REMARKS ON ORTHOGONALITY PRESERVING MAPPINGS IN NORMED SPACES AND SOME STABILITY PROBLEMS

JACEK CHMIELIŃSKI ${ }^{1}$
Dedicated to Themistocles M. Rassias

Submitted by S.-M. Jung

Abstract

We consider the Birkhoff-James orthogonality in normed spaces and classes of linear mappings exactly and approximately preserving this relation. Some related stability problems are posed.

1. Introduction

In a normed space X (over $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$), with the norm not necessarily coming from an inner product, one can consider the Birkhoff-James orthogonality (cf. [2, 13]):

$$
x \perp_{\mathrm{B}} y \quad \Longleftrightarrow \quad \forall \alpha \in \mathbb{K}: \quad\|x+\alpha y\| \geq\|x\|
$$

One can also consider the semi-orthogonality coming from a semi-inner-product in X. Namely, due to G. Lumer [17] and J.R. Giles [12] (cf. also [11]) there exists a mapping $[\cdot \mid \cdot]: X \times X \rightarrow \mathbb{K}$ satisfying the following properties:
(s1) $[\lambda x+\mu y \mid z]=\lambda[x \mid z]+\mu[y \mid z], \quad x, y, z \in X, \lambda, \mu \in \mathbb{K}$;
(s2) $[x \mid \lambda y]=\bar{\lambda}[x \mid y], \quad x, y \in X, \quad \lambda \in \mathbb{K}$;
(s3) $[x \mid x]=\|x\|^{2}, \quad x \in X$;
(s4) $|[x \mid y]| \leq\|x\| \cdot\|y\|, \quad x, y \in X$.

[^0]We will call each mapping $[\cdot \mid \cdot]$ satisfying (s1)-(s4) a semi-inner-product (s.i.p.) in a (normed) space X. (We assume that a s.i.p. is associated with the given norm in X, i.e., (s3) is satisfied.) Note that there may exist infinitely many different semi-inner-products in X. There is a unique s.i.p. in X if and only if X is smooth (i.e., there is a unique supporting hyperplane at each point of the unit sphere S or, equivalently, the norm is Gâteaux differentiable on S-cf. [9]). If X is an inner product space the only s.i.p. on X is the inner-product itself ([17], Theorem 3). We say that s.i.p. is continuous iff $\operatorname{Re}[y \mid x+\lambda y] \rightarrow \operatorname{Re}[y \mid x]$ as $\mathbb{R} \ni \lambda \rightarrow 0$ for all $x, y \in S$. The continuity of s.i.p. is equivalent to the smoothness of X ([12, Theorem 3]). For a fixed s.i.p. in X we define a related semi-orthogonality. For $x, y \in X$

$$
x \perp_{\mathrm{s}} y \quad: \Leftrightarrow \quad[y \mid x]=0
$$

Note that for an inner product space: $\perp_{\mathrm{B}}=\perp_{\mathrm{s}}=\perp$.
Theorem 1.1 ([12, Theorem 2]). If X is smooth, then $\perp_{B}=\perp_{\mathrm{s}}$.

2. Orthogonality preserving mappings

Koehler and Rosenthal [15] showed that a linear operator from a normed space into itself is an isometry if and only if it preserves some semi-inner-product. This can be slightly extended.

Theorem 2.1. Let X and Y be (real or complex) normed spaces and let $f: X \rightarrow$ Y be a linear operator. Then f is a similarity, i.e., for some $\gamma>0$

$$
\|f x\|=\gamma\|x\|, \quad x \in X
$$

if and only if there exist semi-inner-products $[\cdot \mid \cdot]_{X}$ and $[\cdot \mid \cdot]_{Y}$ in X and Y, respectively, such that

$$
\begin{equation*}
[f x \mid f y]_{Y}=\gamma^{2}[x \mid y]_{X}, \quad x, y \in X . \tag{2.1}
\end{equation*}
$$

Moreover, if $X=Y$ (with the same norm), then we get the assertion with the same semi-inner-product.

Proof. The sufficiency is obvious. To prove the necessity let us assume that X and Y are different normed spaces (at least the norms are different). Choose an arbitrary s.i.p. $[\cdot \mid \cdot]_{Y}$ in Y. Then it suffices to define

$$
[x \mid y]_{X}:=\frac{1}{\gamma^{2}}[f x \mid f y]_{Y}, \quad x, y \in X
$$

to obtain a s.i.p. in X such that (2.1) is satisfied. If $X=Y$ and the norm is the same, $[\cdot \mid \cdot]_{X}=[\cdot \mid \cdot]_{Y}$ is not guaranteed by the above reasoning (unless X is smooth which yields the uniqueness of s.i.p.). In this case one can apply the proof of Koehler and Rosenthal (with a slight modification concerning the constant γ).

