The Geometrical Interpretation of Temporal Cone Norm in Almost Minkowski Manifold

Sorin Noaghi
Dedicated to the Memory of Grigorios TSAGAS (1935-2003), President of Balkan Society of Geometers (1997-2003)

Abstract

For almost Minkowski manifolds we prove that the norm determined by a unitary vector field which belongs to the timelike cone is the sum of two fundamental forms induced by the Lorentzian metrics on two submanifolds.

Mathematics Subject Classification: 53C50, 53B30, 53C80.
Key words: almost Minkowski manifold, topological cone norm.

1 Introduction

A Lorentz manifold is a pair (M, g) where M is an $n+1$ dimensional smooth paracompact manifold and g is a global smooth two-times covariant symmetric tensor field which is nondegenerate and has $n-1$ signature.

A time-normalized space-time $[M, g, Z]$ is a Lorentz manifold (M, g) for which a global unitary (i.e., $g(Z, Z)=-1$) tangent vector field Z of timelike vectors is fixed; this will be denoted by $[M, g, Z]$.

Definition 1 An almost Minkowski manifold is a time-normalized space-time $[M, g, Z]$ provided that the distribution

$$
\Delta: x \in M \rightarrow \Delta_{x} \stackrel{\text { def }}{=}\left\{Y \in T_{x} M \mid g(Y, Z)=0\right\}
$$

is totally integrable.
Proposition 2 The necessary and sufficient condition that a time-normalized spacetime manifold $[M, g, Z]$ be an almost Minkowski manifold is the existence of a preferential atlas
$\mathrm{A}=\left\{\left(U_{\alpha}, \chi_{\alpha}\right)\left|\alpha \in \Gamma, \chi_{\alpha}(x)=\left(x^{i}\right), i=\overline{1, n+1} \partial_{n+1}=Z\right|_{U_{\alpha}}\right\}$,
where

$$
\frac{\partial g_{i n+1}}{\partial x^{j}}=\frac{\partial g_{j n+1}}{\partial x^{i}} \forall i, j \in \overline{1, n+1}
$$

[^0]Proof. For X,Y belonging to Δ we have

$$
g(X, Z)=g(Y, Z)=0
$$

which infers

$$
\begin{aligned}
g\left(\nabla_{Y} X, Z\right)+g\left(X, \nabla_{Y} Z\right) & =0 \\
g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X} Z\right) & =0
\end{aligned}
$$

where ∇ is the Levi-Civita connection of Lorentz manifold (M, g). In the local charts of atlas A where $Z=\partial_{n+1}, X=X^{i} \partial_{i}$ and $Y=Y^{j} \partial_{j}$ we have

$$
\begin{aligned}
g([X, Y], Z) & =g\left(\nabla_{X} Y, Z\right)-g\left(\nabla_{Y} X, Z\right)= \\
& =g\left(X, \nabla_{Y} Z\right)-g\left(Y, \nabla_{X} Z\right)= \\
& =X^{i} Y^{j}\left[\Gamma_{j n+1}^{k} g_{i n+1}-\Gamma_{i n+1}^{k} g_{j n+1}\right]= \\
& =X^{i} Y^{j}\left(\frac{\partial g_{i n+1}}{\partial x^{j}}-\frac{\partial g_{j n+1}}{\partial x^{i}}\right)
\end{aligned}
$$

Therefore $[X, Y]$ belongs to Δ if and only if $\frac{\partial g_{i n+1}}{\partial x^{j}}=\frac{\partial g_{j n+1}}{\partial x^{i}}$

Remark 3 The existence of almost Minkowski manifolds is obvious, since it is possible to choose Z so that $g\left(\partial_{i}, Z\right) \partial_{i}$ be irrotational. If (M, g) is stable causal then there exists a real global function f with the gradient ∇f of timelike type, (see e.g. [1], [6]), and the corresponding 1-form of $Z=\frac{1}{\sqrt{-g(\nabla f, \nabla f)}} \nabla f$ closed, and therefore it respects the previous conditions.

