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Introduction

In this paper we resolve boundary value problems for differential forms in a bounded
C1-domain Ω of Rn, 3 ≤ n. The obtained results are an extension of some theorems
established by C. Miranda in [8] for differential forms in C2,α-domains of Rn.

The fundamental result is Theorem 2.1:
Let Fs−1 ∈ C1

s−1(Ω) be a closed form with interior nontangential trace F−s−1 ∈
Lp

s−1(∂Ω). If ∫

τ i
s−1

F−s−1 = 0, i = 1, ..., R−s−1,

where ([τ i
s−1])1≤i≤R−

s−1
is a base of C1-differentiable singular homology spaceHs−1(∂Ω)

and R−s−1 is the (s−1)-th Betti number of Ω, then there exists a form Us−2 ∈ C1
s−2(Ω),

whose coefficients are in W 1,p(Ω), such that

(∗) dUs−2 = Fs−1 in Ω.

This result is obtained using a formula of Bidal-de Rham (see (1.10)). The use of
this formula changes the existence problem of a differential form that satisfies (∗) in
a suitable Neumann problem for harmonic forms already studied in [15].

Using a regularity result for the solutions of the homogeneous Neumann problem
for harmonic forms established in [15] (see Theorem 2.1) and the continuity hypothesis
for Fs−1 in Ω, we obtain a uniqueness theorem (see Theorem 2.4). With this aim, first
we prove an extension theorem (see Theorem 1.2) and then, as a consequence, we
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deduce a Stokes’ Theorem (see Theorem 1.3) for differential s-forms of C̃1
s (Ω) (see

Preliminaries).
Throughout this work we use the definitions and the results of [13] concerning

differential forms and singular homology and cohomology groups of the C1-manifold
∂Ω.

1 Preliminaries

In this section we summarize basic concepts, notations, and results that will be used
throughout the paper.

We assume that Ω is a bounded and connected C1-domain of Rn, 3 ≤ n. Thus,
(see [16]), there exist an increasing sequence (Ωh)h∈N of C∞-domains, Ωh ⊂ Ω, such
that Ωh → Ω in C1 according to Nečas (see [7] p. 85) and a sequence (Λh)h∈N of C1-
diffeomorphisms Λh : ∂Ω → ∂Ωh such that

lim
h

sup
Q∈∂Ω

|Q− Λh(Q)| = 0.(1.1)

Furthermore, there is a finite covering (Br)1≤r≤m of ∂Ω by open spheres Br =
B(Qr, δ) with center Qr ∈ ∂Ω and radius δ, such that, for r = 1, . . . , m

B(Qr, 2δ) ∩ ∂Ω = {(x, xn) ∈ Rn−1 ×R : xn = ξr(x)} ∩B(Qr, 2δ),(1.2)

and

B(Qr, 2δ) ∩ ∂Ωh = {(x, xn) ∈ Rn−1 ×R : xn = ξrh(x)} ∩B(Qr, 2δ),(1.3)

where ξr ∈ C1
0 (Rn−1), ξr(0) =

∂ξr

∂xl
(0) = 0 (l = 1, . . . , n− 1), ξrh ∈ C∞0 (Rn−1), and

lim
h
‖ξrh − ξr‖C1

0 (Rn−1) = 0.(1.4)

Let now
x̃r = (x, ξr(x)) ∈ ∂Ω ∩B(Qr, 2δ) → x ∈ Rn−1(1.5)

and

x̃hr = (x, ξhr(x)) ∈ ∂Ωh ∩B(Qr, 2δ) → x ∈ Rn−1.(1.6)

For l, i = 1, . . . , n− 1,

lim
h

∂(x̃rh ◦ Λh ◦ x̃−1
r )i

∂xl
(x) = δil(1.7)

uniformly in Ur = x̃r(∂Ω ∩B(Qr, 2δ)), where (x̃rh ◦ Λh ◦ x̃−1
r )i is the i-th coordinate

of the function x̃rh ◦ Λh ◦ x̃−1
r .

Let Us =
∑

i∈Nn
s

aidXi be a form defined in Ω (respectively in Rn \ Ω). 1

If Us ∈ C2
s (Ω) we set

1 Nn
s = {i = (i1, . . . , is) ∈ Ns : 1 ≤ i1 < . . . < is ≤ n}; if i = (i1, . . . , is) ∈ Nn

s , dXi =
dXi1 ∧ . . . ∧Xis .
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δUs = (dUs)∗ and ∆Us = dδUs,(1.8)

where dUs is the exterior derivative of Us and ∗ is the Hodge’s operator. Us is said
to be closed (harmonic, respectively) in Ω iff dUs = 0 (∆Us = 0, respectively) in Ω.
Furthermore Us is said to be derived in Ω iff there exists a form Vs−1 such that

dVs−1 = Us in Ω.(1.9)

and Vs−1 is called the primitive of Us.
Thus we have the following identity of Bidal-de Rham (see (60) in [8])

dδU∗
s + (−1)nδδUs = (−1)n(s+1)

∑

i∈Nn
s

∆ai dXi,(1.10)

where ∆ai =
n∑

l=1

∂2ai

∂x2
l

.

