MATRIX ORDER IN BOHR INEQUALITY FOR OPERATORS

MASATOSHI FUJII ${ }^{1 *}$ AND HONGLIANG ZUO ${ }^{2}$
This paper is dedicated to Professor Lars-Erik Persson

Communicated by M. S. Moslehian

Abstract

The classical Bohr inequality says that $|a+b|^{2} \leq p|a|^{2}+q|b|^{2}$ for all scalars a, b and $p, q>0$ with $\frac{1}{p}+\frac{1}{q}=1$. The equality holds if and only if ($p-$ 1) $a=b$. Several authors discussed operator version of Bohr inequality. In this paper, we give a unified proof to operator generalizations of Bohr inequality. One viewpoint of ours is a matrix inequality, and the other is a generalized parallelogram law for absolute value of operators, i.e., for operators A and B on a Hilbert space and $t \neq 0$,

$$
|A-B|^{2}+\frac{1}{t}|t A+B|^{2}=(1+t)|A|^{2}+\left(1+\frac{1}{t}\right)|B|^{2}
$$

[^0]Date: Received: 31 August 2009; Revised: 22 December 2009; Accepted: 15 January 2010. *.
2000 Mathematics Subject Classification. Primary 47A63; Secondary 47B15.
Key words and phrases. Bohr inequality for operators, matrix order, parallelogram law for operators and absolute value of operators.

[^0]: ${ }^{1}$ Department of Mathematics, Osaka Kyoiku University, Kashiwara, Osaka 582-8682, Japan.

 E-mail address: mfujii@cc.osaka-kyoiku.ac.jp
 2 Department of Mathematics and Information Science, Henan Normal University, Xinxiang, Henan 453002, China

 E-mail address: zuodke@yahoo.com