Remark 4 If the corank one distribution is not integrable, then any two points can be connected by a curve $\gamma:[0,1] \rightarrow M$ where $g\left(\gamma^{\prime}(t), Z_{\gamma(t)}\right)=0$, according to the Carathéodory theorem, ([3, p.10]).

Definition 5 We define the ordering relation for the elements of $T_{x} M, x \in M$:

$$
X \leq Y \Leftrightarrow Y-X \in K_{x}
$$

where $K_{x}=\left\{X \in T_{x} M \mid g(X, X)<0, g(X, Z)<0\right\}$ is the interior of the timelike cone of the tangent vectors.

From ([4]) we have:

- $\left(T_{x} M, K_{x}\right)$ is a Krein space, $\forall x \in M$
- The map $\left|\left.\right|_{Z}: T_{x} M \rightarrow \mathbf{R},|\mathbf{X}|_{\mathbf{Z}} \stackrel{\text { def }}{=} \min \{\lambda \geq \mathbf{0} \mid-\lambda \mathbf{Z} \leq \mathbf{X} \leq \lambda \mathbf{Z}\}\right.$ is a topological norm of $T_{x} M$, named the Z-norm of the almost Minkowski manifold $[M, g, Z]$.
- An easy calculation implies

$$
\begin{equation*}
|X|_{z}=|g(X, Z)|+\sqrt{g(X, Z)^{2}+g(X, X)} \tag{1.1}
\end{equation*}
$$

Proposition 6 The Z-norm is invariant to a conformal change of Lorentzian metric.
Proof. Let g, \widehat{g} be two conformal metrics (i.e. $g=\widehat{g} \Omega^{2}$). The Z-norms expressions for the two almost Minkowski manifolds are, ([5])

$$
\begin{aligned}
|X|_{Z}^{g} & =\left|\frac{g(X, Z)}{g(Z, Z)}\right|+\sqrt{\left[\frac{g(X, Z)}{g(Z, Z)}\right]^{2}+\frac{g(X, X)}{g(Z, Z)}}= \\
& =\left|\frac{\widehat{g}(X, Z)}{\widehat{g}(Z, Z)}\right|+\sqrt{\left[\frac{\widehat{g}(X, Z)}{\widehat{g}(Z, Z)}\right]^{2}+\frac{\widehat{g}(X, X)}{\widehat{g}(Z, Z)}}=|X|_{Z}^{\widehat{g}}
\end{aligned}
$$

Remark 7 The Z-norm can be defined if the existent condition of the global timelike vector field Z is weakened and replaced with the existence of a line element field which is equivalent to the existence of Lorentzian metrics ([2]).

2 The Z-norm dependence on the first fundamental form of the hypersurface normal to Z

Consider the preferential atlas A of Proposition 2 (this exists, cf. [4]). We note by S the integral submanifold of distribution Δ with $p \in S$. Obviously S is a hypersurface imbedded in M with inclusion map $\theta: S \rightarrow M$. Let $n \in T_{q}^{*} M, q \in S$ be the 1-form $n(X)=g(X, Z), \forall X \in T_{q} M$. This implies $n\left(\theta_{*} X\right)=0, \forall X \in T_{q} M$ and if we denote $H_{q}=\theta_{*}\left(T_{q} S\right)$, this is a hyperplane in $T_{q} M$. If Z is be tangent to $\theta(S)$, then there exist $X \in T_{q} S \backslash\{0\}$ such that $\theta_{*}(X)=Z$ and $-1=g(Z, Z)=g\left(\theta_{*}(X), Z\right)=0$, which is impossible. Therefore Z is not in the tangent space of $\theta(S)$. If $\left\{E_{1}, \ldots, E_{n}\right\}$ is a basis in $T_{q} S$, then $\left\{Z, \theta_{*}\left(E_{1}\right), \ldots, \theta_{*}\left(E_{n}\right)\right\}$ is linearly independent and hence is a basis for $T_{q} M$. The components of g with respect to this basis are