We denote with C̃1
s (Ω) the space of the forms Us ∈ C1

s (Ω) such that each coefficient
of Us and of dUs is in C0(Ω).

Given k ∈ N and 1 < p < ∞, we denote with Dk,p
s (Ω) the space of the forms Us

such that each coefficient of Us is in W k,p(Ω).
We say that Us has interior (exterior, respectively) nontangential trace in Lp

s(∂Ω)
iff, for any i ∈ Nn

s , ai has interior nontangential trace a−i (exterior nontangential trace
a+

i , respectively) in Lp(∂Ω). The form 2

U−
s =

∑

i∈Nn
s

a−i dXi(Q)(1.11)

(respectively the form

U+
s =

∑

i∈Nn
s

a+
i dXi(Q))(1.12)

is called interior (exterior, respectively) nontangential trace of Us.
If Us ∈ D1,p(Ω), the form

Tr(Us) =
∑

i∈Nn
s

Tr(ai)dXi(Q)(1.13)

is considered, where the mapping Tr : W 1,p(Ω) → Lp(∂Ω) is the continuous extension
to W 1,p(Ω) of the mapping restriction defined initially on C∞(Ω).

If Us ∈ C0
s (Ω) and Us has interior nontangential trace in Lp

s(∂Ω), then (see The-
orem 2.3 in [13])

lim
h

Λ∗h(Ush) = U−
s in Lp

s(∂Ω),(1.14)

where Ush is the restriction of Us on ∂Ωh.

We denote with N 1,p
s (Ω) the space of the forms Us ∈ C1

s (Ω) such that each coef-
ficient of Us and dUs has interior nontangential trace in Lp(∂Ω).

The following result holds:
2 dXi(Q) is the restriction to ∂Ω of dXi, hence dXi(Q) = j∗dXi, where j : ∂Ω → Rn is the

inclusion map.
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Theorem 1.1. If Us ∈ C0
s (Ω) ∩D1,p

s (Ω) and Φn−s−1 ∈ C0
n−s−1(∂Ω), then

lim
h

∫

∂Ωh

Us ∧ Λ−1∗
h (Φn−s−1) =

∫

∂Ω

Tr(Us) ∧ Φn−s−1.(1.15)

Proof. By using a partition of unity (ϕr)1≤r≤m, corresponding to the covering
(Br)1≤r≤m of ∂Ω described above, in order to prove (1.15) it will suffice to show
that

lim
h

∫

Rn−1
x̃−1∗

rh (ϕrUsh ∧ Λ−1∗
h (Φn−s−1)) =

∫

Rn−1
x̃−1∗

r (ϕrTr(Us) ∧ Φn−s−1).(1.16)

for all r = 1, . . . ,m. For simplicity of notation in the following we omit the index r.
Let

Us =
∑

i∈Nn−1
s

aidXi +
∑

i∈Nn−1
s−1

aindXi ∧ dXn and x̃−1∗(ϕΦn−s−1)) =
∑

i∈Nn−1
n−s−1

bidxi.

Thus x̃−1∗
h (ϕUsh ∧ Λ−1∗

h (Φn−s−1)) is a (n− 1)-form on Rn−1. Its coefficients are the
sum of a finite number of terms like

ϕ(x, ξh(x))ai(x, ξh(x))bj(fh(x))|∂fhj

∂xj
(x)|

or terms like

ϕ(x, ξh(x))ain(x, ξh(x))bj(fh(x))|∂fhj

∂xj
(x)|∂ξh

∂xl
(x),

where

fh = x̃ ◦ Λ−1
h ◦ x̃−1

h = (fh1, . . . , fh(n−1)), and |∂fhj

∂xj
| = det

∂(fhj1 , · · · , fhjn−s−1)
∂(xj1 , · · · , xjn−s−1)

.

