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Abstract. Let q be a positive rational number and n be a nonnegative inte-
ger. We prove the Hyers–Ulam–Rassias stability of homomorphisms in quasi-
Banach algebras and of generalized derivations on quasi-Banach algebras for
the following functional equation:

n∑
i=1

f

 n∑
j=1

q(xi − xj)

+ nf

(
n∑

i=1

qxi

)
= nq

n∑
i=1

f(xi).

This is applied to investigate isomorphisms between quasi-Banach algebras. The
concept of Hyers–Ulam–Rassias stability originated from the Th.M. Rassias’
stability theorem that appeared in his paper: On the stability of the linear
mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.

1. Introduction and preliminaries

Ulam [30] gave a talk before the Mathematics Club of the University of Wisconsin
in which he discussed a number of unsolved problems. Among these was the
following question concerning the stability of homomorphisms.

We are given a group G and a metric group G′ with metric ρ(·, ·). Given ε > 0,
does there exist a δ > 0 such that if f : G → G′ satisfies

ρ(f(xy), f(x)f(y)) < δ
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for all x, y ∈ G, then a homomorphism h : G → G′ exists with ρ(f(x), h(x)) < ε
for all x ∈ G?

By now an affirmative answer has been given in several cases, and some inter-
esting variations of the problem have also been investigated. We shall call such
an f : G → G′ an approximate homomorphism.

Hyers [11] considered the case of approximately additive mappings f : E → E ′,
where E and E ′ are Banach spaces and f satisfies Hyers inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ E. It was shown that the limit

L(x) = lim
n→∞

f(2nx)

2n

exists for all x ∈ E and that L : E → E ′ is the unique additive mapping satisfying

‖f(x)− L(x)‖ ≤ ε.

No continuity conditions are required for this result, but if f(tx) is continuous in
the real variable t for each fixed x ∈ E, then L is linear, and if f is continuous
at a single point of E then L : E → E ′ is also continuous.

Th.M. Rassias [24] provided a generalization of Hyers’ Theorem which allows
the Cauchy difference to be unbounded.

Theorem 1.1. (Th.M. Rassias). Let f : E → E ′ be a mapping from a normed
vector space E into a Banach space E ′ subject to the inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p) (1.1)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then the
limit

L(x) = lim
n→∞

f(2nx)

2n

exists for all x ∈ E and L : E → E ′ is the unique additive mapping which satisfies

‖f(x)− L(x)‖ ≤ 2ε

2− 2p
‖x‖p (1.2)

for all x ∈ E. If p < 0 then inequality (1.1) holds for x, y 6= 0 and (1.2) for x 6= 0.
Also, if for each x ∈ E the mapping f(tx) is continuous in t ∈ R for each fixed
x ∈ E, then L is linear.

Th.M. Rassias [25] during the 27th International Symposium on Functional
Equations asked the question whether such a theorem can also be proved for
p ≥ 1. Gajda [9] following the same approach as in Th.M. Rassias [24], gave an
affirmative solution to this question for p > 1. It was shown by Gajda [9], as
well as by Th.M. Rassias and Šemrl [28] that one cannot prove a Th.M. Rassias’
type Theorem when p = 1. The counterexamples of Gajda [9], as well as of
Th.M. Rassias and Šemrl [28] have stimulated several mathematicians to invent
new definitions of approximately additive or approximately linear mappings, cf.
Găvruta [10], Czerwik [7], who among others studied the Hyers–Ulam stability
of functional equations. The inequality (1.1) that was introduced for the first
time by Th.M. Rassias [24] provided a lot of influence in the development of
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a generalization of the Hyers–Ulam stability concept. This concept is known
as Hyers–Ulam–Rassias stability of functional equations (cf. the books of D.H.
Hyers, G. Isac and Th.M. Rassias [12], S. Jung [16], P. Czerwik [8]; the papers of
C. Baak and M.S. Moslehian [4], K. Jun, S. Jung and Y. Lee [13], Y. Lee and K.
Jun [17], C. Park [19], C. Park and J. Hou [22], C. Park and Th.M. Rassias [23],
Th.M. Rassias [26, 27]).

