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Abstract. Let X and Y be normed linear spaces. A mapping T : X → Y
is called preserving the distance r if for all x, y of X with ‖x − y‖X = r
then ‖T (x) − T (y)‖ = r. In this paper, we provide an overall account of the
development of the Aleksandrov problem, the Aleksandrov–Rassias problem
for mappings which preserve distances and details for the Hyers–Ulam–Rassias
stability problem.

1. The Aleksandrov–Rassias problem

The theory of isometry had its beginning in the important paper by Mazur
and Ulam (cf. [22]) in 1932. Let X, Y be two metric spaces, d1, d2 the distances
on X, Y . A mapping f : X → Y is defined to be an isometry if d2(f(x), f(y)) =
d1(x, y) for all elements x, y of X. Mazur and Ulam [22] proved that every
isometry of a normed real linear space onto a normed real linear space is a linear
mapping up to translation.

When the target space Y is a strictly convex real normed space, for into map-
pings, Baker [2] proved that every isometry of a normed real linear space into a
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strictly convex normed real linear space is also a linear isometry up to transla-
tion. However, for into mappings, if Y is not a strictly convex normed space, an
isometry f : X → Y may not be an affine. For example, f : R → (R2, ‖ · ‖∞)
defined by f(x) = (x, sin x) is an isometry under the normwise ‖ · ‖∞, but f is
not an affine.

A mapping T : X → Y is called preserving the distance r if for all x, y of X
with d1(x, y) = r then d2(T (x), T (y)) = r. Aleksandrov (cf. [1]) has posed the
following problem:

Aleksandrov Problem. Whether the existence of a single conservative dis-
tance for some mapping T implies that T is an isometry .

Let X, Y be two normed linear spaces. Consider the following conditions for
T : X → Y introduced for the first time by Rassias and Šemrl [38]: distance
one preserving property (DOPP) and strongly distance one preserving property
(SDOPP).

(DOPP) Let x, y ∈ X with ‖x− y‖X = 1. Then ‖T (x)− T (y)‖Y = 1.
(SDOPP) Let x, y ∈ X. Then ‖T (x)−T (y)‖Y = 1 if and only if ‖x−y‖X = 1.
Rassias Problem. Let X and Y be normed linear spaces, and T : X → Y be

a continuous and/or surjective mapping satisfying (DOPP). Is T necessary to be
an isometry?

Mappings satisfying the weaker assumption that they preserve unit distance
in both directions are not very far from being isometries. Rassias and Šemrl [38]
proved that

Theorem 1.1. Let X and Y be real normed linear spaces such that one of them
has dimension greater than one. Suppose that f : X → Y is a surjective mapping
satisfying (SDOPP). Then f is an injective mapping satisfying

| ‖f(x)− f(y)‖ − ‖x− y‖ | < 1 , (x, y ∈ X).

Moreover, f preserves distance n in both directions for any positive integer n.

In Theorem 1.1, the assumption that one of the spaces has dimension greater
than one cannot be omitted. For example ([38]), let f : R → R be defined by

f(x) =

{
x + 2 if x is an integer
x if x is not an integer.

The mapping f is bijective and preserves distance n in both directions for any
positive integer n, but does not satisfy the inequality in Theorem 1.1. The con-
dition (SDOPP) cannot be replaced by (DOPP). Let g : [0, 1] → [0, 1) × R be a
bijective mapping and define f : R → R2 by f(t) = g(t− [t]) + ([t], 0), where [t]
denotes the integer part of t. f is a bijective mapping preserving distance n for
all positive integers n. However, the inequality in Theorem 1.1 is not fulfilled.
Furthermore, the inequality in Theorem 1.1 is sharp (cf. [38]).

A number of authors have discussed Aleksandrov problem under certain addi-
tional conditions for a given mapping satisfying DOPP in order to be an isometry
and have posed several interesting and new open problems (cf. [3, 4, 5, 26, 29, 31,
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32, 33, 35, 37]). Even if X, Y are normed linear spaces the above problem is not
easy to answer. For example, the following question posed by Rassias (cf. [30])
has not been solved yet: Is a mapping T from R2 to R3 preserving unit distance
(simply DOPP) necessarily an isometry?