Hence, since spt(ϕ) ⊂ B(Q, δ), the integrals in (1.16) are integrals on the compact
set

K = {x ∈ Rn−1 : |x| ≤ δ}.
We observe that using Theorem 4.5, p. 85 in [10] we have

lim
h

ai(x, ξh(x)) = Tr(ai)(x, ξ(x)) in Lp(K),

while, using (1.1) and (1.7), we have

lim
h

ϕ(x, ξh(x))bj(fh(x))|∂fhj

∂xj
(x)| = ϕ(x, ξ(x))bj(x) and lim

h

∂ξh

∂xj
(x) =

∂ξ

∂xj
(x)(1.17)

uniformly in K. Therefore, since the sequence of functions that appear in the left side
of (1.17) is uniformly bounded in K, by the Dominated Convergence Theorem we
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obtain the proof .
2

Corollary. Assume Us ∈ C1
s (Ω)∩D1,p

s (Ω). If dUs has interior nontangential trace in
Lp

s+1(∂Ω), then Tr(Us) ∈ W 1,p
s (∂Ω) and

dTr(Us) = (dUs)− a.e. on ∂Ω.(1.18)

Proof. It is sufficient to show that
∫

∂Ω

(dUs)− ∧ Φn−s−2 = (−1)s

∫

∂Ω

Tr(Us) ∧ dΦn−s−2

for all Φn−s−2 ∈ C̃1
n−s−2(∂Ω) (see n.1 in [13]), that is to say, because of (1.14) and

since (dUs)h = d(Ush),

lim
h

∫

∂Ω

Λ∗h(dUsh) ∧ Φn−s−2 = (−1)s

∫

∂Ω

Tr(Us) ∧ dΦn−s−2.

Hence, it is enough to observe that
∫

∂Ω

Λ∗h(dUsh) ∧ Φn−s−2 =
∫

∂Ωh

dUs ∧ Λ−1∗
h (Φn−s−2)

= (−1)s

∫

∂Ωh

Us ∧ Λ−1∗
h (dΦn−s−2),

and to apply Theorem 1.1.
2

We obtain also the following Theorems
Theorem 1.2. If Us ∈ C̃1

s (Ω), then there exists an open set Ω′ of Rn such that
Ω ⊂ Ω′ and there exists a form Us ∈ C̃1

0,s(Ω
′) such that Us and dUs are extensions

of Us and dUs respectively.

Proof. Let Us =
∑

i∈Nn
s

aidXi ∈ C̃1
s (Ω) and let dUs =

∑
j∈Nn

s+1
bjdXj . Then we have

(∀i ∈ Nn
s ) (ai ∈ C0(Ω) ∩ C1(Ω)) and (∀j ∈ Nn

s+1) (bj ∈ C0(Ω)).

In Ω it results

(∀j ∈ Nn
s+1) (bj =

s+1∑

k=1

(−1)k
∂â

jk

∂Xjk

),

where ĵk = (j1, . . . , jk−1, jk+1, . . . , js+1) when j = (j1, . . . , js+1).
Arguing in a manner similar to the proof of Theorem 54 XV of [11], we prove the

existence of an open set Ω′ of Rn such that Ω ⊂ Ω′ and, for i ∈ Nn
s and j ∈ Nn

s+1,

the existence of functions ai ∈ C0
0 (Ω′)∩C1(Ω′ \ ∂Ω) and bj ∈ C0

0 (Ω′) extensions of ai

and bj , respectively, such that

bj =
s+1∑

k=1

(−1)k
∂â

jk

∂Xjk

in Ω′ \ ∂Ω.(1.19)

Let, then
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Us =
∑

i∈Nn
s

aidXi and V s+1 =
∑

j∈Nn
s+1

bjdXj .

We have that Us ∈ C0
0,s(Ω

′) and V s+1 ∈ C0
0,s+1(Ω

′). In order to prove that Us is
regular in Ω′, using the Lemma 16.d p. 105 in [17], it suffices to show the existence
of a sequence (U

p

s)p∈N in C∞s (Ω′) such that

U
p

s → Us and dU
p

s → V s+1(1.20)

uniformly in every compact subset of Ω′. Clearly we may suppose Us and V s+1 defined
in Rn. Let now (ρp)p∈N be a sequence of mollifiers and let

U
p

s = ρp ∗ Us =
∑

i∈Nn
s

ρp ∗ aidXi

and

V
p

s+1 = ρp ∗ V s+1 =
∑

j∈Nn
s+1

ρp ∗ bjdXj ,

where ∗ is the usual convolution product between functions.
First we obtain that U

p

s ∈ C∞0,s(R
n) and V

p

s+1 ∈ C∞0,s+1(R
n), and from Proposition

IV.21, in [1], it follows that

U
p

s → Us and V
p

s+1 → V s+1

uniformly on compact sets of Rn. We finish by proving the second formula in (1.20).
For this it is sufficient to show that

s+1∑

k=1

(−1)k ∂

∂Xjk

(ρp ∗ â
jk) = ρp ∗ bj

or, for Proposition IV.2 in [1], that

s+1∑

k=1

(−1)k(
∂

∂Xjk

ρp) ∗ â
jk = ρp ∗ bj

for all p ∈ N and j ∈ Nn
s+1. We observe that, as a consequence of (1.19), we have

s+1∑

k=1

(−1)k ∂

∂Yjk

(ρp(X − Y ) · â
jk(Y )) =

s+1∑

k=1

(−1)k+1(
∂

∂Xjk

ρp)(X − Y ) · â
jk(Y )

+ρp(X − Y ) · bj(Y )

for X ∈ Rn and Y ∈ Rn \∂Ω. Thus
s+1∑

k=1

(−1)k ∂

∂Yjk

(ρp(X − Y ) · â
jk(Y )) is in L1(Rn).