$$
\begin{gathered}
\left(g_{a b}\right)=\left(\begin{array}{cccc}
g(Z, Z) & 0 & \ldots & 0 \\
0 & g\left(\theta_{*}\left(E_{1}\right), \theta_{*}\left(E_{1}\right)\right) & \ldots & g\left(\theta_{*}\left(E_{1}\right), \theta_{*}\left(E_{n}\right)\right) \\
\vdots & \vdots & \vdots & \vdots \\
0 & g\left(\theta_{*}\left(E_{n}\right), \theta_{*}\left(E_{1}\right)\right) & \ldots & g\left(\theta_{*}\left(E_{n}\right), \theta_{*}\left(E_{n}\right)\right)
\end{array}\right)= \\
\\
=\left(\begin{array}{cc}
-1 & 0 \\
0 & {\left[g\left(\theta_{*}\left(E_{i}\right), \theta_{*}\left(E_{j}\right)\right]\right)}
\end{array}\right)
\end{gathered}
$$

Because g has one negative eingenvalue, then $\theta^{*} g$ is positively definite. Let's consider $\theta^{*}: T_{q}^{*} M \rightarrow T_{q}^{*} S$, and $H_{q}^{*}=\left\{\omega \in T_{q}^{*} M \mid \omega(Z)=0\right\}$.

From $\left.\theta^{*}\right|_{H_{q}^{*}}: H_{q}^{*} \rightarrow T_{q}^{*} S$, being obviously a bijection, we denote its inverse by $\widetilde{\theta}_{*}: T_{q}^{*} S \rightarrow H_{q}^{*}$. Therefore there exist two bijections θ_{*} and $\widetilde{\theta}_{*}$ between $T_{q} S$ and H_{q} and respectively between $T_{q}^{*} S$ and H_{q}^{*}. This map can be extended in a usual way to a map $\widetilde{\theta}$ of arbitrary tensors on S to $\theta(S)$ in M. Since n is normal to hypersurface $\theta(S)$, for a given tensor $T \in T_{s, q}^{r} S$ we obtain that $\tilde{\theta}(T)$ has zero transvections with n in all indices:

$$
(\widetilde{\theta} T)_{j_{1} \ldots j_{s}}^{i_{1} . . m . . i_{r}} n_{m}=(\widetilde{\theta} T)_{j_{1} \ldots m . . j_{s}}^{i_{1} \ldots i_{r}} g^{m p} n_{p}=0
$$

Denote by h the metric on $\theta(S)$, defined by $h=\widetilde{\theta}\left(\theta^{*} g\right)$. In the preferential atlas A the components of h are

$$
h_{a b}=g_{a b}+n_{a} n_{b}=g_{a b}+g_{a n+1} g_{b n+1}, \forall a, b \in \overline{1, n+1} .
$$

Proposition 8 The (1.1) tensor associate to h having the components h_{a}^{b} is a projection operator, $h_{a}^{b}=\delta_{a}^{b}+g_{a n+1} \delta_{n+1}^{b}$ and
a) The projection of $X \in T_{q} M$ onto the subspace H_{q} is

$$
h_{a}^{b} X^{a} \partial_{b}=X+g(X, Z) Z
$$

b) The projection of $\omega \in T_{q}^{*} M$ onto the subspace H_{q}^{*} is

$$
h_{a}^{b} \omega_{b} d x^{a}=\omega+\omega(Z) n
$$

Proof.

