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Abstract

We consider a base curve, a rolling curve and a roulette on Minkowski plane
and give the relation between the curvatures of these three curves. This formula
is a generalization of the Euler - Savary’s formula of Euclidean plane.
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1 Introduction

On the Euclidean plane E2, we consider two curves cB and cR. Let P be a point
relative to cR. When cR rolles without splitting along cB , the locus of the point P
makes a curve, say cL. On this set of curves, cB , cR cL are called the base curve,
rolling curve and roulette, respectively. For example, if cB is a straight line, cR is a
quadratic curve and P is a focus of cR, then cL is the Delaunay curve that are used
to study surfaces of revolution with the constant mean curvature.

Since this ”rolling situation” makes up three curves, it is natural to ask questions:
what is the relation between the curvatures of these curves, when given two curves,
can we find the third one? Many geometers studied these questions and generalized
the situation [3]. Today the relation of the curvatures is called as the Euler - Savary’s
formula.

However, the ”rolling situation” on the Minkowski geometry is not studied yet.
Only the Delaunay curve is considered to study surfaces of revolution with the con-
stant mean curvature [1]. The purpose of this paper is to give answers to the above-
mentioned general questions on the Minkowski geometry. After the preliminaries of
section 2, in section 3, we consider the associated curve that is the key concept to
study the roulette, for, the roulette is one of associated curves of the base curve. Sec-
tion 4 is devoted to give the Euler - Savary’s formula on the Minkowski plane. In the
final section, we determine the third curve from other two.
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2 Preliminaries

Let L2 be the Minkowski plane with metric g = (+,−). A vector X of L2 is said to
be spacelike if g(X,X) > 0 or X = 0, timelike if g(X, X) < 0 and null if g(X, X) = 0
and X 6= 0.

A curve c is a smooth mapping c : I → L2 from an open interval I into L2. Let
t be a parameter of c. By c(t) = (x(t), y(t)), we denote the orthogonal coordinate

representation of c(t). The vector field
dc

dt
=

(
dx

dt
,
dy

dt

)
=: X is called the tangent

vector field of the curve c(t). If the tangent vector field X of c(t) is a spacelike,
timelike, or null, then the curve c(t) is called spacelike, timelike, or null, respectively.

In the rest of this paper, we mostly consider non-null curves. When the tangent
vector field X is non-null, we can have the arc length parameter s and have the Frenet
formula

dX

ds
= kY,

dY

ds
= kX,(2.1)

where k is the curvature of c(s) (cf. [2]). The vector field Y is called the normal vector
field of the curve c(s). Remark that we have the same representation of the Frenet
formula regardless of whether the curve is spacelike or timelike.

If φ(s) is the slope angle of the curve, then we have dφ
ds = k.

3 Associated curve

In this section, we give general formulas of the associated curve. Let c(s) be a non-null
curve with the arc length parameter s, and {X, Y } the Frenet frame of c(s).

If we put
cA = c(s) + u1(s)X + u2(s)Y,(3.1)

then cA(s) generally makes a curve. This curve is called the associated curve of c(s).
Remark that {u1(s), u2(s)} is a relative coordinate of cA(s) with respect to

{c(s), X, Y }.
If we put

dcA

ds
=

δu1

ds
X +

δu2

ds
Y,

then, since

dcA

ds
=

dc

ds
+

du1

ds
X+u1

dX

ds
+

du2

ds
Y +u2

dY

ds
=

(
1 +

du1

ds
+ ku2

)
X+

(
ku1 +

du2

ds
Y

)
,

by virtue of (2.1), we have

δu1

ds
=

du1

ds
+ ku2 + 1,

δu2

ds
=

du2

ds
+ ku1.

(3.2)

Let sA be the arc length parameter of cA. Then, from
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dcA

ds
=

dcA

dsA

dsA

ds
= v1X + v2Y,

v1 :=
du1

ds
+ ku2 + 1, v2 :=

du2

ds
+ ku1,

the Frenet frame {Z, W} of cA has following equations;

dZ

dsA
= kAW,

dW

dsA
= kAZ,

(3.3)

where kA is the curvature of cA.
Let θ (resp. ω) be the slope angle of c (resp. cA). Then

kA =
dω

dsA
=

dω

dsA

ds

dsA
=

(
k +

dφ

ds

)
1√

|v2
1 − v2

2 |
,(3.4)

where φ = ω − θ.
If cA is space-like, then we can put

cosh φ =
v1√

v2
1 − v2

2

,

sinhφ =
v2√

v2
1 − v2

2

.

Since
dφ

ds
=

d

ds

(
cosh−1 v1√

v2
1 − v2

2

)
,

(3.4) reduces to

kA =
(

k +
v1v

′
2 − v′1v2

v2
1 − v2

2

)
1√

v2
1 − v2

2

,

where dash represents the derivative with respect to s.
If cA is time-like, since sinh φ =

v1√
v2
2 − v2

1

, we have

kA =
(

k +
v′1v2 − v1v

′
2

v2
2 − v2

1

)
1√

v2
2 − v2

1

,

4 Euler - Savary’s formula

In this section, we consider the roulette and give the Euler - Savary’s formula.
Let cB (resp. cR ) be the base (resp. rolling) curve and kB (resp. kR) the curvature

of cB (resp. cR). Let P be a point relative to cR. By cL, we denote the roulette of the
locus of P .