Beginning around the year 1980, the topic of approximate homomorphisms
and their stability theory in the field of functional equations and inequalities was
taken up by several mathematicians (cf. [12] and the references therein).

Recently, Jun and Kim [14] solved the stability problem of Ulam for a quadratic
functional equation. Jun and Kim [15] introduced and investigated the following
quadratic functional equation

n∑
i=1

riQ

(
n∑

j=1

rj(xi − xj)

)
+

(
n∑

i=1

ri

)
Q

(
n∑

i=1

rixi

)

=

(
n∑

i=1

ri

)2 n∑
i=1

riQ(xi).

In this paper we introduce the following functional equation

n∑
i=1

L

(
n∑

j=1

q(xi − xj)

)
+ nL

(
n∑

i=1

qxi

)
= nq

n∑
i=1

L(xi). (1.3)

The purpose of the present paper is to study the Hyers–Ulam–Rassias stability
of the functional equation (1.3).

We recall some basic facts concerning quasi-Banach spaces and some prelimi-
nary results.

Definition 1.2. ([6, 29]) Let X be a real linear space. A quasi-norm is a
real-valued function on X satisfying the following:

(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.
(2) ‖λx‖ = |λ| · ‖x‖ for all λ ∈ R and all x ∈ X.
(3) There is a constant K ≥ 1 such that ‖x + y‖ ≤ K(‖x‖ + ‖y‖) for all

x, y ∈ X.
The pair (X, ‖ · ‖) is called a quasi-normed space if ‖ · ‖ is a quasi-norm on X.

The smallest possible K is called the modulus of concavity of ‖ ·‖. Obviously the
balls with respect to ‖ · ‖ define a linear topology on X. By a quasi-Banach space
we mean a complete quasi-normed space, i.e. a quasi-normed space in which every
‖ · ‖-Cauchy sequence in X converges. This class includes Banach spaces and the
most significant class of quasi-Banach spaces which are not Banach spaces are
the Lp spaces for 0 < p < 1 with the quasi-norm ‖ · ‖p.

A quasi-norm ‖ · ‖ is called a p-norm (0 < p ≤ 1) if

‖x + y‖p ≤ ‖x‖p + ‖y‖p

for all x, y ∈ X. In this case, a quasi-Banach space is called a p-Banach space.



26 C. PARK

Given a p-norm, the formula d(x, y) := ‖x−y‖p gives us a translation invariant
metric on X. By the Aoki–Rolewicz theorem [29] (see also [6]), each quasi-norm
is equivalent to some p-norm. Since it is much easier to work with p-norms than
quasi-norms, henceforth we restrict our attention mainly to p-norms.

Definition 1.3. ([2]) Let (A, ‖ · ‖) be a quasi-normed space. The quasi-normed
space (A, ‖ · ‖) is called a quasi-normed algebra if A is an algebra and there is a
constant K > 0 such that ‖xy‖ ≤ K‖x‖ · ‖y‖ for all x, y ∈ A.

A quasi-Banach algebra is a complete quasi-normed algebra.
If the quasi-norm ‖ · ‖ is a p-norm then the quasi-Banach algebra is called a

p-Banach algebra.

In this paper, assume that A is a quasi-normed algebra with quasi-norm ‖ · ‖A

and that B is a p-Banach algebra with p-norm ‖ · ‖B. Let K be the modulus of
concavity of ‖ · ‖B.

This paper is organized as follows: In Section 2, we prove the Hyers–Ulam–
Rassias stability of homomorphisms in quasi-Banach algebras.

In Section 3, we investigate isomorphisms between quasi-Banach algebras.
In Section 4, we prove the Hyers–Ulam–Rassias stability of generalized deriva-

tions on quasi-Banach algebras.