Aleksandrov problem has been solved for Euclidean spaces X = Y = Rn. If
n = 1, Beckman and Quarles [3] pointed out that such a mapping T does not
need to be an isometry. For example ([3]), let T : R → R be defined by

T (x) =

{
x + 1, if x is an integer,
x, otherwise.

T satisfies (DOPP) but T is not an isometry. Rassias [31] gave a counterex-
ample even if T : R → R is continuous, onto and satisfies (SDOPP): Let
T (x) = [x] + (x − [x])2, (x ∈ R), where [x] denotes the integer part of x.
It is easy to verify that T is continuous, injective and satisfies (SDOPP). Since
R is a connected set and T is continuous, by the definition of T , T is surjective.
But T is not an isometry.

If 2 ≤ n < ∞, T must be an isometry due to the theorem of Beckman and
Quarles [3], Bishop [5] and in a special case Zvengrovski [24, Appendix to Chapter
II] independently:

Theorem 1.2. Let T be a transformation (possibly many-valued) of Rn(2 ≤ n <
∞) into itself. Let d(p, q) be the distance between points p and q of Rn, and let
T (p), T (q) be any images of p and q, respectively. If there is a length a > 0 such
that d(T (p), T (q)) = a whenever d(p, q) = a, then T is a Euclidean transformation
of Rn onto itself. That is, T is a linear isometry up to translation.

For the Hilbert space `2, an example of a unit distance preserving mapping that
is not an isometry has been given by Beckman and Quarles [3]: There is in `2 a de-
numerable and everywhere dense set of points which will be denoted by {yk}∞k=1.

Define a mapping g : `2 → {yk}∞k=1 such that the distance d(x, g(x)) < 1
2. Define

h : {yk}∞k=1 → X by h(yk) = ak, where ak = (ak
1, a

k
2, · · · ) and ak

j = δjk/
√

2 (δjk is

the Kronecker delta). Now let T : `2 → `2 be the mapping T = h ◦ g. It may be
readily seen that T is a transformation of `2 into itself which preserves the unit
distance. For, if d(x1, x2) = 1, then g(x1) 6= g(x2), T (x1) 6= T (x2), and therefore
d(T (x1), T (x2)) = 1. However T is not an isometry, for if x1 and x2 are any two
points in `2, then d(T (x1), T (x2)) is either 0 or 1. Obviously, from the above
definition of T , T need not to be one-to-one.

In case n 6= m, up to now, the Aleksandrov problem is only partially solved.
In particular, in the most natural case (n = 2, m = 3) the answer is not yet
known. In [27] Rassias gave some interesting counterexamples for T : R2 → R8

and T ′ : R2 → R6 that T and T ′ satisfy (DOPP) but T and T ′ are not isometries.

Example 1.3. ([27]) Let us take a unit 8-simplex P in R8. This simplex has 9
vertices. It is enough to find a mapping f : R2 → P which preserves unit distance.
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Partition the plane into squares with unit diagonals as shown in Fig. 1.1. Each
square contains the bottom left corner and two edges containing this corner. Now
number the squares using the numbers from 1 to 9 in the way shown in Fig. 1.1.
It is easy to see that if two points lie in squares of equal numbers, then these
points have distance from 1. Now, number the vertices of the simplex P and map
all the points of the plane to the vertices denoted by a suitable number.

3 1 2 3 1
6 4 5 6 4
9 7 8 9 7
3 1 2 3 1

Fig. 1.1

If we use hexagons instead of squares we may construct such a mapping from
R2 into R6. Generally, Rassias [27] proved the following result:

Theorem 1.4. For any integer n ≥ 1, there exists an integer m such that there is
a map T : Rn → Rm which satisfies the condition (DOPP) but is not an isometry.

