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Abstract. New sharp Kolmogorov type inequalities for hypersingular inte-
grals with homogeneous characteristic of multivariate functions from Hölder
spaces are obtained. Proved inequalities are used to solve the Stechkin’s prob-
lem on the best approximation of unbounded hypersingular integral operator
by bounded ones on functional classes which are defined by a majorant of the
modulus of continuity.

1. Introduction and preliminaries

Kolmogorov type inequalities for univariate and multivariate functions, especially
with sharp constants, that estimate the norm of intermediate derivatives in terms
of the norms of the function itself and its derivative of the higher order, are
of great importance for many branches of mathematics. After the inequality
of A.N. Kolmogorov [15] there were obtained a lot of results in this direction
for univariate functions; the surveys of known sharp inequalities in the case of
derivatives of integer order and further references can be found, for example, in
[2], [3], [4], [9], [10], [11]. The case of the fractional order derivatives has been
studied much less (for known results see [14], [1], [13], [18], [6], [7]). In addition
observe that in the case of functions of two and more variables very few sharp
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Kolmogorov type inequalities are known (see the papers [16], [13], [24], [8], [5],
[12]).

In this paper we obtain sharp Kolmogorov type inequalities for certain nat-
ural generalizations of the fractional differentiation for the case of multivariate
functions and give applications of obtained results in approximation theory.

We shall describe in this section univariate results which we shall generalize
in this paper. One of the natural and useful definitions of the fractional deriv-
ative for univariate functions is the following definition of Marchaud fractional
derivative [19] (see, also, [21, p. 95–97]):

(Dα
±f)(x) :=

α

Γ(1− α)

∞∫
0

f(x)− f(x∓ t)

t1+α
dt.

Let C(R) be the space of all bounded continuous functions f : R → R endowed
with the norm

‖f‖C := sup{|f(x)| : x ∈ R}.
Let ω(t) be a certain modulus of continuity, that is a continuous nondecreasing
semi-additive function defined on the real half-line and such that ω(0) = 0. We
shall consider the space Hω (R) of functions f ∈ C(R) for which the quantity

‖f‖Hω := sup
x,y∈R
x6=y

|f(x)− f(y)|
ω (|x− y|)

is finite. If ω (t) = tβ, β ∈ (0, 1], then instead of Hω we write Hβ.
If ω(t) is a modulus of continuity such that

1∫
0

ω (t)

tα+1
dt < ∞, (1.1)

then for any h > 0 the quantity

Iω,α(h) :=

h∫
0

ω (t)

tα+1
dt

is defined.
In [6] the following additive Kolmogorov type inequality for derivatives in Mar-

chaud sense of order α ∈ (0, 1) for univariate functions was proved:∥∥Dα
±f

∥∥
C
≤ 1

Γ(1− α)

(
α‖f‖HωIω,α(h) +

2‖f‖C

hα

)
(1.2)

with any h > 0 and ω(t) such that (1.1) holds. Moreover, this inequality becomes
an equality for the function fh(x) that is defined as:

fh(x) =

{
ω (|x|)− ω(h)

2
, |x| ≤ h;

ω(h)
2

, |x| ≥ h.
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If ω(t) = tβ and α < β ≤ 1, then inequality (1.2) can be represented in the
following multiplicative form:

‖Dα
±f‖C ≤ 1

Γ(1− α)

21−α
β

1− α
β

‖f‖
1−α

β

C ‖f‖
α
β

Hβ .

2. Main results

Among the best known generalizations of fractional derivatives for multivariate
functions are fractional derivative with respect to a direction [21, p. 348] and the
Riesz derivative [21, p. 367–370].

Let C(Rn) be the space of all bounded continuous functions f : Rn → R
endowed with the norm

‖f‖C := sup{|f(x)| : x ∈ Rn}.