Since

∫

Rn

s+1∑

k=1

(−1)k ∂

∂Yjk

(ρp(X − Y ) · â
jk(Y ))dY =

∫

Ω

s+1∑

k=1

(−1)k ∂

∂Yjk

(ρp(X − Y ) · â
jk(Y ))dY

+
∫

Rn\Ω

s+1∑

k=1

(−1)k ∂

∂Yjk

(ρp(X − Y ) · â
jk(Y ))dY = I1 + I2,
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to obtain (1.20) we need to prove

I1 + I2 = 0.(1.21)

Now, since (see Preliminares)

I1 = lim
h

s+1∑

k=1

(−1)k

∫

Ωh

∂

∂Yjk

(ρp(X − Y ) · â
jk(Y ))dY

=
s+1∑

k=1

(−1)k lim
h

∫

∂Ωh

ρp(X − Y ) · â
jk(Y )dY

=
s+1∑

k=1

(−1)k lim
h

∫

∂Ω

ρp(X − Λh(Y )) · â
jk(Λh(Y ))ωh(Y )dY,

where ωh : ∂Ω → R+ is the function of [17]: Theorem 1.12, by Dominated Convergence
Theorem it follows that

I1 =
s+1∑

k=1

(−1)k

∫

∂Ω

ρp(X − Y ) · â
jk(Y )dY.(1.22)

In the same manner we prove that

I2 = −
s+1∑

k=1

(−1)k

∫

∂Ω

ρp(X − Y ) · â
jk(Y )dY(1.23)

taking a sequence (Ω′h)n∈N of C∞-domains of Rn with Ω ⊂ Ω′h and a sequence of
diffeomorphisms Λ′h : ∂Ω → ∂Ω′h such that Ω → Ω′h in C1 according to Nečas (see
[10] and [16]) and limh supQ∈∂Ω |Q−Λ′h(Q)| = 0. From this and (1.22) we have (1.21).
Hence the thesis.

2

Theorem (Stokes) 1.3. If Us ∈ C̃1
s (Ω), then

∫

∂Γs+1

Us =
∫

Γs+1

dUs(1.24)

for all chain Γs+1 ⊂ Ω.
Proof. Let Ω′ be an open set of Rn such that Ω ⊂ Ω′ and let Us, dUs be regular forms
in Ω′ such that the coefficients of Us and of dUs are respectively the extensions of the
corresponding coefficients of Us and dUs (see Theorem 1.2). Then, by the definition
of regular forms, (1.24) is obtained.

2

2 Existence and Uniqueness Theorems

Let 1 < s < n. Following [8] we introduce the form

ωn−s(X, Y ) =
∑

i∈Nn
n−s

1
|X − Y |n−2

dXidYi(2.1)
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in two variables (X, Y ) ∈ Rn×Rn (see [4], Section. 7). By (2.1), if X, Y ∈ Rn, X 6= Y
we obtain

dXδXωn−s(X, Y ) = (−1)n−sdY δXωn−s−1(X, Y )(2.2)

and

δXωs−1(X, Y ) = (−1)n(s−1)−1δY ωn−s(X,Y ).(2.3)

Let ([τ j
s−1], [γ

l
s−1]) 1≤j≤R

−
s−1

1≤l≤R
+
s−1

, ([tjs−1])1≤j≤R−
s−1

and let ([cl
s−1])1≤l≤R+

s−1
be bases of

C1-differentiable singular homology spaces Hs−1(∂Ω), Hs−1(Ω), and Hs−1(R
n \ Ω)

respectively, verifying the following conditions (see n. 5 in [13])

τ j
s−1 ∼ 0 in R

n \ Ω and γl
s−1 ∼ 0 in Ω

and

tjs−1 ∼ τ j
s−1 in Ω and cl

s−1 ∼ γl
s−1 in R

n \ Ω,

for l = 1, . . . , R+
s−1 and j = 1, . . . , R−s−1 (see n. 5 in [13]).

Let now 1 < p < ∞. The following results hold:
Theorem 2.1. Let Fs−1 ∈ C1

s−1(Ω) be a closed form with interior nontangential
trace in Lp

s−1(∂Ω) such that
∫

τ i
s−1

F−s−1 = 0 i = 1, ...,R−
s−1.(2.4)

Then there exists Us−2 ∈ C1
s−2(Ω) ∩D1,p

s−2(Ω) verifying
i) dUs−2 = Fs−1 in Ω,
ii) Tr(Us−2) ∈ W 1,p

s−2(∂Ω) and dTr(Us−2) = F−s−1 a.e. on ∂Ω,
iii) dU∗

s−2 = 0 in Ω.