A geometric interpretation is that for f : Rn → Rm and for arbitrary three
points p1, p2, p3 in Rn forming an equilateral triangle with unit length, if f(p1),
f(p2) and f(p3) also form an equilateral triangle with unit length and 1 < m =
n < ∞,

-
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Fig. 1.2

then f must be a linear isometry up to translation. In the case that m = n = 1
or m = n = ∞ or m 6= n, for arbitrary three points p1, p2, p3 in Rn, if f(p1),
f(p2) and f(p3) form an equilateral triangle with unit length whenever p1, p2 and
p3 forming an equilateral triangle with unit length, f may be not an isometry.

Clearly, the mappings defined in the above counterexamples were not contin-
uous or surjective. What happens if we impose conditions on T of continuity
and/or surjectivity?

One answer was provided by Mielnik and Rassias [23] as follows

Theorem 1.5. With the real classical Hilbert space denoted by H(H = Rn, 3 ≤
n ≤ ∞), let T be a homeomorphism of H onto H which preserves the distance
r > 0. Then T is an isometry.

Generally, for real normed linear spaces, Rassias and Šemrl [38] proved the
following result based on Theorem 1.1:
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Theorem 1.6. Let X and Y be real normed linear spaces such that one of them
has dimension greater than one. Suppose that T : X → Y is a Lipschitz mapping
with k = 1:

‖T (x)− T (y)‖ ≤ ‖x− y‖ (x, y ∈ X).

Assume also that T is a surjective mapping satisfying (SDOPP). Then T is a
linear isometry up to translation.

Without the condition “T : X → Y is a Lipschitz mapping with k = 1”, T need
not be an isometry. For example, let T : (R2, ‖ · ‖∞) → (R2, ‖ · ‖∞) be a mapping
defined by T (x1, x2) = ([x1]+ (x1− [x1])

2, x2). It is easy to verify that T is a con-
tinuous surjective mapping satisfying (SDOPP) since limx→±∞{[x]+(x− [x])2} =
±∞ and [x] + (x− [x])2 is continuous about x, but T is not an isometry.

According to Theorem 1.6, they [38] got the following corollaries:

Corollary 1.7. Let X and Y be real normed linear spaces such that one of them
has dimension greater than one. Assume also that one of them is strictly convex.
Suppose that T : X → Y is a surjective mapping satisfying (SDOPP). Then T is
a linear isometry up to translation.

Corollary 1.8. Let X and Y be real normed linear spaces, dim X > 1, such that
one of them is strictly convex. Suppose that T : X → Y is a homeomorphism
satisfying (DOPP). Then T is a linear isometry up to translation.

For special case X = R, [39] derives

Corollary 1.9. Suppose that T : R → R is a Lipschitz mapping with k = 1:

‖T (x)− T (y)‖ ≤ ‖x− y‖ (x, y ∈ R).

Assume that T is a mapping satisfying (DOPP). Then T is a linear isometry up
to translation.

Since any real normed linear space with dimension one is linearly isometric to
R, according to Theorem 1.6 and Corollary 1.9, we obtained the following result
without the condition dim X ≥ 2 in Theorem 1.6:

Corollary 1.10. Let X and Y be real normed linear spaces. Suppose that T :
X → Y is a Lipschitz mapping with k = 1:

‖T (x)− T (y)‖ ≤ ‖x− y‖ (x, y ∈ X).

Assume also that T is a surjective mapping satisfying (SDOPP). Then T is a
linear isometry up to translation.

The Rassias problem is still open for the special case that T : `2 → `2 is a
continuous mapping satisfying (DOPP).

The Aleksandrov problem was intensively considered by Ciesielski and Rassias
in [8] for non-standard metrics. In Rn three classical metrics induce the same
topology: dΣ(x, y) =

∑n
i=1 |xi − yi|, dm = max{|xi − yi| : i = 1, 2, · · · , n} and the

Euclidean metric dE, where x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn).
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Ciesielski and Rassias [8] gave some interesting examples about the Aleksan-
drov problem. For (Rn, dm), n > 1, a mapping satisfying (DOPP) need not be an
isometry. For this it is enough to consider the mapping f : Rn → Rn defined by

f(x1, x2, · · · , xn) = ([x1], [x2], · · · , [xn]),

where [x] denotes the integer part of x.
For (R2, dΣ), a mapping satisfying (DOPP) need not be an isometry either.