2. Stability of homomorphisms in quasi-Banach algebras

Let q be a positive rational number. For a given mapping f : A → B, we define
Df : An → B by

Df(x1, · · · , xn) : =
n∑

i=1

f

(
n∑

j=1

q(xi − xj)

)

+ nf

(
n∑

i=1

qxi

)
− nq

n∑
i=1

f(xi)

for all x1, · · · , xn ∈ X.
We prove the Hyers–Ulam–Rassias stability of homomorphisms in quasi-Banach

algebras.

Theorem 2.1. Assume that r > 2 if nq > 1 and that 0 < r < 1 if nq < 1. Let θ
be a positive real number, and let f : A → B be an odd mapping such that

‖Df(x1, · · · , xn)‖B ≤ θ

n∑
j=1

‖xj‖r
A, (2.1)

‖f(xy)− f(x)f(y)‖B ≤ θ(‖x‖r
A + ‖y‖r

A) (2.2)

for all x, y, x1, · · · , xn ∈ A. If f(tx) is continuous in t ∈ R for each fixed x ∈ A,
then there exists a unique homomorphism H : A → B such that

‖f(x)−H(x)‖B ≤ θ

((nq)pr − (nq)p)
1
p

‖x‖r
A (2.3)

for all x ∈ A.
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Proof. Letting x1 = · · · = xn = x in (2.1), we get

‖nf(nqx)− n2qf(x)‖B ≤ nθ‖x‖r
A

for all x ∈ A. So

‖f(x)− nqf(
x

nq
)‖B ≤ θ

(nq)r
‖x‖r

A

for all x ∈ A. Since B is a p-Banach algebra,

‖(nq)lf(
x

(nq)l
) − (nq)mf(

x

(nq)m
)‖p

B

≤
m−1∑
j=l

‖(nq)jf(
x

(nq)j
)− (nq)j+1f(

x

(nq)j+1
)‖p

B (2.4)

≤ θp

(nq)pr

m−1∑
j=l

(nq)pj

(nq)prj
‖x‖pr

A

for all nonnegative integers m and l with m > l and all x ∈ A. It follows from
(2.4) that the sequence {(nq)df( x

(nq)d )} is Cauchy for all x ∈ A. Since B is

complete, the sequence {(nq)df( x
(nq)d )} converges. So one can define the mapping

H : A → B by

H(x) := lim
d→∞

(nq)df(
x

(nq)d
)

for all x ∈ A. Moreover, letting l = 0 and passing the limit m →∞ in (2.4), we
get (2.3).

It follows from (2.1) that

‖DH(x1, · · · , xn)‖B = lim
d→∞

(nq)d‖Df(
x1

(nq)d
, · · · ,

xn

(nq)d
)‖B

≤ lim
d→∞

(nq)dθ

(nq)dr

n∑
j=1

‖xj‖r
A = 0

for all x1, · · · , xn ∈ A. Thus

DH(x1, · · · , xn) = 0

for all x1, · · · , xn ∈ A. By Lemma 2.1 of [21], the mapping H : A → B is Cauchy
additive.

By the same reasoning as in the proof of Theorem of [24], the mapping H :
A → B is R-linear.

It follows from (2.2) that

‖H(xy) − H(x)H(y)‖B

= lim
d→∞

(nq)2d‖f(
xy

(nq)d(nq)d
)− f(

x

(nq)d
)f(

y

(nq)d
)‖B

≤ lim
d→∞

(nq)2dθ

(nq)dr
(‖x‖r

A + ‖y‖r
A) = 0

for all x, y ∈ A. So
H(xy) = H(x)H(y)



28 C. PARK

for all x, y ∈ A.
Now, let T : A → B be another mapping satisfying (2.3). Then we have

