Euler - Savary's Formula on Minkowski Geometry

T. Ikawa
Dedicated to the Memory of Grigorios TSAGAS (1935-2003), President of Balkan Society of Geometers (1997-2003)

Abstract

We consider a base curve, a rolling curve and a roulette on Minkowski plane and give the relation between the curvatures of these three curves. This formula is a generalization of the Euler - Savary's formula of Euclidean plane.

Mathematics Subject Classifications: 53A35, 53B30
Key words: base curve, curvature, Euler - Savary's formula, rolling curve, roulette.

1 Introduction

On the Euclidean plane \mathbf{E}^{2}, we consider two curves c_{B} and c_{R}. Let P be a point relative to c_{R}. When c_{R} rolles without splitting along c_{B}, the locus of the point P makes a curve, say c_{L}. On this set of curves, $c_{B}, c_{R} c_{L}$ are called the base curve, rolling curve and roulette, respectively. For example, if c_{B} is a straight line, c_{R} is a quadratic curve and P is a focus of c_{R}, then c_{L} is the Delaunay curve that are used to study surfaces of revolution with the constant mean curvature.

Since this "rolling situation" makes up three curves, it is natural to ask questions: what is the relation between the curvatures of these curves, when given two curves, can we find the third one? Many geometers studied these questions and generalized the situation [3]. Today the relation of the curvatures is called as the Euler - Savary's formula.

However, the "rolling situation" on the Minkowski geometry is not studied yet. Only the Delaunay curve is considered to study surfaces of revolution with the constant mean curvature [1]. The purpose of this paper is to give answers to the abovementioned general questions on the Minkowski geometry. After the preliminaries of section 2 , in section 3 , we consider the associated curve that is the key concept to study the roulette, for, the roulette is one of associated curves of the base curve. Section 4 is devoted to give the Euler - Savary's formula on the Minkowski plane. In the final section, we determine the third curve from other two.

[^0]
2 Preliminaries

Let \mathbf{L}^{2} be the Minkowski plane with metric $g=(+,-)$. A vector X of \mathbf{L}^{2} is said to be spacelike if $g(X, X)>0$ or $X=0$, timelike if $g(X, X)<0$ and null if $g(X, X)=0$ and $X \neq 0$.

A curve c is a smooth mapping $c: I \rightarrow \mathbf{L}^{2}$ from an open interval I into \mathbf{L}^{2}. Let t be a parameter of c. By $c(t)=(x(t), y(t))$, we denote the orthogonal coordinate representation of $c(t)$. The vector field $\frac{d c}{d t}=\left(\frac{d x}{d t}, \frac{d y}{d t}\right)=: X$ is called the tangent vector field of the curve $c(t)$. If the tangent vector field X of $c(t)$ is a spacelike, timelike, or null, then the curve $c(t)$ is called spacelike, timelike, or null, respectively.

In the rest of this paper, we mostly consider non-null curves. When the tangent vector field X is non-null, we can have the arc length parameter s and have the Frenet formula

$$
\begin{equation*}
\frac{d X}{d s}=k Y, \quad \frac{d Y}{d s}=k X \tag{2.1}
\end{equation*}
$$

where k is the curvature of $c(s)$ (cf. [2]). The vector field Y is called the normal vector field of the curve $c(s)$. Remark that we have the same representation of the Frenet formula regardless of whether the curve is spacelike or timelike.

If $\phi(s)$ is the slope angle of the curve, then we have $\frac{d \phi}{d s}=k$.

3 Associated curve

In this section, we give general formulas of the associated curve. Let $c(s)$ be a non-null curve with the arc length parameter s, and $\{X, Y\}$ the Frenet frame of $c(s)$.

If we put

$$
\begin{equation*}
c_{A}=c(s)+u_{1}(s) X+u_{2}(s) Y \tag{3.1}
\end{equation*}
$$

then $c_{A}(s)$ generally makes a curve. This curve is called the associated curve of $c(s)$.
Remark that $\left\{u_{1}(s), u_{2}(s)\right\}$ is a relative coordinate of $c_{A}(s)$ with respect to $\{c(s), X, Y\}$.