For x = (x1, . . . , xn) ∈ Rn |x| :=

√
n∑

i=1

x2
i denotes the usual Euclidean norm in

Rn. For a given modulus of continuity ω(t) we shall consider the space Hω (Rn)
of functions f ∈ C(Rn) for which the quantity

‖f‖Hω := sup
x,y∈Rn

x6=y

|f(x)− f(y)|
ω (|x− y|)

is finite. If ω (t) = tβ, β ∈ (0, 1], then instead of Hω we write Hβ.
Fractional derivative of order α ∈ (0, 1) with respect to the direction θ ∈ Rn,

|θ| = 1, of the function f : Rn → R in Marchaud sense is defined by

(Dα
θ f) (x) =

α

Γ(1− α)

∞∫
0

f(x)− f(x− ξθ)

ξ1+α
dξ.

The Riesz fractional derivative of order α ∈ (0, 1) of the function f : Rn → R
is defined by

(Dαf) (x) =
1

dn,1 (α)

∫
Rn

f(x)− f(x− ξ)

|ξ|n+α
dξ,

where

dn,1 (α) =
π1+n/2

2αΓ
(
1 + α

2

)
Γ

(
n+α

2

)
sin απ

2

.

Note that the Riesz derivative represents a fractional power of the Laplas opera-
tor:

Dαf = (−∆)α/2 f,

where

∆f :=
∂2f

∂x2
1

+ . . . +
∂2f

∂x2
n

.

We shall consider still more general notion that is the notion of hypersingular
integral with homogeneous characteristic (for the references see [21, p. 425]).
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For α ∈ (0, 1) the hypersingular integral is defined in the following way (for
more details see, for example, [21, p. 381]):

(Dα
Ωf) (x) =

1

dn,1 (α)

∫
Rn

f(x)− f(x− ξ)

|ξ|n+α
Ω

(
ξ

|ξ|

)
dξ,

where the function Ω (which is called characteristic) is homogeneous of degree 0
with respect to ξ.

The notion of such hypersingular integrals allows in particular to consider prob-
lems connected with fractional derivative with respect to a direction and the Riesz
derivative from the general point of view. Let Sn−1 ⊂ Rn be the unit sphere with
induced Lebesgue measure. Let also BSn−1(θ, r) be the ball of radius r (in the
sense of spherical distance, for more details see, for example, [20]) on the sphere
Sn−1, centered at the point of intersection of the direction θ and the sphere Sn−1.
Denote by |BSn−1(θ, r)| the measure of this ball on the sphere Sn−1, and by

χBSn−1 (θ,r)(x) =

{
1, x ∈ BSn−1(θ, r);
0, x ∈ Sn−1 \BSn−1(θ, r)

denote its indicator function. Then choosing the function

Ω(x) =
χBSn−1 (θ,r)(x)

|BSn−1(θ, r)|
,

as a characteristic and letting r → 0 we obtain the fractional derivative with
respect to the direction θ; if r → π we obtain the Riesz derivative.

Further results are formulated for the case of hypersingular integrals with ho-
mogeneous characteristic.

Let Bn
h ⊂ Rn be the ball of radius h centered at the origin. We introduce the

operator Dα
Ω,h : C (Rn) → C (Rn) defined as(

Dα
Ω,hf

)
(x) =

1

dn,1 (α)

∫
Rn\Bn

h

f(x)− f(x− ξ)

|ξ|n+α
Ω

(
ξ

|ξ|

)
dξ.

Theorem 2.1. Let Ω(x) be a non-negative homogeneous of degree 0 with respect
to x function, integrable on the unit sphere Sn−1 ⊂ Rn. Let also α ∈ (0; 1) and
ω(t) be such a modulus of continuity that (1.1) holds. Then for any function
f ∈ Hω (Rn) and any h > 0 the sharp inequality

‖Dα
Ωf‖C ≤ 1

dn,1(α)

∫
Sn−1

Ω (ξ′) dξ′
(
‖f‖HωIω,α(h) +

2‖f‖C

αhα

)
(2.1)

holds with the extremal function

fh(x) =

{
ω (|x|)− ω(h)