Koldobsky [16] showed that a linear mapping from a real normed space into itself, preserving the Birkhoff-James orthogonality must be a similarity. Blanco and Turnšek [3] extended it to complex spaces.

Theorem 2.2 ([3, Theorem 1.3]). Let X and Y be (real or complex) normed spaces and let $f: X \rightarrow Y$ be a linear operator. Then f preserves the BirkhoffJames orthogonality, i.e.,

$$
\begin{equation*}
x \perp_{\mathrm{B}} y \Rightarrow f x \perp_{\mathrm{B}} f y, \quad x, y \in X, \tag{2.2}
\end{equation*}
$$

if and only if, for some $\gamma>0,\|f x\|=\gamma\|x\|, x \in X$.
Taking $X=Y$ and the identity mapping as f, we obtain:
Corollary 2.3. Let X be a vector space. Let $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ be two norms in X and let $\perp_{\mathrm{B}, 1}$ and $\perp_{\mathrm{B}, 2}$ denote the corresponding Birkhoff-James orthogonality relations. If $\perp_{\mathrm{B}, 1} \subset \perp_{\mathrm{B}, 2}$, then $\|x\|_{2}=\gamma\|x\|_{1}$ for all $x \in X$, with some $\gamma>0$ and, consequently, $\perp_{B, 1}=\perp_{B, 2}$.

Blanco and Turnšek remarked also that their proof of Theorem 2.2 can be easily adapted to the case where the Birkhoff-James orthogonality is replaced by a semi-orthogonality. Namely, we have the following result.

Theorem 2.4 (cf. [3, Remark 3.2]). Let X and Y be (real or complex) normed spaces and let $f: X \rightarrow Y$ be a linear operator preserving the semi-orthogonality related to some s.i.p. $[\cdot \mid \cdot]_{X}$ and $[\cdot \mid \cdot]_{Y}$ in X and Y, respectively, i.e.,

$$
\begin{equation*}
x \perp_{\mathrm{s}} y \Rightarrow f x \perp_{\mathrm{s}} f y, \quad x, y \in X \tag{2.3}
\end{equation*}
$$

Then, for some $\gamma>0,\|f x\|=\gamma\|x\|, x \in X$.
All the above results enable us to list the following collection of equivalent conditions.

Theorem 2.5. Let X and Y be normed spaces. For a linear operator $f: X \rightarrow Y$ the following conditions are equivalent:
(a) $\exists \gamma>0 \forall x \in X \quad\|f x\|=\gamma\|x\|$;
(b) $\exists \gamma>0 \forall x, y \in X \quad[f x \mid f y]_{Y}=\gamma^{2}[x \mid y]_{X}$;
(c) $\exists \gamma>0 \forall x, y \in X \quad\left|[f x \mid f y]_{Y}\right|=\gamma^{2}\left|[x \mid y]_{X}\right|$;
(d) $\forall x, y \in X \quad x \perp_{\mathrm{s}} y \Leftrightarrow f x \perp_{\mathrm{s}} f y$;
(e) $\forall x, y \in X \quad x \perp_{\mathrm{s}} y \quad \Rightarrow f x \perp_{\mathrm{s}} f y$;
(f) $\forall x, y \in X \quad x \perp_{\mathrm{B}} y \Rightarrow f x \perp_{\mathrm{B}} f y$;
(g) $\forall x, y \in X \quad x \perp_{\mathrm{B}} y \Leftrightarrow f x \perp_{\mathrm{B}} f y$.

The conditions (b)-(e) should be understood that they are satisfied with respect to some semi-inner-products $[\cdot \mid \cdot]_{X}$ and $[\cdot \mid \cdot]_{Y}$ in X and Y, respectively.

Proof. (a) \Rightarrow (b) follows from Theorem 2.1; implications $(\mathrm{b}) \Rightarrow(\mathrm{c}) \Rightarrow(\mathrm{d}) \Rightarrow$ (e) are trivial; (e) \Rightarrow (a) from Theorem 2.4. This proves equivalency of (a)-(e). Moreover, it is easy to show $(\mathrm{a}) \Rightarrow(\mathrm{g}),(\mathrm{g}) \Rightarrow(\mathrm{f})$ is trivial and $(\mathrm{f}) \Rightarrow(\mathrm{a})$ follows from Theorem 2.2, which proves equivalency of (a), (f) and (g).