‖H(x)− T (x)‖B = (nq)d‖H(
x

(nq)d
)− T (

x

(nq)d
)‖B

≤ (nq)dK(‖H(
x

(nq)d
)− f(

x

(nq)d
)‖B + ‖T (

x

(nq)d
)− f(

x

(nq)d
)‖B)

≤ 2 · (nq)dKθ

((nq)pr − (nq)p)
1
p (nq)dr

‖x‖r
A,

which tends to zero as n →∞ for all x ∈ A. So we can conclude that H(x) = T (x)
for all x ∈ A. This proves the uniqueness of H. Thus the mapping H : A → B
is a unique homomorphism satisfying (2.3). �

Theorem 2.2. Assume that 0 < r < 1 if nq > 1 and that r > 2 if nq < 1. Let θ
be a positive real number, and let f : A → B be an odd mapping satisfying (2.1)
and (2.2). If f(tx) is continuous in t ∈ R for each fixed x ∈ A, then there exists
a unique homomorphism H : A → B such that

‖f(x)−H(x)‖B ≤ θ

((nq)p − (nq)pr)
1
p

‖x‖r
A (2.5)

for all x ∈ A.

Proof. It follows from (2.1) that

‖f(x)− 1

nq
f(nqx)‖B ≤ θ

nq
‖x‖r

A

for all x ∈ A. Since B is a p-Banach algebra,

‖ 1

(nq)l
f((nq)lx) − 1

(nq)m
f((nq)mx)‖p

B

≤
m−1∑
j=l

‖ 1

(nq)j
f((nq)jx)− 1

(nq)j+1
f((nq)j+1x)‖p

B (2.6)

≤ θp

(nq)p

m−1∑
j=l

(nq)prj

(nq)pj
‖x‖pr

A

for all nonnegative integers m and l with m > l and all x ∈ A. It follows
from (2.6) that the sequence { 1

(nq)d f((nq)dx)} is Cauchy for all x ∈ A. Since

B is complete, the sequence { 1
(nq)d f((nq)dx)} converges. So one can define the

mapping H : A → B by

H(x) := lim
d→∞

1

(nq)d
f((nq)dx)

for all x ∈ A. Moreover, letting l = 0 and passing the limit m →∞ in (2.6), we
get (2.5).

The rest of the proof is similar to the proof of Theorem 2.1. �



STABILITY OF HOMOMORPHISMS IN QUASI-BANACH ALGEBRAS 29

3. Isomorphisms between quasi-Banach algebras

Throughout this section, assume that A is a quasi-Banach algebra with quasi-
norm ‖ · ‖A and unit e and that B is a p-Banach algebra with p-norm ‖ · ‖B and
unit e′. Let K be the modulus of concavity of ‖ · ‖B.

We investigate isomorphisms between quasi-Banach algebras.

Theorem 3.1. Assume that r > 2 if nq > 1 and that 0 < r < 1 if nq < 1.
Let θ be a positive real number, and let f : A → B be an odd bijective mapping
satisfying (2.1) such that

f(xy) = f(x)f(y) (3.1)

for all x, y ∈ A. If limd→∞(nq)df( e
(nq)d ) = e′ and f(tx) is continuous in t ∈ R for

each fixed x ∈ A, then the mapping f : A → B is an isomorphism.

Proof. The condition (3.1) implies that f : A → B satisfies (2.2). By the same
reasoning as in the proof of Theorem 2.1, there exists a unique homomorphism
H : A → B, which is defined by

H(x) := lim
d→∞

(nq)df(
x

(nq)d
)

for all x ∈ A. Thus

H(x) = H(ex) = lim
d→∞

(nq)df(
ex

(nq)d
) = lim

d→∞
(nq)df(

e

(nq)d
· x)

= lim
d→∞

(nq)df(
e

(nq)d
)f(x) = e′f(x) = f(x)

for all x ∈ A. So the bijective mapping f : A → B is an isomorphism, as
desired. �

Theorem 3.2. Assume that 0 < r < 1 if nq > 1 and that r > 2 if nq < 1.
Let θ be a positive real number, and let f : A → B be an odd bijective mapping
satisfying (2.1) and (3.1). If f(tx) is continuous in t ∈ R for each fixed x ∈ A
and limd→∞

1
(nq)d f((nq)de) = e′, then the mapping f : A → B is an isomorphism.