If we put

$$
\frac{d c_{A}}{d s}=\frac{\delta u_{1}}{d s} X+\frac{\delta u_{2}}{d s} Y
$$

then, since

$$
\frac{d c_{A}}{d s}=\frac{d c}{d s}+\frac{d u_{1}}{d s} X+u_{1} \frac{d X}{d s}+\frac{d u_{2}}{d s} Y+u_{2} \frac{d Y}{d s}=\left(1+\frac{d u_{1}}{d s}+k u_{2}\right) X+\left(k u_{1}+\frac{d u_{2}}{d s} Y\right)
$$

by virtue of (2.1), we have

$$
\begin{align*}
& \frac{\delta u_{1}}{d s}=\frac{d u_{1}}{d s}+k u_{2}+1 \tag{3.2}\\
& \frac{\delta u_{2}}{d s}=\frac{d u_{2}}{d s}+k u_{1}
\end{align*}
$$

Let s_{A} be the arc length parameter of c_{A}. Then, from

$$
\begin{gathered}
\frac{d c_{A}}{d s}=\frac{d c_{A}}{d s_{A}} \frac{d s_{A}}{d s}=v_{1} X+v_{2} Y, \\
v_{1}:=\frac{d u_{1}}{d s}+k u_{2}+1, \quad v_{2}:=\frac{d u_{2}}{d s}+k u_{1}
\end{gathered}
$$

the Frenet frame $\{Z, W\}$ of c_{A} has following equations;

$$
\begin{align*}
\frac{d Z}{d s_{A}} & =k_{A} W \tag{3.3}\\
\frac{d W}{d s_{A}} & =k_{A} Z
\end{align*}
$$

where k_{A} is the curvature of c_{A}.
Let θ (resp. ω) be the slope angle of c (resp. c_{A}). Then

$$
\begin{equation*}
k_{A}=\frac{d \omega}{d s_{A}}=\frac{d \omega}{d s_{A}} \frac{d s}{d s_{A}}=\left(k+\frac{d \phi}{d s}\right) \frac{1}{\sqrt{\left|v_{1}^{2}-v_{2}^{2}\right|}} \tag{3.4}
\end{equation*}
$$

where $\phi=\omega-\theta$.
If c_{A} is space-like, then we can put

$$
\begin{aligned}
\cosh \phi & =\frac{v_{1}}{\sqrt{v_{1}^{2}-v_{2}^{2}}} \\
\sinh \phi & =\frac{v_{2}}{\sqrt{v_{1}^{2}-v_{2}^{2}}}
\end{aligned}
$$

Since

$$
\frac{d \phi}{d s}=\frac{d}{d s}\left(\cosh ^{-1} \frac{v_{1}}{\sqrt{v_{1}^{2}-v_{2}^{2}}}\right)
$$

(3.4) reduces to

$$
k_{A}=\left(k+\frac{v_{1} v_{2}^{\prime}-v_{1}^{\prime} v_{2}}{v_{1}^{2}-v_{2}^{2}}\right) \frac{1}{\sqrt{v_{1}^{2}-v_{2}^{2}}}
$$

where dash represents the derivative with respect to s.
If c_{A} is time-like, $\operatorname{since} \sinh \phi=\frac{v_{1}}{\sqrt{v_{2}^{2}-v_{1}^{2}}}$, we have

$$
k_{A}=\left(k+\frac{v_{1}^{\prime} v_{2}-v_{1} v_{2}^{\prime}}{v_{2}^{2}-v_{1}^{2}}\right) \frac{1}{\sqrt{v_{2}^{2}-v_{1}^{2}}}
$$

4 Euler - Savary's formula

In this section, we consider the roulette and give the Euler - Savary's formula.
Let c_{B} (resp. c_{R}) be the base (resp. rolling) curve and k_{B} (resp. k_{R}) the curvature of c_{B} (resp. c_{R}). Let P be a point relative to c_{R}. By c_{L}, we denote the roulette of the locus of P.

We can consider that c_{L} is an associated curve of c_{B}, then the relative coordinate $\{x, y\}$ of c_{L} with respect to c_{B} satisfies

$$
\begin{align*}
\frac{\delta x}{d s_{B}} & =\frac{d x}{d s_{B}}+k_{B} y+1 \\
\frac{\delta y}{d s_{B}} & =\frac{d y}{d s_{B}}+k_{B} x \tag{4.1}
\end{align*}
$$

by virtue of (3.2).
Since c_{R} rolles without splitting along c_{B}, at each point of contact, we can consider $\{x, y\}$ is a relative coordinate of c_{L} with respect to c_{R} for a suitable parameter s_{R}. In this case, the associated curve is reduced to a point P. Hence it follows that

$$
\begin{align*}
& \frac{\delta x}{d s_{R}}=\frac{d x}{d s_{R}}+k_{R} y+1=0 \\
& \frac{\delta x}{d s_{R}}=\frac{d x}{d s_{R}}+k_{R} y=0 \tag{4.2}
\end{align*}
$$