Proof. Let Bn−s be a generic harmonic form in Ω, such that δBn−s has interior
nontangential trace in Lp

s−1(∂Ω). Since F ∗s−1 and dBn−s are forms of C1
n−s+1(Ω) with

interior nontangential trace in Lp
n−s+1(∂Ω), from Theorem 2.7 in [13] it follows that

they are in Lp
n−s+1(Ω). Then we can put

Gs−1(X) =
(−1)ns−1

kn

∫

Ω

ωs−1(X, Y ) ∧ (F ∗s−1 + (−1)(n−1)(s−1)dBn−s)(Y ).(2.5)

According to Theorem 77.VI in [9] this form is in C2
s−1(Ω) ∩D2,p

s−1(Ω). Let then

Us−2 = δG∗s−1 and Vn−s = (−1)nδGs−1.(2.6)

From (1.10), using Theorem 77.VI in [9], we obtain that

dUs−2 + δVn−s = Fs−1 + δBn−s a.e. in Ω.(2.7)

Then in order to prove the thesis it is sufficient to show that there exists Bn−s such
that
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δVn−s = δBn−s a.e. in Ω.(2.8)

Now (2.3) and (2.6) imply that

Vn−s(X) =
1
kn

∫

Ω

δY ωn−s(X, Y ) ∧ (F ∗s−1 + (−1)(n−1)(s−1)dBn−s)(Y )

=
1
kn

∫

Ω

dY ωn−s(X,Y ) ∧ (Fs−1 + δBn−s)(Y )

=
1
kn

lim
h→∞

∫

Ωh

dY ωn−s(X, Y ) ∧ (Fs−1 + δBn−s)(Y ).

Hence, since Fs−1 and δBn−s are closed forms in Ω, from Theorem 11, p.121 in [10]
we have

Vn−s(X) =
1
kn

lim
h→∞

∫

∂Ωh

ωn−s(X, Y ) ∧ (Fs−1 + δBn−s)(Y ).

Moreover, because Fs−1 and δBn−s have interior nontangential trace in Lp
s−1(∂Ω), by

(1.14) it follows that

Vn−s(X) = Hn−s(X) +
1
kn

∫

∂Ω

ωn−s(X, Y ) ∧ Φs−1(Y ),(2.9)

where

Hn−s(X) =
1
kn

∫

∂Ω

ωn−s(X,Y ) ∧ F−s−1(Y )(2.10)

and

Φs−1 = (δBn−s)−.(2.11)

If we require that the form Vn−s satisfies (2.8), it results that

δBn−s(X) = δHn−s(X) +
1
kn

∫

∂Ω

δXωn−s(X, Y ) ∧ Φs−1(Y ).(2.12)

From this, if we take into account Theorem 1 in [14], it follows that a.e. on ∂Ω

(δHn−s)− = (
1
2
I − 1

kn
Ts−1)(Φs−1),(2.13)

where I is the identity operator on Lp
s−1(∂Ω) and Ts−1 is a compact operator on the

same space. Consider now the the homogeneous transposed equation of (2.13)

T̃ (ψn−s) =
kn

2
Ψn−s + Tn−s(Ψn−s) = 0.(2.14)

In order to show that (2.13) has solution in Lp
s−1(∂Ω), we prove that for all i =

1, . . . , R−s−1

∫

∂Ω

Ψi
n−s ∧ (δHn−s)− = 0,(2.15)

where (Ψi
n−s)1≤i≤R+

n−s
is a base of Ker(T̃n−s) verifying the conditions (see Theorem

7 in [14]):
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∫

τ l
n−s

Ψi
n−s = 0 and

∫

γj
n−s

Ψi
n−s = δij(2.16)

for l = 1, . . . , R−n−s and for i, j = 1, . . . , R+
n−s. Here (τ l

n−s, γ
j
n−s) 1≤l≤R

−
n−s

1≤j≤R
+
n−s

is the dual

fundamental system of the fundamental system (τ j
s−1, γ

l
s−1) 1≤j≤R

−
s−1

1≤l≤R
+
s−1

. We now observe

that using Theorem 1 in [14] we obtain

(δHn−s)− =
1
2
F−s−1 +

1
kn

Ts−1(F−s−1).(2.17)

Hence from (2.14) we have

∫

∂Ω

Ψi
n−s ∧ (δHn−s)− =

1
2

∫

∂Ω

Ψi
n−s ∧ F−s−1 +

1
kn

∫

∂Ω

Ψi
n−s ∧ Ts−1(F−s−1)

=
1
2

∫

∂Ω

Ψi
n−s ∧ F−s−1 −

1
kn

∫

∂Ω

Tn−s(Ψi
n−s) ∧ (F−s−1) =

∫

∂Ω

Ψi
n−s ∧ F−s−1.