We can consider that cL is an associated curve of cB , then the relative coordinate
{x, y} of cL with respect to cB satisfies
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δx

dsB
=

dx

dsB
+ kBy + 1,

δy

dsB
=

dy

dsB
+ kBx,

(4.1)

by virtue of (3.2).
Since cR rolles without splitting along cB , at each point of contact, we can consider

{x, y} is a relative coordinate of cL with respect to cR for a suitable parameter sR.
In this case, the associated curve is reduced to a point P . Hence it follows that

δx

dsR
=

dx

dsR
+ kRy + 1 = 0,

δx

dsR
=

dx

dsR
+ kRy = 0.

(4.2)

Substituting these equations into (4.1), we have

δx

dsB
= (kB − kR)y,

δy

dsB
= (kB − kR)x,(4.3)

so
δx

δy
=

x

y
.(4.4)

Proposition 4.1 Let cR rolles without splitting along cB from the starting time
t = 0. Then at each time t = t0 of this motion, the normal at the point cL(t0) passes
through the point of contact cB(t0) = cR(t0).

Suppose that cL is spacelike. Then, from (4.3),

0 <

(
δx

dsB

)2

−
(

δy

dsB

)2

= (kB − kR)2(y2 − x2).(4.5)

Hence we can put
x = sinh φ, y = cosh φ.

Differentiating these equations, we have

dx

dsR
=

dr

dsR
sinhφ + r coshφ

dφ

dsR
= −1− kRr cosh φ,

dy

dsR
=

dr

dsR
cosh φ + r sinhφ

dφ

dsR
= −kRr sinhφ,

by virtue of (4.2). From these equations, it follows that

r
dφ

dsR
= − cosh φ− krr.

Therefore, substituting this equation into (3.4), we have

rkL = ±1− cosh φ

r|kB − kR| .
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If cL is timelike, by similar calculation, we have

rkL = ±1 +
sinhφ

r|kB − kR| .

We can easily see that the case cL is null makes a contradiction.

Theorem 4.1 On the Minkowski plane L2, suppose that a curve cR rolles without
splitting along a curve cB. Let cL be a locus of a point P that is relative to cR. Let Q
be a point on cL and R a point of contact of cB and cR corresponds to Q relative to
the rolling relation. By (r, φ), we denote a polar coordinate of Q with respect to the
origin R and the base line c′B |R. Then curvatures kB , kR and kL of cB , cR and cL,
respectively, satisfies

rkL = ±1− coshφ

r|kB − kR| (when cL is space like),

rkL = ±1 +
sinh φ

r|kB − kR| (when cL is time like).

5 Determining the curve

Since the roulette is a locus of a point, it is determined by the base curve and the
rolling curve. In theis section, we consider the converse problem.

First suppose that a base curve cB and a roulette cL is given.
Let (x(sB), y(sB)) be the orthogonal coordinates of the base curve cB with the

arc length parameter sB . For a point Q of cB , draw the normal to the roulette cL.
Let R be the foot of this normal with the orthogonal coordinate (f(sB), g(sB)). Then
the length of QR is

QR =
√
|(f(sB)− x(sB))2 − (g(sB)− y(sB))2|.(5.1)

If we consider (5.1) on the rolling curve cR, this equation represents the length
of the point P relative to cR and a point of cR. Hence the orthogonal coordinate
(u(sB), v(sB)) of cR is given by the equations

u(sB)2 − v(sB)2 = (f(sB)− x(sB))2 − (g(sB)− y(sB))2,

(
du

dsB

)2

−
(

dv

dsB

)2

= ±1,

the sign of ±1 depends on spacelike or timelike of cR.
Next suppose that a rolling curve cR and a roulette cL is given.
Let (x(sL), y(sL)) be the orthogonal coordinate of cL with arclength parameter

sL. Suppose that the polar coordinate r(sR) of cR is given by the arc length parameter
sR of cR.

Since the normal of cL is
(

dy

dsL
,

dx

dsL

)
, a point (u, v) of the base curve cB is given

by
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u = x(sL)± r(sR)
dy

dsL
,

v = y(sL)± r(sR)
dx

dsL
,

(5.2)

Then, from
du

dsR
=

dx

dsL

dsL

dsR
± dr

dsR

dy

dsL
± r

d

sL

(
dy

dsL

)
dsL

dsR
,

dv

dsR
=

dy

dsL

dsL

dsR
± dr

dsR

dx

dsL
± r

d

sL

(
dx

dsL

)
dsL

dsR
,

we have
du

dsR
=

dx

dsL
(1± rkL)

dsL

dsR
± dr

dsR

dy

dsL
,

dv

dsR
=

dy

dsL
(1± rkL)

dsL

dsR
± dr

dsR

dx

dsL
,

where kL is the curvature of cL.
Since sR is also the arc length of cB , it follows that

(
du

dsR

)2

−
(

dv

dsR

)2

=
(

dsL

dsR

)2

(1± rkL)2 − dr

dsR

2

= ±1,

where the sign of ±1 depends on spacelike or timelike of cB . From this differential
equation, we can solve sL = sL(sR). Substituting this equation into (5.2), we can
have the orthogonal coordinate of cB .

The solvability of these differential equations is easily checked. For example, we
have solutions like that : cB is x-axis, cR is quadratic curve and cL is ”Delaunay
curve” (cf. [1]).
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