2
, x ∈ Bn

h ;
ω(h)

2
, x ∈ Rn \Bn

h .
(2.2)

Proof. For any f ∈ Hω (Rn) and any h > 0, we obviously have

‖Dα
Ωf‖C ≤

∥∥Dα
Ωf −Dα

Ω,hf
∥∥

C
+

∥∥Dα
Ω,hf

∥∥
C

.
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To estimate the first term we use the fact that the function f belongs to the space
Hω (Rn) and switch to the polar coordinates in the integral:

∥∥Dα
Ωf −Dα

Ω,hf
∥∥

C
=

1

dn,1(α)

∥∥∥∥∥∥∥
∫
Bn

h

f(·)− f(·+ ξ)

|ξ|n+α
Ω

(
ξ

|ξ|

)
dξ

∥∥∥∥∥∥∥
C

≤ 1

dn,1(α)
‖f‖Hω

∫
Bn

h

ω(|ξ|)
|ξ|n+α

Ω

(
ξ

|ξ|

)
dξ

=
1

dn,1(α)

∫
Sn−1

Ω (ξ′) dξ′‖f‖HωIω,α(h).

(2.3)

To estimate the second term we use the fact that the function f is bounded and
again switch to the polar coordinates in the integral:

∥∥Dα
Ω,hf

∥∥
C

=
1

dn,1(α)

∥∥∥∥∥∥∥
∫

Rn\Bn
h

f(·)− f(·+ ξ)

|ξ|n+α
Ω

(
ξ

|ξ|

)
dξ

∥∥∥∥∥∥∥
C

≤ 2‖f‖C

dn,1(α)

∫
Rn\Bn

h

1

|ξ|n+α
Ω

(
ξ

|ξ|

)
dξ

=
1

dn,1(α)

∫
Sn−1

Ω (ξ′) dξ′
2‖f‖C

αhα
.

(2.4)

It follows from the obtained estimates that inequality (2.1) holds true.
Let us show that this inequality is sharp. It is easily seen that for the function

(2.2) we have

‖fh‖C =
ω(h)

2
.

Let x′, x′′ ∈ Rn. There are three possible cases:
1) x′, x′′ ∈ Bn

h ;
2) x′ ∈ Bn

h , x′′ /∈ Bn
h ;

3) x′, x′′ /∈ Bn
h .

In the case 1) we have using the properties of modulus of continuity

|fh(x
′)− fh(x

′′)| = |ω(|x′|)− ω(|x′′|)|
≤ ω(||x′| − |x′′||)
≤ ω(|x′ − x′′|).

In the case 2) there exists a point y′′ ∈ Bn
h such that

|x′ − y′′| ≤ |x′ − x′′|

and

|fh(x
′)− fh(x

′′)| = |ω(|x′|)− ω(|y′′|)|.
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Using the previous estimation we obtain

|fh(x
′)− fh(x

′′)| = |ω(|x′|)− ω(|y′′|)|
≤ ω(|x′ − y′′|)
≤ ω(|x′ − x′′|).

Finally, in the case 3) we have

|fh(x
′)− fh(x

′′)| = 0 ≤ ω(|x′ − x′′|).
Therefore the function fh belongs to the space Hω (Rn) and

‖fh‖Hω ≤ 1.

We obtain from inequality (2.1) that

‖Dα
Ωfh‖C ≤ 1

dn,1(α)

∫
Sn−1

Ω (ξ′) dξ′
(

Iω,α(h) +
ω(h)

αhα

)
.

