
2	2.933402103642034	1.316125839231413
3	4.554306420567181	1.586274703648100
4	5.586237829671358	$7.265934379484426(-1)$

Table 2. Nodes \widehat{x}_{ν} and weights $\widehat{w}_{5 j+\nu}, \nu=0,1, \ldots, 4, j=$ $0,1, \ldots, 14$, for $n=37$ and $w_{45}(x)=1+\sin 45 x$

ν	\widehat{x}_{ν}	$\widehat{w}_{5 j+\nu}, j=0,1, \ldots, 14$
0	$0.3811548478846514(-1)$	0.1133815256523611
1	0.1374856428160944	$0.6356456277108096(-1)$
2	0.1955601402428023	$0.8774172261542751(-1)$
3	0.3036204280378120	0.1057516469098733
4	0.3724158553114239	$0.4843956252989617(-1)$

Acknowledgements: The authors were supported in part by the Serbian Ministry of Science (Project: Orthogonal Systems and Applications, grant number \#144004G) and the Swiss National Science Foundation (SCOPES Joint Research Project No. IB7320-111079 "New Methods for Quadrature")

References

1. A.S. Cvetković and G.V. Milovanović, The Mathematica Package "OrthogonalPolynomials", Facta Univ. Ser. Math. Inform. 19 (2004), 17-36.
2. G.V. Milovanović, A.S. Cvetković and M.P. Stanić, Trigonometric orthogonal systems and quadrature formulae, preprint.
3. G.V. Milovanović, A.S. Cvetković and M.P. Stanić, Explicit formulas for five-term recurrence coefficients of orthogonal trigonometric polynomials of semi-integer degree, Appl. Math. Comput. (to appear).
4. G.V. Milovanović, D.S. Mitrinović and Th.M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific, Singapore-New Jersey-London-Hong Kong, 1994.
5. A.H. Turetzkii, On quadrature formulae that are exact for trigonometric polynomials, East J. Approx. 11 (2005), 337-359 (translation in English from Uchenye Zapiski, Vypusk 1 (149), Seria math. Theory of Functions, Collection of papers, Izdatel'stvo Belgosuniversiteta imeni V.I. Lenina, Minsk (1959), 31-54).
${ }^{1}$ Department of Mathematics, Faculty of Electronic Engineering, University of Niš, P.O. Box 73, 18000 Niš, Serbia.

E-mail address: grade@junis.ni.ac.yu
${ }^{2}$ Department of Mathematics, Faculty of Electronic Engineering, University of Niš, P.O. Box 73, 18000 Niš, Serbia.

E-mail address: aca@elfak.ni.ac.yu
${ }^{3}$ Department of Mathematics and Informatics, Faculty of Science, University of Kragujevac, P.O. Box 60,34000 Kragujevac, Serbia.

E-mail address: stanicm@kg.ac.yu

[^0]: Date: Received: 24 March 2007; Accepted: 24 October 2007.

 * Corresponding author.

 2000 Mathematics Subject Classification. Primary 65D30; Secondary 42A05.
 Key words and phrases. Trigonometric polynomials of semi-integer degree, Orthogonality, Gaussian type quadratures.

