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Abstract. The main object of this paper is to present several bounding in-
equalities for the classical Jacobi function of the first kind. A number of closely-
related inequalities for such other special functions as the classical Laguerre
function are also considered.

1. Introduction

In the usual notation, the classical Jacobi function P
(α,β)
ν (z) (ν ∈ C) of the

first kind is defined by (see, for example, [8, p. 433])

P (α,β)
ν (z) :=

∞∑
k=0

(
ν + α

ν − k

)(
ν + β

k

)(
z − 1

2

)k (
z + 1

2

)ν−k

=

(
ν + α

ν

)
2F1

(
−ν, α + β + ν + 1; α + 1;

1− z

2

)
(ν ∈ C)

(1.1)
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in terms of the Gauss hypergeometric function 2F1. Here, and in what follows,
we make use of a generalized binomial coefficient given by(

κ

µ

)
:=

Γ(κ + 1)

Γ(κ− µ + 1)Γ(µ + 1)
=:

(
κ

κ− µ

)
(κ, µ ∈ C).

Together with the classical Jacobi function Q
(α,β)
ν (z) (ν ∈ C) of the second

kind, which possesses a hypergeometric representation given by (cf. [8, p. 449];
see also [13, p. 453, Problem 26])

Q(α,β)
ν (z) = 2α+β+ν B(α + ν + 1, β + ν + 1) (z − 1)−α−ν−1 (z + 1)−β

· 2F1

(
ν + 1, α + ν + 1; α + β + 2ν + 2;

2

1− z

)
(ν ∈ C),

these classical Jacobi functions P
(α,β)
ν (z) (ν ∈ C) and Q

(α,β)
ν (z) (ν ∈ C) are

known to satisfy the following differential equation:

(1− z2)
d2w

dz2
+ [β − α− (α + β + 2)z]

dw

dz
+ (α + β + ν + 1)νw = 0(

w ≡ P (α,β)
ν (z)

)
,

B(α, β) being the familiar Beta function defined by

B(α, β) :=

∫ 1

0

tα−1 (1− t)β−1 dt =
Γ(α)Γ(β)

Γ(α + β)
(1.2)(

min{R(α), R(β)} > 0
)
.

Now, for the Riemann–Liouville fractional derivative operator Dµ
z of (real or

complex) order µ defined by (cf. [1, Vol. II, p. 181 et seq.]; see also [3])

Dµ
z {f (z)}

:=


1

Γ (−µ)

∫ z

0

(z − t)−µ−1 f (t) dt
(
R (µ) < 0

)
dm

dzm

{
Dµ−m

z {f (z)}
} (

m− 1 5 R (µ) < m (m ∈ N)
)
,

it is known that

Dµ
z

{
zλ
}

=
Γ (λ + 1)

Γ (λ− µ + 1)
zλ−µ

(
R (λ) > −1

)
(1.3)

and that

Dµ
z {f(z) · g(z)} =

∞∑
j=0

(
µ

j

)
Dµ−j

z {f(z)} ·Dj
z{g(z)} (µ ∈ C), (1.4)

which, in the special case when

µ = m (m ∈ N0 := N ∪ {0}; N := {1, 2, 3, · · · }),
yields the familiar Leibniz rule of calculus, Dj

z being the ordinary derivative
operator of order j ∈ N0 with respect to z.
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By correctly applying these last properties (1.3) and (1.4), it is fairly straight-

forward to observe that the first-kind Jacobi function P
(α,β)
ν (z) (ν ∈ C) would

satisfy the following Rodrigues formula:

P (α,β)
ν (z)

(−2)−ν

Γ(ν + 1)
(1− z)−α (1 + z)−β

· Dν
z

{
(1− z)α+ν (1 + z)β+ν

}
(ν ∈ C),

(1.5)

only in the case of the classical Jacobi polynomials P
(α,β)
n (z) (n ∈ N0), that is,

only when

ν = n (n ∈ N0).

The obviously erroneous formula (1.5) (with ν ∈ C) was interpreted as the def-
inition of the so-called fractional Jacobi function in a recent seemingly invalid
rederivation of some of the familiar properties of the well-known (rather classi-

cal) Jacobi function P
(α,β)
ν (z) (ν ∈ C) by Gogovcheva and Boyadjiev (cf. [2, p.

433, Definition 2]; see also another similar work by Mirevski et al. [9]).
In our present investigation, we aim at deriving several bounding inequalities

for the Jacobi function |P (α,β)
ν (z)| (ν ∈ C), which is defined by (1) above. Our

method is based largely upon some results derived in a recent work by Pogány
and Srivastava [11].

2. A set of lemmas and other preliminaries

For the classical Laguerre function L
(µ)
ν (z) (ν ∈ C) defined, in terms of the

confluent hypergeometric function 1F1, by

L(µ)
ν (z) :=

∞∑
k=0

(
µ + ν

ν − k

)
(−z)k

k!