Remark 2.6. Note that, in particular, the property that a linear mapping preserves the Birkhof-James orthogonality is equivalent to that it preserves the semiorthogonality (although \perp_{B} and \perp_{s} need not be equivalent unless we assume the smoothness of the norm).

Remark 2.7. For the case $X=Y$ the results are also true with the same semi-inner product applied for arguments and values (cf. remarks in the proof of Theorem 2.1).

Taking $X=Y$ and the identity mapping we obtain:
Corollary 2.8. Let $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ be two norms in a linear space X (with some corresponding semi-inner-products $[\cdot \mid \cdot]_{1}$ and $[\cdot \mid \cdot]_{2}$, semi-orthogonalities $\perp_{\mathrm{s}, 1}, \perp_{\mathrm{s}, 2}$ and the Birkhoff-James orthogonalities $\perp_{\mathrm{B}, 1}, \perp_{\mathrm{B}, 2}$). Then the following conditions are equivalent:
(a) $\exists \gamma>0 \forall x \in X \quad\|x\|_{2}=\gamma\|x\|_{1}$;
(b) $\exists \gamma>0 \forall x, y \in X \quad[x \mid y]_{2}=\gamma^{2}[x \mid y]_{1}$;
(c) $\exists \gamma>0 \forall x, y \in X \quad\left|[x \mid y]_{2}\right|=\gamma^{2}\left|[x \mid y]_{1}\right|$;
(d) $\perp_{\mathrm{s}, 1}=\perp_{\mathrm{s}, 2}$;
(e) $\perp_{\mathrm{s}, 1} \subset \perp_{\mathrm{s}, 2}$;
(f) $\perp_{\mathrm{B}, 1} \subset \perp_{\mathrm{B}, 2}$;
(g) $\perp_{B, 1}=\perp_{B, 2}$.

Theorem 2.9. Let X be a normed space. Suppose that there exists an inner product space Y and a linear mapping f from X into Y or from Y onto X such that f preserves the Birkhoff-James orthogonality. Then X is an inner product space (the norm in X comes from an inner product).

Proof. 1. Suppose that $f: X \rightarrow Y$ is linear and $x \perp_{\mathrm{B}} y \Rightarrow f x \perp f y$ for all $x, y \in X$. From Theorem 2.2, there exists $\gamma>0$ such that $\|f x\|=\gamma\|x\|$ for $x \in X$. Therefore, for all $x, y \in X$

$$
\begin{align*}
& \|f x+f y\|^{2}+\|f x-f y\|^{2}-2\|f x\|^{2}-2\|f y\|^{2} \\
& =\gamma^{2}\left(\|x+y\|^{2}+\|x-y\|^{2}-2\|x\|^{2}-2\|y\|^{2}\right) . \tag{2.4}
\end{align*}
$$

Since the norm in Y satisfies the parallelogram identity, so does the norm in X whence X is an inner product. 2. Supposing that $f: Y \rightarrow X$ is linear, surjective and $x \perp y \Rightarrow f x \perp_{\mathrm{B}} f y$ for all $x, y \in Y$, using again Theorem 2.2 and (2.4), we get the assertion.

We follow Kestelman (cf. [19]) in saying that $f: X \rightarrow Y$ preserves right-angles iff

$$
\begin{equation*}
x-z \perp_{\mathrm{B}} y-z \Rightarrow f(x)-f(z) \perp_{\mathrm{B}} f(y)-f(z), \quad x, y, z \in X \tag{2.5}
\end{equation*}
$$

Obviously, provided $f(0)=0$, it is a stronger condition than (2.3) whence a linear solution of (2.5) has to be a similarity. However, Tissier [19] has proved that for a real inner product space X (with $\operatorname{dim} X \geq 2$) no linearity assumption is needed to prove that 2.5 yields similarity of f. One can ask if it is also true in normed spaces, with the Birkhoff-James orthogonality.