Proof. The proof is similar to the proofs of Theorems 2.1, 2.2 and 3.1. �

4. Stability of generalized derivations on quasi-Banach algebras

Recently, several extended notions of derivations have been treated in the Ba-
nach algebra theory (see [18] and references therein). In addition, the stability of
these derivations is extensively studied by many mathematicians; see [1, 5, 20].

Throughout this section, assume that A is a p-Banach algebra with p-norm
‖ · ‖A. Let K be the modulus of concavity of ‖ · ‖A.

Definition 4.1. [3] A generalized derivation δ : A → A is R-linear and fulfills
the generalized Leibniz rule

δ(xyz) = δ(xy)z − xδ(y)z + xδ(yz)

for all x, y, z ∈ A.
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We prove the Hyers–Ulam–Rassias stability of generalized derivations on quasi-
Banach algebras.

Theorem 4.2. Assume that r > 3 if nq > 1 and that 0 < r < 1 if nq < 1. Let θ
be a positive real number, and let f : A → A be an odd mapping satisfying (2.1)
such that

‖f(xyz)− f(xy)z + xf(y)z − xf(yz)‖A

≤ θ(‖x‖r
A + ‖y‖r

A + ‖z‖r
A) (4.1)

for all x, y, z ∈ A. If f(tx) is continuous in t ∈ R for each fixed x ∈ A, then
there exists a unique generalized derivation δ : A → A such that

‖f(x)− δ(x)‖A ≤
θ

((nq)pr − (nq)p)
1
p

‖x‖r
A (4.2)

for all x ∈ A.

Proof. By the same reasoning as in the proof of Theorem 2.1, there exists a unique
R-linear mapping δ : A → A satisfying (4.2). The mapping δ : A → A is defined
by

δ(x) := lim
d→∞

(nq)df(
x

(nq)d
)

for all x ∈ A.
It follows from (4.1) that

‖δ(xyz)− δ(xy)z + xδ(y)z − xδ(yz)‖A

= lim
d→∞

(nq)3d‖f(
xyz

(nq)3d
)− f(

xy

(nq)2d
)

z

(nq)d

+
x

(nq)d
f(

y

(nq)d
)

y

(nq)d
− x

(nq)d
f(

yz

(nq)2d
)‖A

≤ lim
d→∞

(nq)3dθ

(nq)dr
(‖x‖r

A + ‖y‖r
A + ‖z‖r

A) = 0

for all x, y, z ∈ A. So

δ(xyz) = δ(xy)z − xδ(y)z + xδ(yz)

for all x, y, z ∈ A. Thus the mapping δ : A → A is a unique generalized derivation
satisfying (4.2). �

Theorem 4.3. Assume that 0 < r < 1 if nq > 1 and that r > 3 if nq < 1. Let θ
be a positive real number, and let f : A → A be an odd mapping satisfying (2.1)
and (4.1). If f(tx) is continuous in t ∈ R for each fixed x ∈ A, then there exists
a unique generalized derivation δ : A → A such that

‖f(x)− δ(x)‖A ≤
θ

((nq)p − (nq)pr)
1
p

‖x‖r
A (4.3)

for all x ∈ A.
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Proof. By the same reasoning as in the proof of Theorem 2.2, there exists a unique
R-linear mapping δ : A → A satisfying (4.3). The mapping δ : A → A is defined
by

δ(x) := lim
d→∞

1

(nq)d
f((nq)dx)

for all x ∈ A.
The rest of the proof is similar to the proof of Theorem 4.2. �
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