(2.18)

Thus, since Ψi
n−s and F−s−1 are closed forms in W 1,r

n−s(∂Ω) (for all r > 1) and in
W 1,p

s−1(∂Ω) respectively, by applying Theorem 1.7 in [14], using (2.4) and (2.16), it
follows that

∫

∂Ω

Ψi
n−s ∧ F−s−1 = (−1)(s−1)(n−s)

R−
s−1∑

j=1

∫

τj
s−1

F−s−1

∫

γj
n−s

Ψi
n−s

+
R+

s−1∑

l=1

∫

γl
s−1

F−s−1

∫

τ l
n−s

Ψi
n−s = 0.

Furthermore, using (2.18) we obtain that (2.15) is verified.
Let now Φs−1 be a solution of (2.13) in Lp

s−1(∂Ω). Thus, from (2.17) and Theorem
2 in [14], since F−s−1 ∈ W 1,p

s−1(∂Ω) is a closed form, it results that also δHn−s is a closed
form in W 1,p

s−1(∂Ω). Hence, arguing in a manner similar to the proof of the Theorem
1.4 in [15], we have that Φs−1 is a closed form in W 1,p

s−1(∂Ω). Let finally

Bn−s(X) = Hn−s +
1
kn

∫

∂Ω

ωn−s(X, Y ) ∧ Φs−1(Y ).(2.19)

Thus using (11) in [14], we have that Bn−s is a harmonic form. Moreover in Ω it is

δBn−s(X) = δHn−s(X) +
1
kn

∫

∂Ω

δXωn−s(X, Y ) ∧ Φs−1(Y ).

Furthermore by Theorem 1 in [14] δBn−s has interior nontangential trace in Lp
s−1(∂Ω)

and

(δBn−s)− = (δHn−s)− +
1
2
Φs−1 +

1
kn

Ts−1(Φs−1).

From this, being Φs−1 a solution of (2.13), we deduce that (δBn−s)− = Φs−1 and i)
is satisfied.
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ii) and iii) follow from Corollary of Theorem 1.1 and from (2.6) respectively.
2

By applying Lemma 2.1 of [15], from (2.6) we obtain the following
Corollary. If Fs−1 is a form that satisfies the hypotheses of Theorem 2.1, then the
form

Us−2(X) =
(−1)n+s

kn

∫

Ω

δXωn−s+1(X, Y ) ∧ (Fs−1(Y ) + δBn−s(Y ))(2.20)

is a primitive of Fs−1, where Bn−s is the form defined in (2.19) and Φs−1 is a solution
of (2.13).
Theorem 2.2. If Fs−1 is a form that satisfies the hypotheses of Theorem 2.1, and
dF ∗s−1 ∈ Lp

n−s+2(Ω), then there exists a primitive Us−2 of Fs−1 in C2
s−2(Ω)∩D1,p

s−2(Ω).

Proof. Arguing in a manner similar to the proof of (2.9), from (2.20) it follows that

Us−2(X) = − 1
kn

∫

Ω

ωs−2(X, Y ) ∧ dF ∗s−1(Y )

+
1
kn

∫

∂Ω

ωs−2(X, Y ) ∧ ((F ∗s−1)
−(Y ) + (−1)(n−1)(s−1)(dBn−s)−(Y ))

and applying Theorem 1.2 of [15] and Theorem 77.VI of [9], we obtain our claim.
2

Corollary. If Fs−1 satisfies the hypotheses of Theorem 2.1 and F ∗s−1 is a closed form
in Ω, then there exists a primitive Us−2 of Fs−1 in C∞s−2(Ω) ∩N 1,p

s−2(Ω).
Theorem 2.3. If Fs−1 ∈ C0

s−1(Ω) is a closed form and satisfies (2.4), then for all
p > n there exists a primitive Us−2 of Fs−1 in C0

s−2(Ω) ∩D1,p
s−2(Ω).

Proof. Let p > n. Theorem 2.1 implies that there exists a primitive Us−2 of Fs−1 in
D1,p

s−2(Ω). By Theorem 77.VI of [9] it follows that Us−2 ∈ C0,µ(Ω), where µ = 1− n

p
.