3. Approximate orthogonality and approximately orthogonality PRESERVING MAPPINGS

Let $\varepsilon \in[0,1)$. The natural way to define an ε-orthogonality of vectors x, y in an inner product space is the following one:

$$
x \perp^{\varepsilon} y \quad \Leftrightarrow \quad|\langle x \mid y\rangle| \leq \varepsilon\|x\|\|y\| .
$$

In normed spaces, the following notion of the ε-Birkhoff-James orthogonality was introduced by Dragomir [10].

$$
\begin{equation*}
x{\underset{\varepsilon}{\mathrm{~B}}}^{\mathrm{B}} y: \Leftrightarrow \forall \lambda \in \mathbb{K}:\|x+\lambda y\| \geq(1-\varepsilon)\|x\| . \tag{3.1}
\end{equation*}
$$

Obviously, this relation generalizes the Birkhoff-James one. For inner product spaces, it can be shown that $x \frac{1}{\varepsilon} \mathrm{~B} y \Leftrightarrow x \perp^{\delta} y$ with $\delta:=\sqrt{(2-\varepsilon) \varepsilon}$ (see [10, Proposition 1]). In order to have the latter equivalence with $\delta=\varepsilon$, one can consider (cf. [4]) a slight modification of (3.1)

$$
\begin{equation*}
x \perp_{\mathrm{D}}^{\varepsilon} y: \Leftrightarrow \forall \lambda \in \mathbb{K}:\|x+\lambda y\| \geq \sqrt{1-\varepsilon^{2}}\|x\| \tag{3.2}
\end{equation*}
$$

Suppose that there are two equivalent norms in X, i.e.,

$$
m\|x\|_{1} \leq\|x\|_{2} \leq M\|x\|_{1}, \quad x \in X
$$

with some $0<m \leq M$. Note that for $x, y \in X$ such that $x \perp_{\mathrm{B}, 1} y$ we have

$$
\|x+\lambda y\|_{2} \geq \frac{m}{M}\|x\|_{2} \quad \text { for all } \lambda \in \mathbb{K}
$$

Therefore $x \frac{1}{\varepsilon} \mathrm{~B}, 2 y$ with $\varepsilon=1-\frac{m}{M}$.
An alternative definition of the ε-Birkhoff-James orthogonality (not equivalent to (3.2) in general) was given by the author in [4].

$$
\begin{equation*}
x \perp_{\mathrm{B}}^{\varepsilon} y: \Leftrightarrow \forall \lambda \in \mathbb{K}:\|x+\lambda y\|^{2} \geq\|x\|^{2}-2 \varepsilon\|x\|\|\lambda y\| . \tag{3.3}
\end{equation*}
$$

For a given semi-inner-product one can define the approximate semi-orthogonality (ε-semi-orthogonality):

$$
x \perp_{\mathrm{s}}^{\varepsilon} y \quad: \Leftrightarrow \quad|[y \mid x]| \leq \varepsilon\|x\| \cdot\|y\| .
$$

Note that for an inner product space: $\perp_{\mathrm{s}}^{\varepsilon}=\perp_{\mathrm{B}}^{\varepsilon}=\perp_{\mathrm{D}}^{\varepsilon}=\perp^{\varepsilon}$. The author has proved also the following generalization of Theorem 1.1.
Theorem 3.1 ([4, Theorem 3.3]). If X is a smooth normed space, then $\perp_{\mathrm{B}}^{\varepsilon}=\perp_{\mathrm{s}}^{\varepsilon}$.
Now, we can deal with mappings which approximately preserve the BirkhoffJames orthogonality. For $\varepsilon \in[0,1), f: X \rightarrow Y$ can be called an ε-orthogonality preserving mapping if it satisfies

$$
x \perp_{\mathrm{B}} y \Rightarrow f(x) \perp_{\varepsilon} f(y), \quad x, y \in X
$$

or, in an alternative sense,

$$
\begin{equation*}
x \perp_{\mathrm{B}} y \Rightarrow f(x) \perp_{\mathrm{B}}^{\varepsilon} f(y), \quad x, y \in X . \tag{3.4}
\end{equation*}
$$

Similarly, for given semi-inner-products in X and Y, one can consider mappings preserving approximately semi-orthogonality, i.e., satisfying:

$$
\begin{equation*}
x \perp_{\mathrm{s}} y \Rightarrow f(x) \perp_{\mathrm{s}}^{\varepsilon} f(y), \quad x, y \in X \tag{3.5}
\end{equation*}
$$

Note that, in view of Theorem 3.1, for smooth spaces X and Y the conditions (3.4) and (3.5) are equivalent.