For this it is enough to consider the mapping g : (R2, dΣ) → (R2, dΣ) defined by
g = ( 1√

2
· Rπ/4) ◦ f ◦ ( 1√

2
· R−1

π/4), where f(x1, x2) = ([x1], [x2]) and Rπ/4 is the

rotation:

(x, y) →
(
(x + y)/

√
2, (y − x)/

√
2
)

.

The mapping g satisfies (DOPP) but is not an isometry. Furthermore, in [8] they
proved the following result.

Theorem 1.11. There is no mapping f : (R2, dm) → (R2, dE) satisfying the
condition (DOPP).

What happens if we require, instead of one conservative distance for a mapping
between normed linear spaces, two conservative distances? An answer in a gen-
eralized form to this question was given by Benz and Berens [4] who proved the
following theorem and pointed out that the condition that Y is strictly convex
can not be relaxed.

Theorem 1.12. Let X and Y be real normed linear spaces. Assume that dim X ≥
2 and Y is strictly convex. Suppose T : X → Y satisfies that: T preserves the
two distances ρ and λρ for some integer λ ≥ 2. That is, for all x, y ∈ X with
‖x − y‖ = ρ, ‖T (x) − T (y)‖ ≤ ρ; and for all x, y ∈ X with ‖x − y‖ = λρ,
‖T (x)− T (y)‖ ≥ λρ. Then T is a linear isometry up to translation.

The Aleksandrov–Rassias problem. If T preserves two distances with a
noninteger ratio, and X and Y are real normed linear spaces such that Y is
strictly convex and dim X ≥ 2, whether or not T must be an isometry (cf. [30]).

The Aleksandrov–Rassias problem was extensively studied in Hilbert spaces
[45, 46].

Theorem 1.13. Let X, Y be Hilbert spaces and the dimension of X be greater
than or equal to 2. Suppose that f : X → Y satisfies (DOPP) and the dimension
of X is infinite. If one of the distances

m

√
n2(2 · 4k − 4k − 1

3
)4l − 4l − 1

3

is preserved by f , m,n = 1, 2, . . . and k, l = 0, 1, 2, . . .. Then f must be a linear
isometry up to translation.



ALEKSANDROV–RASSIAS AND HYERS–ULAM–RASSIAS PROBLEMS 17

2. The Hyers–Ulam–Rassias stability problem

Problems connected with stability of isometries as well as perturbations of
isometries have been extensively studied by [6, 7, 9, 14, 15, 16, 17, 18, 19, 28, 29,
34, 36].

Let E and F be real Banach spaces. For a fixed ε > 0, a mapping T : E → Y
is called an ε− isometry if

| ‖T (x)− T (y)‖ − ‖x− y‖ | ≤ ε, (x, y ∈ E).

The stability problem for isometries following Hyers and Ulam [15] is:
Does there exist a constant M > 0 depending only on X and Y with the fol-

lowing property: For each ε > 0 and each surjective ε-isometry f there is an
isometry U : X → Y such that ‖T (x)− U(x)‖ ≤ Mε for each x ∈ E?

Hyers and Ulam [15] showed that the answer is affirmative in the case that
E = F is a Hilbert space. A possible value for M is 10. Bourgin [6] gave a
positive answer whenever E and F belong to a class of uniformly convex Banach
spaces including the Lp(X, Σ, µ) spaces 1 < p < ∞.

In particular, Gruber [13] showed that if the problem of Hyers and Ulam has a
positive solution for a pair E, F of Banach spaces, then one can assume M ≤ 5.

In 1983, Gevirtz [12] based on a body of previous partial results extending over
38 years, proved that

Theorem 2.1. There exist constants A and B such that if T : E → F is a
surjective ε-isometry, then

‖T ((x1 + x0)/2)− (T (x0) + T (x1))/2‖ ≤
A(ε‖x0 − x1‖)1/2 + Bε, (x0, x1 ∈ E).

Omladic and Šemrl gave a sharp result answering the above question positively
for M = 2.