Substituting these equations into (4.1), we have

$$
\begin{equation*}
\frac{\delta x}{d s_{B}}=\left(k_{B}-k_{R}\right) y, \quad \frac{\delta y}{d s_{B}}=\left(k_{B}-k_{R}\right) x \tag{4.3}
\end{equation*}
$$

so

$$
\begin{equation*}
\frac{\delta x}{\delta y}=\frac{x}{y} \tag{4.4}
\end{equation*}
$$

Proposition 4.1 Let c_{R} rolles without splitting along c_{B} from the starting time $t=0$. Then at each time $t=t_{0}$ of this motion, the normal at the point $c_{L}\left(t_{0}\right)$ passes through the point of contact $c_{B}\left(t_{0}\right)=c_{R}\left(t_{0}\right)$.

Suppose that c_{L} is spacelike. Then, from (4.3),

$$
\begin{equation*}
0<\left(\frac{\delta x}{d s_{B}}\right)^{2}-\left(\frac{\delta y}{d s_{B}}\right)^{2}=\left(k_{B}-k_{R}\right)^{2}\left(y^{2}-x^{2}\right) . \tag{4.5}
\end{equation*}
$$

Hence we can put

$$
x=\sinh \phi, \quad y=\cosh \phi
$$

Differentiating these equations, we have

$$
\begin{aligned}
\frac{d x}{d s_{R}} & =\frac{d r}{d s_{R}} \sinh \phi+r \cosh \phi \frac{d \phi}{d s_{R}}=-1-k_{R} r \cosh \phi \\
\frac{d y}{d s_{R}} & =\frac{d r}{d s_{R}} \cosh \phi+r \sinh \phi \frac{d \phi}{d s_{R}}=-k_{R} r \sinh \phi
\end{aligned}
$$

by virtue of (4.2). From these equations, it follows that

$$
r \frac{d \phi}{d s_{R}}=-\cosh \phi-k_{r} r
$$

Therefore, substituting this equation into (3.4), we have

$$
r k_{L}= \pm 1-\frac{\cosh \phi}{r\left|k_{B}-k_{R}\right|}
$$

If c_{L} is timelike, by similar calculation, we have

$$
r k_{L}= \pm 1+\frac{\sinh \phi}{r\left|k_{B}-k_{R}\right|}
$$

We can easily see that the case c_{L} is null makes a contradiction.
Theorem 4.1 On the Minkowski plane \mathbf{L}^{2}, suppose that a curve c_{R} rolles without splitting along a curve c_{B}. Let c_{L} be a locus of a point P that is relative to c_{R}. Let Q be a point on c_{L} and R a point of contact of c_{B} and c_{R} corresponds to Q relative to the rolling relation. By (r, ϕ), we denote a polar coordinate of Q with respect to the origin R and the base line $\left.c_{B}^{\prime}\right|_{R}$. Then curvatures k_{B}, k_{R} and k_{L} of c_{B}, c_{R} and c_{L}, respectively, satisfies

$$
\begin{aligned}
r k_{L} & = \pm 1-\frac{\cosh \phi}{r\left|k_{B}-k_{R}\right|} \quad\left(\text { when } c_{L} \quad \text { is space like }\right), \\
r k_{L} & = \pm 1+\frac{\sinh \phi}{r\left|k_{B}-k_{R}\right|} \quad\left(\text { when } c_{L} \text { is time like }\right) .
\end{aligned}
$$

5 Determining the curve

Since the roulette is a locus of a point, it is determined by the base curve and the rolling curve. In theis section, we consider the converse problem.

First suppose that a base curve c_{B} and a roulette c_{L} is given.
Let $\left(x\left(s_{B}\right), y\left(s_{B}\right)\right)$ be the orthogonal coordinates of the base curve c_{B} with the arc length parameter s_{B}. For a point Q of c_{B}, draw the normal to the roulette c_{L}. Let R be the foot of this normal with the orthogonal coordinate $\left(f\left(s_{B}\right), g\left(s_{B}\right)\right)$. Then the length of $Q R$ is

$$
\begin{equation*}
Q R=\sqrt{\left|\left(f\left(s_{B}\right)-x\left(s_{B}\right)\right)^{2}-\left(g\left(s_{B}\right)-y\left(s_{B}\right)\right)^{2}\right|} \tag{5.1}
\end{equation*}
$$