In the realm of inner product spaces the class of linear approximately orthogonality preserving mappings has been characterized in [5, Theorem 2]. Recently Turnšek [20] has made some quantitative improvements so the result finally reads as follows.

Theorem 3.2. Let X and Y be inner product spaces and let $f: X \rightarrow Y$ be a nontrivial linear mapping satisfying

$$
x \perp y \Rightarrow f x \perp^{\varepsilon} f y, \quad x, y \in X
$$

Then, with $\gamma=\|f\|$,

$$
\left|\langle f x \mid f y\rangle-\gamma^{2}\langle x \mid y\rangle\right| \leq \frac{4 \varepsilon}{1+\varepsilon}\|f x\|\|f y\|, \quad x, y \in X
$$

Problem 3.3. In the realm of normed spaces, characterize the classes of linear mappings approximately preserving the Birkhoff-James orthogonality and the semi-orthogonality.

Now, let us consider a linear mapping which is close to a linear and orthogonality preserving one.

Theorem 3.4. Let X and Y be normed spaces and let $f: X \rightarrow Y$ be a linear Birkhoff-James orthogonality preserving mapping (i.e., f satisfies (2.3)). Assume that $g: X \rightarrow Y$ is linear and, with some $\varepsilon \in[0,1)$,

$$
\begin{equation*}
\|f-g\| \leq \frac{\varepsilon}{2-\varepsilon}\|f\| \tag{3.6}
\end{equation*}
$$

Then g is an ε-orthogonality preserving mapping in the sense of Dragomir.
Proof. Setting $\gamma:=\|f\|$ and $\delta:=\frac{\varepsilon \gamma}{2-\varepsilon}<\gamma$ we have from (3.6):

$$
\|f x-g x\| \leq \delta\|x\|, \quad x \in X
$$

Since we have from Theorem 2.2, $\|f x\|=\gamma\|x\|$, we get

$$
|\gamma\|x\|-\|g x\||=|\|f x\|-\|g x\|| \leq\|f x-g x\| \leq \delta\|x\|, \quad x \in X
$$

Hence

$$
(\gamma-\delta)\|x\| \leq\|g x\| \leq(\gamma+\delta)\|x\|, \quad x \in X
$$

and

$$
\frac{\|g x\|}{\gamma+\delta} \leq\|x\| \leq \frac{\|g x\|}{\gamma-\delta}, \quad x \in X
$$

Let $x \perp_{\mathrm{B}} y$. Then, for arbitrary $\lambda \in \mathbb{K},\|x+\lambda y\| \geq\|x\|$, and thus

$$
\begin{aligned}
\|g x+\lambda g y\| & =\|g(x+\lambda y)\| \geq(\gamma-\delta)\|x+\lambda y\| \\
& \geq(\gamma-\delta)\|x\| \geq \frac{\gamma-\delta}{\gamma+\delta}\|g x\| \\
& =(1-\varepsilon)\|g x\|
\end{aligned}
$$

The problem arises whether the reverse is true. Namely, whether each ε orthogonality preserving linear mapping g can be approximated by a linear orthogonality preserving one. In [5] and [6] author considered this stability problem in the realm of inner product spaces obtaining a positive answer under the assumption that the domain is finite-dimensional. It has been extended to the general case by Turnšek [20].

Theorem 3.5 ([20, Theorem 2.3], cf. also [6, Theorem 4]). Let X and Y be Hilbert spaces and let $f: X \rightarrow Y$ be a linear mapping satisfying

$$
\begin{equation*}
x \perp y \quad \Rightarrow \quad f x \perp^{\varepsilon} f y, \quad x, y \in X \tag{3.7}
\end{equation*}
$$

Then there exists a linear orthogonality preserving mapping $T: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f-T\| \leq\left(1-\sqrt{\frac{1-\varepsilon}{1+\varepsilon}}\right) \min \{\|f\|,\|T\|\} \tag{3.8}
\end{equation*}
$$

It has been also proved by Turnšek [20, Example 2.4] that the approximation (3.8) is sharp.

Problem 3.6. Verify the stability of the orthogonality preserving property with respect to the Birkhoff-James orthogonality and the semi-orthogonality.