=

(
µ + ν

ν

)
1F1

(
− ν; µ + 1; z

)
(ν ∈ C),

(2.1)

a bounding inequality (asserted by Lemma 2.1 below) was proven by Eric Russell
Love (1912–2001) [6] by making use of the following well-known integral repre-
sentation:

L(µ)
ν (x) =

ex x−
µ
2

Γ
(
ν + 1

) ∫ ∞

0

e−t tν+µ
2 Jµ

(
2
√

xt
)
dt (2.2)

(
x = 0; <(µ + ν) > −1

)
involving the first-kind Bessel function Jν(z) of order ν, defined by

Jν(z) :=
∞∑

n=0

(−1)n

n! Γ(ν + n + 1)

(x

2

)ν+2n

(2.3)

(
z ∈ C \ (−∞, 0); ν ∈ C

)
.
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Lemma 2.1. The following bounding inequality holds true for the Laguerre func-

tion L
(µ)
ν (x):

∣∣L(µ)
ν (x)

∣∣ 5 Γ
(
<(µ + ν) + 1

)
Γ
(
<(µ) + 1

2

)∣∣Γ(ν + 1
)∣∣Γ(<(µ) + 1

) ∣∣Γ (µ + 1
2

)∣∣ ex (2.4)

(
x > 0; <(µ) > −1

2
; <(µ + ν) > −1

)
Recently, Pogány and Srivastava [11] applied some inequalities due to Yudell

Leo Luke (1918–1983) [7], Landau [5], Olenko [10] and Krasikov [4] with a view
to presenting several remarkable improvements over Love’s inequality (2.2). We
recall here the bounding inequalities of Pogány and Srivastava [11] in the form of
the following lemmas.

Lemma 2.2. The following inequality holds true for the Laguerre function L
(µ)
ν (x):∣∣L(µ)

ν (x)
∣∣ 5 (µ + ν)ex

ν(µ− |ν|)B(µ, ν) (1 + x)(
x = 0; µ > |ν|; ν > −1

)
,

where B(α, β) denotes the familiar Beta function defined already by (1.2).

Lemma 2.3. The following bounding inequality holds true for the Laguerre func-

tion L
(µ)
ν (x): ∣∣L(µ)

ν (x)
∣∣ 5 mµ

ν (x)
ex x−

µ
2

Γ(ν + 1)(
x > 0; µ > 0; ν > −1; µ + 2ν > −3

2

)
,

where

mµ
ν (x) := min

x,µ,ν

{
bLΓ

(
µ
2

+ ν + 1
)

µ
1
3

,
cLΓ

(
µ
2

+ ν + 5
6

)
3
√

2 x
1
6

,
dOΓ

(
µ
2

+ ν + 3
4

)
√

2 x
1
4

}
,

and the coefficients bL, cL and dO are given, respectively, by

bL :=
3
√

2 sup
x∈R+

{Ai(x)}, (2.5)

cL := sup
x∈R+

{
x

1
3 J0(x)

}
(2.6)

and

dO := bL

√
µ

1
3 +

α1

µ
1
3

+
3α2

1

10µ
(µ > 0) (2.7)
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in terms of the Bessel function Jν(z) defined by (2.3) and the familiar Airy func-
tion Ai(x) defined by

Ai(x) :=
π

3

√
x

3

[
J− 1

3

(
2
(x

3

) 3
2

)
+ J 1

3

(
2
(x

3

) 3
2

)]
.

Lemma 2.4. The following bounding inequality holds true for the Laguerre func-

tion L
(µ)
ν (x) when x > 0, µ > 0 and r ∈ (0, 2):

∣∣L(µ)
ν (x)

∣∣ 5
√

Γ
(
µ + 2ν + 1

2

)
ex x−

µ
2

Γ(ν + 1) (2− r)
µ
2
+ν+ 1

4

·

(
d2

O

2
√

x

[
1− exp

(
− r

16x

[
λ + (λ + 1)

2
3

]) ]

+
4Kµ

π r
3
2

Γ
(3

2
,

r

16x

[
λ + (λ + 1)

2
3

])) 1
2

,

(2.8)

where

λ := (2µ + 1)(2µ + 3) and Kµ :=
[
(2µ + 1)(2µ + 3) + 1

] 2
3 − 2(2µ + 1) ,

Γ(z, κ) being the incomplete Gamma function of the second kind, defined by

Γ(z, κ) :=

∫ ∞

κ

tz−1 e−t dt
(
<(z) > 0; κ ∈ C

)
. (2.9)

3. Bounding inequalities for the Jacobi function

First of all, in light the hypergeometric representations in (1.1) and (2.1), we
find from the Eulerian integral [cf. Equation (2.6)]:

Γ(z, 0) ≡ Γ(z) :=

∫ ∞

0

tz−1 e−t dt
(
<(z) > 0

)
that

Γ(α + β + ν + 1)P (α,β)
ν (z) =

∫ ∞

0

tα+β+ν e−t L(α)
ν

(
1

2
(1− z)t

)
dt (3.1)(

<(α + β + ν) > −1
)
,

which, in the special case when

ν = n (n ∈ N0),

happens to be a well-known result (cf., e.g., [13, p. 94, Problem 24]).
By writing (3.1) in the following (relatively simpler) form:∣∣P (α,β)

ν (1− 2x)
∣∣ 5 1

Γ(α + β + ν + 1)

∫ ∞

0

tα+β+ν e−t
∣∣L(α)

ν (xt)
∣∣ dt

(α, β, ν ∈ R; α + β + ν > −1),
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and then appealing to the corresponding version of Love’s inequality (2.4), we
obtain Theorem 3.1 below.
Theorem 3.1. The following bounding inequality holds true for the classical
Jacobi function:

∣∣P (α,β)
ν (1− 2x)

∣∣ 5 (ν + α

ν

)
(1− x)−α−β−ν−1

(0 < x < 1; α > −1; ν + α > −1; α + β + ν > −1) .

In a similar manner, we can apply Lemmas 2.2 and 2.3 with a view to deducing
the results asserted by Theorems 3.2 and 3.3 below. In particular, in our proof
of Theorem 3.2, we make use also of the following known result [1, p. 137, Entry
4.3(7)]: ∫ ∞

0

tσ (t + κ)−1 e−stdt = κσ eκs Γ(σ + 1)Γ(−σ, κs)

(
<(s) > 0; <(σ) > −1; | arg(κ)| < π

)
,

where Γ(z, κ) is the incomplete Gamma function of the second kind defined by
(2.9). The details involved are being left as an exercise for the interested reader.
Theorem 3.2. The following bounding inequality holds true for the classical
Jacobi function:

∣∣P (α,β)
ν (1− 2x)

∣∣ 5 α + ν

ν(α− |ν|)B(α, ν)
x−α−β−ν−1 e(1−x)/x

· Γ
(
−α− β − ν,

1− x

x

)

(0 < x < 1; α > |ν|; ν > −1; α + β + ν > −1) .
Theorem 3.3. The following bounding inequality holds true for the classical
Jacobi function:

∣∣P (α,β)
ν (1− 2x)

∣∣ 5 Mα,β
ν (x)

x−
α
2 (1− x)−

α
2
−β−ν−1

Γ(ν + 1)Γ(α + β + ν + 1)

(
0 < x < 1; α > 0; α + 2ν > −3

2
;

α + 2(β + ν) > −3

2
; min{ν, α + β + ν} > −1

)
,
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where

Mα,β
ν (x) := min

x,α,β,ν

{
bL

α
1
3

Γ
(α

2
+ ν + 1

)
Γ
(α

2
+ β + ν + 1

)
,

cL

3
√

2
Γ

(
α

2
+ ν +

5

6

)
Γ

(
α

2
+ β + ν +

5

6

)(
x

1− x

)− 1
6

,

dO√
2

Γ

(
α

2
+ ν +

3

4

)
Γ

(
α

2
+ β + ν +

3

4

)(
x

1− x

)− 1
4

}
,

the coefficients bL, cL and dO being given by (2.5), (2.6) and (2.7), respectively.

4. Concluding remarks and observations

In this concluding section, we present several brief remarks and observations
concerning the methodology and techniques which are used here and elsewhere for
finding bounding inequalities for a considerably large variety of special functions
and polynomials.

Remark 4.1. Our method of proof of Theorems 3.1, 3.2 and 3.3 above, which is
based heavily upon the integral representation (3.1) for the Jacobi function, does
not seem to apply easily to the bounding inequality (2.8) asserted by Lemma 2.4.
Remark 4.2. The matrix methods ( described and applied, among others, by
Rassias and Srivastava [12]) require the use of a three-term recurrence relation
which is satisfied by a fairly large family of special functions including (for ex-
ample) such classical orthogonal polynomials as the Jacobi polynomials and their
many relatives. Consequently, in the absence of an appropriate three-term recur-
rence relation, it does not seem to be possible to apply these matrix methods to

the classical Jacobi function P
(α,β)
ν (z) (ν ∈ C), the classical Laguerre function

L
(µ)
ν (z) (ν ∈ C), and so on.

Remark 4.3. The bounding inequalities for the Jacobi function, which are pre-
sented in the preceding section, are consequences of several potentially useful and
reasonably sharp inequalities for the classical Laguerre functions (see Section 2).
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