Bourgin [7] and Tabor [42] considered the Hyers–Ulam problem for the special
injective mapping called δ− onto mapping. Let S be a subset of E, and let δ ≥ 0
be arbitrary. A function f : S → F is called δ − onto (cf. [42]) if

∀x ∈ F,∃s ∈ S, ‖x− f(s)‖ ≤ δ.

Theorem 2.2. Let E and F be Banach spaces, and let f : E → F be an ε-
isometry which is δ-onto and such that f(0) = 0. Then there exists a unique
linear isometry U : E → F such that ‖f(x)− U(x)‖ ≤ 2ε + 35δ (x ∈ E).

For into mappings the Hyers–Ulam problem was seriously studied by Ding [9],
Gruber [13], Wang [44], Xiang and Tan [47], Zhan [49], etc.

Theorem 2.3. ([13]) Let E be a real normed space and let φ : [0,∞) → [0,∞)
be a real function such that φ(ξ) = o(ξ) as ξ → +∞. Then there exists a real
normed space F with the following property: For every ε ∈ R+ there exists an
ε-isometry T : E → F such that there exists no isometry I : E → F for which
‖T (x)− I(x)‖ = o(φ(‖x‖)) as ‖x‖ → ∞ uniformly.
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Theorem 2.4. ([48]) Suppose that X is an infinite dimensional uniformly smooth
Banach space, (Ω, Σ, µ) is a σ-finite measure space, and T : X → L∞(Ω, Σ, µ) is
a linear bounded operator satisfying (1−ε)‖x‖ ≤ ‖Tx‖ ≤ ‖x‖ (x ∈ X) for some

positive number ε < 1
2 with δX∗(2 − 2ε) > 13

14 , then T is close to an isometry

U : X → L∞(Ω, Σ, µ) such that

‖T − U‖ ≤ 16(1− δX∗(2− 2ε)) +
1

2
ε.

For the Hyers–Ulam stability problem there is much development such as the
Hyers–Ulam–Rassias stability for additive mappings (cf. [17, 25]). For the stabil-
ity of the Cauchy equation f(x + y) = f(x) + f(y), Ulam [43] in 1940 raised the
following question: Under what conditions does there exist an additive mapping
near an approximately additive mapping?

Hyers [14] in 1941 proved that if f : X → Y is a mapping satisfying

‖f(x + y)− f(x)− f(y)‖ ≤ ε, (x, y ∈ E),

then there exists a unique additive mapping U : X → Y such that

‖f(x)− U(x)‖ ≤ ε, (x ∈ E).

In 1978, Rassias [25] generalized the theorem of Hyers significantly by con-
sidering the Cauchy difference to become unbounded and proved the following
theorem:

Given 0 ≤ p < 1 and ε ≥ 0, if a function f : X → Y satisfies the inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p), (x, y ∈ E),

then there exists a unique additive mapping T : X → Y such that

‖f(x)− T (x)‖ ≤ 2ε

2− 2p‖x‖
p, (x ∈ E).

Moreover, if f(tx) is continuous in t ∈ R for each fixed x ∈ X, then the function
T is linear.

This result was later extended to all p 6= 1 and generalized by Czerwil, Gajda,
Gavruta, Isac and Rassias, Jung, Šemrl, Lee and Jun, among others.

In the spirit of Hyers, Ulam and Rassias, Jung and Kim [21], and Dolinar [10]
independently introduced an (ε, p) − isometry. A mapping T : E → F is called
(ε, p)− isometry if

|‖T (x)− T (y)‖ − ‖x− y‖| ≤ ε‖x− y‖p, (x, y ∈ E).

Dolinar in [10] got the following results.

Theorem 2.5. Let E and F be real Banach spaces and let 0 ≤ p < 1. There
exists a constant N(p), independent of E and F , such that for every surjective
(ε, p)-isometry T : E → F with T (0) = 0 there exists a surjective isometry
U : E → F satisfying

‖T (x)− U(x)‖ ≤ εN(p)‖x‖p, (x ∈ E).
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Theorem 2.6. Let E be a real Banach space and let F be a real Hilbert space.
Suppose that ε ≥ 0 and 0 < p < 1. Then there exists a constant K(ε, p), inde-
pendent of E and F such that limε→0 K(ε, p) = 0 and for every surjective (ε, p)-
isometry T : E → F with T (0) = 0 there exists a surjective isometry U : E → F
satisfying

‖T (x)− U(x)‖ ≤ K(ε, p) max{‖x‖p, ‖x‖(1+p)/2} (x ∈ E).