For Hilbert spaces X and Y, a mapping $f: X \rightarrow Y$ satisfying

$$
\begin{equation*}
x-z \perp y-z \quad \Rightarrow \quad f(x)-f(z) \perp^{\varepsilon} f(y)-f(z), \quad x, y, z \in X \tag{3.9}
\end{equation*}
$$

and $f(0)=0$ satisfies also (3.7). Thus using Theorem 3.5 we get that for each linear mapping f satisfying (3.9), there exists a linear orthogonality preserving (whence also right-angle preserving) mapping T such that the approximation (3.8) holds.

Problem 3.7. In normed spaces consider the stability question for the BirkhoffJames right-angle preserving property.

For inner product spaces, strong relationships has been shown between the stability of the orthogonality preserving property and the stability of the orthogonality equation

$$
\langle f(x) \mid f(y)\rangle=\langle x \mid y\rangle .
$$

Various kinds of stability of this equation has been studied by the author (see [1, 7]) and by other authors ([14, 18), also in more general settings ([8]). It seems that the following problem can be related with previously mentioned ones.

Problem 3.8. Consider the stability of the equation

$$
[f(x) \mid f(y)]=[x \mid y], \quad x, y \in X
$$

with the class of approximate solutions defined by the inequality

$$
|[f(x) \mid f(y)]-[x \mid y]| \leq \varepsilon\|x\|^{p}\|y\|^{p}, \quad x, y \in X
$$

where $p \in \mathbb{R}$ is given (in particular with $p=1$).

J. CHMIELIŃSKI

References

1. R. Badora, J. Chmieliński, Decomposition of mappings approximately inner product preserving, Nonlinear Anal. 62 (2005), 1015-1023.
2. G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J. 1 (1935), 169-172.
3. A. Blanco, A. Turnšek, On maps that preserve orthogonality in normed spaces, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), 709-716.
4. J. Chmieliński, On an ε-Birkhoff orthogonality, J. Inequal. Pure and Appl. Math., 6(3) (2005), Art. 79.
5. J. Chmieliński, Linear mappings approximately preserving orthogonality, J. Math. Anal. Appl., 304 (2005), 158-169.
6. J. Chmieliński, Stability of the orthogonality preserving property in finite-dimensional inner product spaces, J. Math. Anal. Appl. 318 (2006), 433-443.
7. J. Chmielinski, Stability of the Wigner equation and related topics, Nonlinear Funct. Anal. Appl., 11 (2006), 859-879.
8. J. Chmielinski, M.S. Moslehian, Approximately C^{*}-inner product preserving mappings, Bull. Korean. Math. Soc. (to appear).
9. M.M. Day, Normed Linear Spaces, Springer-Verlag, Berlin - Heidelberg - New York, 1973.
10. S.S. Dragomir, On approximation of continuous linear functionals in normed linear spaces, An. Univ. Timişoara Ser. Ştiinţ. Mat. 29 (1991), 51-58.
11. S.S. Dragomir, Semi-Inner Products and Applications, Nova Science Publishers, Inc., Hauppauge, NY, 2004.
12. J.R. Giles, Classes of semi-inner-product spaces, Trans. Amer. Math. Soc. 129 (1967), 436-446.
13. R.C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc. 61 (1947), 265-292.
14. S.-M. Jung, Stability of the orthogonality equation on bounded domain, Nonlinear Anal. 47 (2001), 2655-2666.
15. D. Koehler, P. Rosenthal, On isometries of normed linear spaces, Studia Math. 36 (1970), 213-216.
16. A. Koldobsky, Operators preserving orthogonality are isometries, Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), 835-837.
17. G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29-43.
18. Th.M. Rassias, A new generalization of a theorem of Jung for the orthogonality equation, Applicable Analysis 81 (2002), 163-177.
19. A. Tissier, A right-angle preserving mapping (a solution of a problem proposed in 1983 by H. Kestelman), Advanced Problem 6436, Amer. Math. Monthly 92 (1985), 291-292.
20. A. Turnšek, On mappings approximately preserving orthogonality, J. Math. Anal. Appl. 336 (2007), 625-631.
${ }^{1}$ Instytut Matematyki, Akademia Pedagogiczna w Krakowie, Podchoràżych 2, 30-084 Kraków, Poland.

E-mail address: jacek@ap.krakow.pl

[^0]: Date: Received: 13 April 2007; Revised: 16 September 2007; Accepted: 27 October 2007.
 2000 Mathematics Subject Classification. Primary 46B20, 46C50; Secondary 39B82.
 Key words and phrases. Mappings preserving orthogonality, Birkhoff-James orthogonality, semi-inner-product, approximate orthogonality, stability.