$$
\begin{array}{ll}
h_{a}^{b} & =h_{a c} g^{c b}=\left(g_{a c}+g_{a n+1} g_{c n+1}\right) g^{c b}=\delta_{a}^{b}+g_{a n+1} \delta_{n+1}^{b} \\
h_{b}^{a} h_{c}^{b} & =\left(\delta_{b}^{a}+g_{b n+1} \delta_{n+1}^{a}\right)\left(\delta_{c}^{b}+g_{c n+1} \delta_{n+1}^{b}\right)=h_{c}^{a} \\
X+g(X, Z) Z & =X^{a} \partial_{a}+X^{a} g_{a n+1} \partial_{n+1}=X^{a}\left(\delta_{a}^{b}+g_{a n+1} \delta_{n+1}^{b}\right) \partial_{b}=h_{a}^{b} X^{a} \partial_{b} \\
\omega+\omega(Z) n & =\omega_{a} d x^{a}+\omega_{n+1} g_{a n+1} d x^{a}=\omega_{a}\left(\delta_{b}^{a}+g_{b n+1} \delta_{n+1}^{a}\right) d x^{b}=h_{b}^{a} \omega_{a} d x^{b}
\end{array}
$$

Remark 9 Analogously we can project the tensor $T \in T\binom{r}{s}_{q} S$ to

$$
\begin{aligned}
& H(T) \in \underbrace{H_{q} \otimes \ldots \otimes H_{q}}_{r \text { times }} \otimes \underbrace{H_{q}^{*} \otimes \ldots \otimes H_{q}^{*}}_{s \text { factors }} \stackrel{\text { def }}{=} H_{s}^{r}(q) \text { via } \\
& H(T)=T+(-1)^{r+s+1} T\left(Z^{*}, . ., Z^{*}, Z, . ., Z\right) \underbrace{Z \otimes \ldots \otimes Z}_{r \text { factors }} \otimes \underbrace{Z^{*} \otimes \ldots \otimes Z^{*}}_{\text {s factors }}
\end{aligned}
$$

One can than verify the relation

$$
H(H(T))=H(T), \forall T \in T\binom{r}{s}_{q} S
$$

Proposition $10\left(S, \theta^{*} g\right)$ is a totally geodesic submanifold
Proof. In the above notation, the coordinates of the second fundamental form of S are ([1, p. 46])

$$
\chi_{a b}=h_{a}^{c} h_{b}^{d} n_{c ; d}=h_{a}^{c} h_{b}^{d} g_{c n+1 ; d}=0
$$

Remark 11 We will denote the covariant differentiation with respect to the LeviCivita connection of $\left(S, \theta^{*} g\right)$ by double stroke.

Then for any tensor $T \in T\binom{r}{s}_{q} S$ we have:

$$
H(T)_{j_{1} \ldots j_{s} \| m}^{i_{1} \ldots i_{r}}=\bar{T}_{l_{1} \ldots l_{s} ; p}^{k_{1} \ldots k_{r}} h_{k_{1}}^{i_{1}} \ldots h_{k_{r}}^{i_{r}} h_{j_{1}}^{l_{1}} \ldots h_{j_{s}}^{l_{s}} h_{m}^{p}
$$

where \bar{T} is an extension of $H(T)$ to a neighborhood of $\theta(S)$. This formula is correct because the double stroke of the induced metric is zero and the torsion vanishes,

$$
\begin{aligned}
h_{a b \| c} & =\left(g_{e f}+g_{e n+1} g_{f n+1}\right) ; i h_{a}^{e} h_{b}^{f} h_{c}^{i}=0 \\
f_{\| a b} & =h_{a}^{c} h_{b}^{d} f_{; c d}=h_{a}^{c} h_{b}^{d} f_{; d c}=f_{\| b a}
\end{aligned}
$$

For $p \in M$, we denote by s the 1-dimensional submanifold which passes through p and $T_{q} s=\left\langle Z_{q}\right\rangle, \forall q \in s$. The local imbedding map $i: s \hookrightarrow M$ is the inclusion which determines the applications $i_{*, q}: T_{q} s \rightarrow T_{q} M$ and $i_{q}^{*}: T_{q}^{*} M \rightarrow T_{q}^{*} s$. Denote $N_{q}=i_{*, q}\left(T_{q} s\right), \quad N_{q}^{*}=\left\{\omega \in T_{q}^{*} M \mid \omega(X)=g(X, Z), \lambda \in \mathbf{R}\right\}$; it is obvious that $i_{*, q}: T_{q} s \rightarrow N_{q}$ and $\left.i_{q}^{*}\right|_{N_{q}^{*}}: N_{q}^{*} \rightarrow T_{q}^{*} s$ are bijections.