When the target space F is the Lr(0, 1), Dolinar [10] obtained a similar result.

Theorem 2.7. If E = F = Lr(0, 1), where 1 < r < ∞, ε ≥ 0 and 0 < p < 1
then there exists a constant K(ε, p, r) such that limε→0 K(ε, p, r) = 0 and for
every surjective (ε, p)-isometry T : E → F with T (0) = 0 there exists a surjective
isometry U : E → F satisfying

‖T (x)− U(x)‖ ≤ K(ε, p, r) max{‖x‖p, ‖x‖1−(1−p)/s} (x ∈ E)

where s = max{r, r
1−r

}.

It is somewhat surprising that if p > 1 then for finite-dimensional Banach
spaces a superstability phenomenon occurs (cf. [10]). For p = 1, even very nice
spaces are not stable. A counterexample was given by Dolinar for the mapping
T : R2 → R2 being (ε, 1)-isometry.

Generally, in [40, 46] we considered the Hyers–Ulam stability problem in the
following case for into mapping f : S → F satisfying

| ‖f(x)− f(y)‖ − ‖x− y‖ | ≤ εφ(x, y) (x, y ∈ S)

when the target space F is a Hilbert space or when F = Lq(Ω, Σ, µ)(1 < q <
∞), or generally in a class of uniformly convex Banach spaces, where φ : X ×
X → [0, +∞) and S is a subset of E or S = E. Especially, we investigated
the approximate isometry for the cases that φ(x, y) = ‖x‖p + ‖y‖p and φ(x, y) =
‖x− y‖p for p 6= 1. The pair (E, F ) is stable too.

On the other hand, Swain [41] considered the stability of isometries on bounded
metric spaces and proved the following result: Let S be a subset of a compact
metric space (X, d) and let δ > 0 be given. Then there exists an ε > 0 such
that if f : S → X is an ε-isometry, then exists an isometry U : S → X with
d(f(x), U(x)) ≤ δ for any x ∈ S.

The stability problem of isometries on bounded subsets of Rn was studied by
Fickett [11]: For t ≥ 0, let us define K0(t) = K1(t) = t, K2(t) = 3

√
3t, Ki(t) =

27tm(i), where m(i) = 21−i for i ≥ 3. Let S be a bounded subset of Rn with
diameter d(S), and suppose that Kn(δ/d(S)) ≤ 1 for some δ ≥ 0. If a function
f : S → Rn is an ε-isometry, then exists an isometry U : S → Rn such that
‖f(x)− U(x)‖ ≤ d(S)Kn+1(δ/d(S)) for each x ∈ S.

Along with Swain and Fickett, Jung [20] studied the stability of isometries
on restricted domains in Hilbert spaces and proved the result: Suppose that
f : S → E satisfies the following

| ‖f(x)− f(y)‖ − ‖x− y‖ | ≤ δ + ε‖x− y‖p (x, y ∈ S)
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where E is a Hilbert space and S is a subset of E. Then
(i) for 0 < p < 1, d being a positive constant satisfying 2d− 2εdp − δ ≥ 0 and

S = E−{x ∈ E : 0 < ‖x‖ ≤ d}, there exists a unique linear isometry U : E → E
such that

‖f(x)− U(x)− f(0)‖ ≤ 2δ +

√
6δ + 8ε√
2− 2p

‖x‖(1+p)/2 (x ∈ S);

(ii) for p > 1, δ = 0 and d being a positive constant, there exists a unique
linear isometry U : E → E such that for S = {x ∈ E : 0 < ‖x‖ ≤ d}

‖f(x)− U(x)− f(0)‖ ≤ 2(1+p)/2

2(1+p)/2 − 1

√
ε‖x‖(1+p)/2, (x ∈ S).
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