On the other hand

‖Dα
Ωfh‖C ≥ |(Dα

Ωfh) (0)|

=
1

dn,1(α)

∣∣∣∣∣∣
∫
Rn

fh(0)− fh(ξ)

|ξ|n+α
Ω

(
ξ

|ξ|

)
dξ

∣∣∣∣∣∣
=

1

dn,1(α)

∣∣∣∣∣∣∣
∫
Bn

h

fh(0)− fh(ξ)

|ξ|n+α
Ω

(
ξ

|ξ|

)
dξ

+

∫
Rn\Bn

h

fh(0)− fh(ξ)

|ξ|n+α
Ω

(
ξ

|ξ|

)
dξ

∣∣∣∣∣∣∣
=

1

dn,1(α)

 ∫
Bn

h

ω(|ξ|)
|ξ|n+α

Ω

(
ξ

|ξ|

)
dξ +

∫
Rn\Bn

h

ω(h)

|ξ|n+α
Ω

(
ξ

|ξ|

)
dξ


=

1

dn,1(α)

∫
Sn−1

Ω (ξ′) dξ′
(

Iω,α(h) +
ω(h)

αhα

)
.

Comparing the obtained estimates for the norm ‖Dα
Ωfh‖C we arrive to the

identity which proves the sharpness of inequality (2.1). The proof is complete. �

If ω (t) = tβ, 0 < β ≤ 1, then as a consequence from Theorem 1 we obtain

Theorem 2.2. Let 0 < α < β ≤ 1, Ω(x) be such as in Theorem 1. For any
function f ∈ Hβ (Rn) sharp inequalities hold:

‖Dα
Ωf‖C ≤ h−α

dn,1(α)

∫
Sn−1

Ω (ξ′) dξ′
(
‖f‖Hβ

hβ

β − α
+

2‖f‖C

α

)
(2.5)
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for any h > 0, and

‖Dα
Ωf‖C ≤ 21−α

β

αdn,1(α)(1− α
β
)

∫
Sn−1

Ω (ξ′) dξ′‖f‖
1−α

β

C ‖f‖
α
β

Hβ . (2.6)

The extremal function for both these inequalities is

fh(x) =

{
|x|β − hβ

2
, x ∈ Bn

h ;
hβ

2
, x ∈ Rn \Bn

h ,
h > 0. (2.7)

Proof. Inequality (2.5) and its sharpness for any h > 0 follow immediately from
Theorem 1, since in this case

Iω,α(h) =
hβ−α

β − α
.

Substituting the quantity

h∗ = 2
1
β ‖f‖

1
β

C‖f‖
− 1

β

Hβ

to the right hand side of additive inequality we obtain

‖Dα
Ωf‖C ≤ 1

dn,1(α)

∫
Sn−1

Ω (ξ′) dξ′
(
‖f‖Hβ

β − α
(h∗)

β−α +
2‖f‖C

α
(h∗)

−α

)

=
21−α

β

dn,1(α)

∫
Sn−1

Ω (ξ′) dξ′‖f‖
1−α

β

C ‖f‖
α
β

Hβ

[
1

β − α
+

1

α

]

=
21−α

β · β
α(β − α)dn,1(α)

∫
Sn−1

Ω (ξ′) dξ′‖f‖
1−α

β

C ‖f‖
α
β

Hβ .

Thus, we obtain multiplicative inequality (2.6):

‖Dα
Ωf‖C ≤ 21−α

β

αdn,1(α)(1− α
β
)

∫
Sn−1

Ω (ξ′) dξ′‖f‖
1−α

β

C ‖f‖
α
β

Hβ .

Now we shall prove the sharpness of this inequality. For the function of the
form (2.7) with any h > 0 we have

‖fh‖C =
hβ

2
, ‖fh‖Hβ ≤ 1,

i.e. fh ∈ Hβ (Rn), therefore inequality (2.6) holds for this function:

‖Dα
Ωfh‖C ≤ 21−α

β

αdn,1(α)(1− α
β
)

(
hβ

2

)1−α
β

∫
Sn−1

Ω (ξ′) dξ′.