If we consider (5.1) on the rolling curve c_{R}, this equation represents the length of the point P relative to c_{R} and a point of c_{R}. Hence the orthogonal coordinate $\left(u\left(s_{B}\right), v\left(s_{B}\right)\right)$ of c_{R} is given by the equations

$$
\begin{gathered}
u\left(s_{B}\right)^{2}-v\left(s_{B}\right)^{2}=\left(f\left(s_{B}\right)-x\left(s_{B}\right)\right)^{2}-\left(g\left(s_{B}\right)-y\left(s_{B}\right)\right)^{2}, \\
\left(\frac{d u}{d s_{B}}\right)^{2}-\left(\frac{d v}{d s_{B}}\right)^{2}= \pm 1
\end{gathered}
$$

the sign of ± 1 depends on spacelike or timelike of c_{R}.
Next suppose that a rolling curve c_{R} and a roulette c_{L} is given.
Let $\left(x\left(s_{L}\right), y\left(s_{L}\right)\right)$ be the orthogonal coordinate of c_{L} with arclength parameter s_{L}. Suppose that the polar coordinate $r\left(s_{R}\right)$ of c_{R} is given by the arc length parameter s_{R} of c_{R}.

Since the normal of c_{L} is $\left(\frac{d y}{d s_{L}}, \frac{d x}{d s_{L}}\right)$, a point (u, v) of the base curve c_{B} is given by

$$
\begin{align*}
& u=x\left(s_{L}\right) \pm r\left(s_{R}\right) \frac{d y}{d s_{L}} \tag{5.2}\\
& v=y\left(s_{L}\right) \pm r\left(s_{R}\right) \frac{d x}{d s_{L}}
\end{align*}
$$

Then, from

$$
\begin{aligned}
\frac{d u}{d s_{R}} & =\frac{d x}{d s_{L}} \frac{d s_{L}}{d s_{R}} \pm \frac{d r}{d s_{R}} \frac{d y}{d s_{L}} \pm r \frac{d}{s_{L}}\left(\frac{d y}{d s_{L}}\right) \frac{d s_{L}}{d s_{R}} \\
\frac{d v}{d s_{R}} & =\frac{d y}{d s_{L}} \frac{d s_{L}}{d s_{R}} \pm \frac{d r}{d s_{R}} \frac{d x}{d s_{L}} \pm r \frac{d}{s_{L}}\left(\frac{d x}{d s_{L}}\right) \frac{d s_{L}}{d s_{R}}
\end{aligned}
$$

we have

$$
\begin{aligned}
\frac{d u}{d s_{R}} & =\frac{d x}{d s_{L}}\left(1 \pm r k_{L}\right) \frac{d s_{L}}{d s_{R}} \pm \frac{d r}{d s_{R}} \frac{d y}{d s_{L}} \\
\frac{d v}{d s_{R}} & =\frac{d y}{d s_{L}}\left(1 \pm r k_{L}\right) \frac{d s_{L}}{d s_{R}} \pm \frac{d r}{d s_{R}} \frac{d x}{d s_{L}}
\end{aligned}
$$

where k_{L} is the curvature of c_{L}.
Since s_{R} is also the arc length of c_{B}, it follows that

$$
\left(\frac{d u}{d s_{R}}\right)^{2}-\left(\frac{d v}{d s_{R}}\right)^{2}=\left(\frac{d s_{L}}{d s_{R}}\right)^{2}\left(1 \pm r k_{L}\right)^{2}-{\frac{d r^{2}}{d s_{R}}}^{2}= \pm 1
$$

where the sign of ± 1 depends on spacelike or timelike of c_{B}. From this differential equation, we can solve $s_{L}=s_{L}\left(s_{R}\right)$. Substituting this equation into (5.2), we can have the orthogonal coordinate of c_{B}.

The solvability of these differential equations is easily checked. For example, we have solutions like that : c_{B} is x-axis, c_{R} is quadratic curve and c_{L} is "Delaunay curve" (cf. [1]).

References

[1] J. Hano, and K. Nomizu, Surfaces of revolution with constant mean curvature in Lorentz-Minkowski space, Tohoku Math. J., 36 (1984), 427-437.
[2] T. Ikawa, On curves and submanifolds in an indefinite-Riemannian manifold, Tsukuba J. Math., 9 (1985), 353-371.
[3] T. Kubota, Ueber die Bewegung einer Kurve, die auf einer anderen Kurve rollt, Science Rep. of the Tôhoku Imperial Univ., 9 (1920), 251-274.
[4] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, 1983.

Nihon University, Dep. of Math., School of Medicine,
Itabashi, Tokyo, Japan, 173
email:tikawa@med.nihon-u.ac.jp

[^0]: Balkan Journal of Geometry and Its Applications, Vol.8, No.2, 2003, pp. 31-36.
 (c) Balkan Society of Geometers, Geometry Balkan Press 2003.