2

Our purpose is to obtain the following uniqueness Theorem:
Theorem 2.4. Let Fs−1 and Gn−s+3 be closed forms in C0

s−1(Ω) ∩ C1
s−1(Ω) and

in C0
n−s+3(Ω) ∩ C1

n−s+3(Ω), respectively, such that
∫

τ l
s−1

Fs−1 = 0 and
∫

τj
n−s+3

Gn−s+3 = 0,(2.21)

for all l = 1, . . . , R−s−1 and for all j = 1, . . . , R−n−s+3. Let Ls−2 ∈ C̃1
s−2(∂Ω) be such

that
dLs−2 = Fs−1 on ∂Ω(2.22)

and
∫

γi
s−2

Ls−2 =
∫

Γi
s−1

Fs−1(2.23)

for i = 1, . . . , R+
s−2, where γi

s−2 = ∂Γi
s−1. Then we have

i) if R−n−s+2 = 0, there exists a unique form Us−2 ∈ C1
s−2(Ω) with an interior

nontangential trace in Lp
s−2(∂Ω) such that
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dUs−2 = Fs−1 in Ω, dU∗
s−2 = Gn−s+3 in Ω(2.24)

and

U−
s−2 = Ls−2 on ∂Ω;(2.25)

ii) if R−n−s+2 > 0, then for any sequence (αi)1≤i≤R−
n−s+2

in R there exists a unique

form Us−2 ∈ C1
s−2(Ω) with interior nontangential trace in Lp

s−2(∂Ω) satisfying (2.24),
(2.25), and

∫

ti
n−s+2

U∗
s−2 = αi,(2.26)

for all i = 1, . . . , R−n−s+2.

Proof. By applying Theorems 2.1 and 2.3 to forms Fs−1 and Gn−s+3, it results
that there exist two forms Us−2 ∈ C0

s−2(Ω) ∩ C1
s−2(Ω) and V n−s+2 ∈ C0

n−s+2(Ω) ∩
C1

n−s+2(Ω), such that in Ω

dUs−2 = Fs−1, dU
∗
s−2 = 0(2.27)

and

dV n−s+2 = Gn−s+3, dV
∗
n−s+2 = 0.(2.28)

Let Kn−s+1 ∈ C2
n−s+1(Ω) ∩ N 1,p

n−s+1(Ω) and Ms−3 ∈ C2
s−3(Ω) ∩ N 1,p

s−3(Ω) be two
arbitrary harmonic forms in Ω. Thus if we let

W s−2 = Us−2 + (−1)s(n−1)V
∗
n−s+2(2.29)

and

Us−2 = W s−2 + δKn−s+1 + dMs−3,(2.30)

in Ω, it follows that W s−2 ∈ C̃1
s (Ω), dUs−2 = Fs−1 and dU∗

s−2 = Gn−s+3 in Ω.
We want to show that there exist Kn−s+1 and Ms−3 such that Us−2 satisfies (2.25)

and (2.26). In order to do this let

Ms−3(X) =
R−

n−s+2∑

k=1

βk

∫

∂Ω

ωs−3(X, Y ) ∧ (Ψk
n−s+2)(Y ),(2.31)

where (βk)1≤k≤R−
n−s+2

is an arbitrary sequence in R and (Ψk
n−s+2)1≤k≤R−

n−s+2
is a

base of Ker(T̃ ′n−s+2) such that for h, i = 1, . . . , R−n−s+2 and for l = 1, . . . , R+
n−s+2 we

have (see: Theorem 8 in [14])
∫

τh
n−s+2

Ψi
n−s+2 = δih and

∫

γl
n−s+2

Ψi
n−s+2 = 0.(2.32)

Since Ψi
n−s+2 belongs to Ker(T̃ ′n−s+2), Theorem 4 in [14] implies that Ψi

n−s+2 is a
closed form in W 1,q

n−s+2(∂Ω) for any q > 1. Using Theorem 72.V in [9] we have that
Ms−3 is a continuous form in Rn. Moreover, by Theorems 1 and 2 in [14], it follows
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that Ms−3 is harmonic form in Rn \∂Ω with interior and exterior nontangential trace
in Lq

n−s+2(∂Ω) for any q > 1, and (δMs−3)+ = 0. Furthermore, from Theorem 2.1 in
[13] it follows that δMs−3 ∈ Lq

n−s+2(R
n \Ω) for any q > 1. By applying Theorem 11,

p. 121 in [10], we have
∫

Rn\Ω
dMs−3 ∧ δMs−3 =

∫

∂Ω

Ms−3 ∧ (δMs−3)+ = 0.

We deduce that dMs−3 = 0 in Rn \Ω. Thus, for all Φn−s+1 ∈ C̃n−s+1(∂Ω), it results
that

∫

∂Ω

(dMs−3)− ∧ Φn−s+3 =
∫

∂Ω

Ms−3 ∧ dΦn−s+3 =
∫

∂Ω

(dMs−3)+ ∧ Φn−s+3 = 0.