On the other hand

‖Dα
Ωfh‖C ≥ |(Dα

Ωfh) (0)|

=
hβ−α

αdn,1(α)(1− α
β
)

∫
Sn−1

Ω (ξ′) dξ′.
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Comparing the obtained estimates for the norm ‖Dα
Ωfh‖C , we arrive to the iden-

tity, which proves the sharpness of multiplicative inequality (2.6). The proof is
complete. �

Using Stein’s method [23] (see, also, [17, §1.8], [11, p. 84]) we obtain analogue
of inequality (2.6) in the space Lp (Rn), 1 ≤ p < ∞, of measurable functions
f : Rn → R such that

‖f‖p :=

∫
Rn

|f(x)|p dx

 1
p

< ∞.

For β ∈ (0, 1] denote by Hβ
p (Rn) the set of functions f ∈ Lp (Rn) such that

‖f‖Hβ
p

:= sup
t∈R
t6=0

‖f(·)− f(·+ t)‖p

|t|β
< ∞.

Corollary 2.3. Let 0 < α < β ≤ 1, 1 ≤ p < ∞, Ω(x) be such as in Theorem 1.
For any function f ∈ Hβ

p (Rn) inequality

‖Dα
Ωf‖p ≤

21−α
β

αdn,1(α)(1− α
β
)

∫
Sn−1

Ω (ξ′) dξ′‖f‖
1−α

β
p ‖f‖

α
β

Hβ
p

holds.

3. Some applications

The general statement of the Stechkin’s problem on approximation an un-
bounded operator by bounded ones is as follows [22] (see, also, [11, p. 391]).

Let X, Y be Banach spaces and let A : X → Y be a certain operator (not
necessarily linear) with the domain D(A) ⊂ X. Let L (N) = L (N ; X, Y ) be a
set of linear bounded operators T : X → Y such that the norms ‖T‖ = ‖T‖X→Y

do not exceed number N > 0. Let Q ⊂ D (A) be a certain class of elements. The
quantity

U (T ) = sup {‖Ax− Tx‖Y : x ∈ Q}
is called a deviation of operator T ∈ L (N) from operator A on the class Q, and
the quantity

E (N) = E (N ; A, Q)

:= inf {U (T ) : T ∈ L (N)}
(3.1)

is called the best approximation of operator A by the set of bounded operators
L (N) on the class Q.

The problem is to compute (analyze) the quantity E (N) and to find (study
questions of existence, uniqueness, characterization) the extremal operator, i.e.
the operator which achieves the lower bound in the right part of (3.1).

Let 0 < α < 1, Ω(x) be a non-negative homogeneous of degree 0 with respect
to x function which is integrable on the unit sphere Sn−1 ⊂ Rn, and let ω(t) be
a certain modulus of continuity. We consider the problem of best approximation
of the operator Dα

Ω : C (Rn) → C (Rn) by a set of linear bounded operators



74 V.F. BABENKO, M.S. CHURILOVA

T : C (Rn) → C (Rn) for which ‖T‖ ≤ N , N > 0, on the class WHω (Rn) =
{f ∈ Hω (Rn) : ‖f‖Hω ≤ 1}.

Theorem 3.1. Let Ω(x) be such as in Theorem 1. Let also α ∈ (0; 1) and ω(t)
be such a modulus of continuity that (1.1) holds. Then for the best approximation
E (N) of operator Dα

Ω on the class WHω (Rn) equality

E (N) = U
(
Dα

Ω,hN

)
=

1

dn,1 (α)

∫
Sn−1

Ω (ξ′) dξ′ · Iω,α(hN),

holds, where

hN =

 2

αNdn,1 (α)

∫
Sn−1

Ω (ξ′) dξ′

 1
α

.

Proof. It follows from (2.4) that∥∥Dα
Ω,h

∥∥ = sup
‖f‖C≤1

∥∥Dα
Ω,hf

∥∥
C

≤ 2

αdn,1(α)hα

∫
Sn−1

Ω (ξ′) dξ′.