For $l=\left[\left.i_{q}^{*}\right|_{N_{q}^{*}}\right]^{-1} \circ\left(i_{q}^{*} g\right)$, we have $l(X, Y)=-\overline{X Y}$, where

$$
X=\bar{X} Z_{q}, Y=\bar{Y} Z_{q}, X, Y \in T_{q} s
$$

l must be a two symmetric 2-form negatively definite on $i(s)$ and for $\forall q \in \theta(S) \cap i(s)$

$$
T_{q} M=H_{q} \oplus N_{q}, T_{q}^{*} M=H_{q}^{*} \oplus N_{q}^{*}
$$

Proposition 12 The Z-norm on the almost Minkowski manifold $[M, g, Z]$ is the sum of the Riemannian norms associated to the projections onto the submanifolds $(\theta(h), h)$ and $(i(s),-l)$.

Proof. In $(\theta(S), h)$ the Riemannian norm is

$$
|X|_{h}=\sqrt{h(X, X)}=\sqrt{g(X, X)+g(X, Z)^{2}}, \forall X \in H_{q}
$$

In $(i(s),-l)$ the Riemannian norm is

$$
|X|_{l}=\sqrt{-l(X, X)}=|\bar{X}|=|g(X, Z)|, \forall X \in N_{q}
$$

If $X \in T_{q} M=H_{q} \oplus N_{q}$, by Proposition 8 a) we have $X=X_{1}+X_{2}$, where $X_{1}=X+g(X, Z) Z$ and $X_{2}=-g(X, Z) Z$;

$$
\begin{aligned}
h\left(X_{1}, X_{1}\right) & =g\left(X_{1}, X_{1}\right)+g\left(X_{1}, Z\right)^{2}=g(X, X)+g(X, Z)^{2} \\
l\left(X_{2} X_{2}\right) & =-g(X, Z)^{2}
\end{aligned}
$$

Then

$$
\begin{aligned}
\left|X_{1}\right|_{h}+\left|X_{2}\right|_{l} & =\sqrt{-l\left(X_{2}, X_{2}\right)}+\sqrt{h\left(X_{1}, X_{1}\right)}= \\
& =|g(X, Z)|+\sqrt{g(X, X)+g(X . Z)^{2}} \stackrel{1.1}{=}|X|_{Z}
\end{aligned}
$$

References

[1] S.W. Hawking, The existence of cosmic time functions, Proc. Roy. Soc. Lond. A308, 1968, 433-435.
[2] S.W. Hawking, G.F.R. Ellis, The large scalar structure of space-time, Cambridge University Press, 1973.
[3] R. Montgomery, A tour of subriemannian geometries, their geodesics and applications, Math. Surveys and Monographs, 1991.
[4] D.I.Papuc, The geometry of vector bundles endowen with a cone field, Gen. Math. 5, (1997), 313-323.
[5] D.I.Papuc, A new geometry of Lorentzian manifold, Publ. Math. Debrecen Tomus 52, 1998, Fasc 1-2, 145-158.
[6] H.J. Seifert, Smoothing and extending cosmic time functions, Gen. Rel. Grav. 8, 1977, 815-831.

University of Petroşani
University Street, No:20
2675 Petroşani, Romania
email:snoaghi@mail.recep.ro

[^0]: Balkan Journal of Geometry and Its Applications, Vol.8, No.2, 2003, pp. 37-42.
 (C) Balkan Society of Geometers, Geometry Balkan Press 2003.