Hence, by Lemma 3.1 in [13], we obtain (dMs−3)− = 0. From this, if we require that
the form Us−2, defined in (2.30), satisfies the boundary condition (2.25), we have

(δKn−s+1)− = Ls−2 −W s−2 on ∂Ω.(2.33)

Let 1 < p < ∞. From (2.22), (2.27), and (2.28) it follows that Ls−2−W s−2 is a closed
form of W 1,p

s−2(∂Ω), instead from Theorem 1.3 and (2.23) we have
∫

γi
s−2

(Ls−2 −W s−2) = 0

for any i = 1, . . . , R+
s−2. Hence, using Theorem 1.5 in [15] we obtain that there exists

a form Kn−s+1 ∈ C2
n−s+1(Ω)∩N 1,p

n−s+1(Ω), harmonic in Ω and satisfying (2.33). Now,
since using (2.30) and (2.31)

U∗
s−2(X) = W

∗
s−2(X) + (−1)ns−1dKn−s+1(X)

+
R+

n−s+2∑

k=1

βk

∫

∂Ω

δXωs−3(X, Y ) ∧ (Ψk
n−s+2)(Y ),

we prove the existence of a sequence (βk)1≤k≤R+
n−s+3

in R such that U∗
s−2 satisfies

(2.26). For this purpose, arguing in a manner similar to the proof of the Theorem
(2.2) in [15], it is sufficient to show the existence of a sequence (βk)1≤k≤R+

n−s+3
in R

such that

αi =
∫

ti
n−s+2

(W
∗
s−2 + (−1)(n−1)sdKn−s+1) + βi

∫

Y ∈ci
s−2

δY

∫

X∈ti
n−s+2

ωn−s+2(2.34)

for all i = 1, . . . , R−n−s+2. This is easily seen to be true, because by (27) in [8], it is
∫

Y ∈ci
s−2

δY

∫

X∈ti
n−s+2

ωn−s+2 6= 0.

Thus the existence of a solution of the problem is obtained. Finally to show the
uniqueness of the solution it is sufficient to prove that the homogeneous problem
associated to the above problem is the zero form. Thus, let Us−2 be a solution of
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the homogeneous problem. Hence Us−2 and U∗
s−2 are closed forms in Ω, with interior

nontangential trace of class Lp
s−2(∂Ω), U−

s−2 = 0, and
∫

ti
n−s+2

U∗
s−2 = 0(2.35)

for all i = 1, . . . , R−n−s+2. We now prove that for i = 1, . . . , R−n−s+2

∫

τ i
n−s+2

U∗
s−2 = 0.(2.36)

Let l = 1, . . . , R−n−s+2. If Φs−3 ∈ C̃1
s−3(∂Ω) is a closed form associated to τ i

n−s+2.
Using Definition 5.3 in [13] and (1.14) we have

∫

τ l
n−s+2

U∗
s−2 =

∫

∂Ω

U∗
s−2 ∧ Φs−3 = lim

h

∫

∂Ω

Λ∗h(U∗
s−2) ∧ Φs−3

= lim
h

∫

∂Ωh

U∗
s−2 ∧ Λ−1∗

h (Φs−3) = lim
h

∫

τ l
(n−s+2)h

U∗
s−2

(2.37)

where τ l
(n−s+2)h = Λh(τ l

n−s+2). Since τ l
(n−s+2)h is a C1-differentiable cycle on ∂Ωh,

Ωh ⊂ Ω and ([tin−s+2])1≤i≤R−
n−s+2

is a base of Hn−s+2(Ω), there exists a sequence

(αh
i )1≤i≤R−

n−s+2
in R and a cycle cl

(n−s+3)h C1-differentiable in Ω, such that

τ l
(n−s+2)h =

R−
n−s+2∑

i=1

αh
i tin−s+2 + ∂cl

(n−s+3)h.

Thus, using (2.35), since U∗
s−2 is a closed form in Ω, we have that

∫

τ l
(n−s+2)h

U∗
s−2 =

R−
n−s+2∑

i=1

αh
i

∫

ti
n−s+2

U∗
s−2 +

∫

∂cl
(n−s+2)h

U∗
s−2 = 0.

Moreover using (2.37), it follows (2.36). Hence U∗
s−2 verifies the hypotheses of Corol-

lary of Theorem 2.2. Thus there exists a form

Pn−s+1 ∈ C0
n−s+1(Ω) ∩N 1,p

n−s+1(Ω)

such that

dPn−s+1 = U∗
s−2.(2.38)

From this, since dUs−2 = 0 in Ω and U−
s−2 = 0 on ∂Ω, we obtain that Pn−s+1 is a

solution of the homogeneous Neumann problem. Thus dPn−s+1 = 0 in Ω (see Theorem
2.1 in [15]) and, hence, from (2.38), Us−2 = 0 in Ω.

2
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