On the other hand, for the function fh defined in Theorem 1 we have∥∥Dα
Ω,h

∥∥ ≥
∥∥∥∥Dα

Ω,h

fh

‖fh‖C

∥∥∥∥
C

≥ 2

ω(h)

∣∣(Dα
Ω,hfh

)
(0)

∣∣
=

2

ω(h)dn,1(α)

∣∣∣∣∣∣∣
∫

Rn\Bn
h

−ω (h)

|ξ|n+α Ω

(
ξ

|ξ|

)
dξ

∣∣∣∣∣∣∣
=

2

αdn,1(α)hα

∫
Sn−1

Ω (ξ′) dξ′.

Therefore, ∥∥Dα
Ω,h

∥∥ =
2

αdn,1(α)hα

∫
Sn−1

Ω (ξ′) dξ′.

Moreover, using (2.3) we obtain the upper bound for the deviation of the operator
Dα

Ω,h from the operator Dα
Ω on the class WHω (Rn):

U
(
Dα

Ω,h

)
= sup

f∈WHω(Rn)

∥∥Dα
Ωf −Dα

Ω,hf
∥∥

C

≤ 1

dn,1(α)

∫
Sn−1

Ω (ξ′) dξ′Iω,α(h).
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On the other hand, for the function fh defined in Theorem 1 we have (since
‖fh‖Hω ≤ 1):

U
(
Dα

Ω,h

)
≥

∥∥Dα
Ωfh −Dα

Ω,hfh

∥∥
C

≥
∣∣(Dα

Ωfh) (0)−
(
Dα

Ω,hfh

)
(0)

∣∣
=

1

dn,1(α)

∫
Sn−1

Ω (ξ′) dξ′ · Iω,α(h).

Therefore,

U
(
Dα

Ω,h

)
=

1

dn,1(α)

∫
Sn−1

Ω (ξ′) dξ′Iω,α(h).

For given N > 0 we find the corresponding hN under the condition∥∥Dα
Ω,hN

∥∥ = N,

that is equivalent to

hN =

 2

αNdn,1(α)

∫
Sn−1

Ω (ξ′) dξ′

 1
α

.

Then

E (N) ≤ U
(
Dα

Ω,hN

)
.

Now we shall show that

E (N) = U
(
Dα

Ω,hN

)
.

For this we note that additive inequality (2.1) obtained in Theorem 1 for the
functions from the space Hω (Rn) can be rewritten as

‖Dα
Ωf‖C ≤ U

(
Dα

Ω,h

)
‖f‖Hω +

∥∥Dα
Ω,h

∥∥ · ‖f‖C ,

and for an arbitrary h > 0 there exist the function fh ∈ WHω (Rn) (fh is extremal
function in inequality (2.1)) and the linear bounded operator Dα

Ω,h such that

‖Dα
Ωfh‖C = U

(
Dα

Ω,h

)
+

∥∥Dα
Ω,h

∥∥ · ‖fh‖C .

Then for any operator T with ‖T‖ ≤ N we have

U (T ) = sup
f∈WHω(Rn)

‖Dα
Ωf − Tf‖C

≥ sup
f∈WHω(Rn)

(‖Dα
Ωf‖C −N‖f‖C)

≥ ‖Dα
ΩfhN

‖C −N‖fhN
‖C = U

(
Dα

Ω,hN

)
,

therefore,

E (N) = U
(
Dα

Ω,hN

)
,

or

E (N) =
1

dn,1(α)

∫
Sn−1

Ω (ξ′) dξ′Iω,α(hN),
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and the operator Dα
Ω,hN

is the operator of best approximation. The proof is
complete. �

In particular, if ω (t) = tβ, 0 < β ≤ 1, we obtain the following

Corollary 3.2. Let 0 < α < β ≤ 1, Ω(x) be such as in Theorem 1. Then for the
best approximation E (N) of operator Dα

Ω on the class WHβ (Rn) the following
equality holds

E (N) = U
(
Dα

Ω,hN

)
=

(
2

αN

) β
α
−1

· 1

β − α

 1

dn,1 (α)

∫
Sn−1

Ω (ξ′) dξ′


β
α

.
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