Extrema with Constraints on Points and/or Velocities

C. Udrişte, O. Dogaru, M. Ferrara and I. Ţevy

Dedicated to the Memory of Grigorios TSAGAS (1935-2003), President of Balkan Society of Geometers (1997-2003)

Abstract

The main results of this paper refer to three ideas: - to replace the constraints in an optimum problems by a selector of curves; - to reformulate and study extremum problems with point constraints and/or velocity constraints; - to extend the saddle point theory and the Kuhn-Tucker theory to extrema with nonholonomic constraints.

Mathematics Subject Classification 2000: 90C30, 49K24
Key words: nonlinear programming, point constraints, velocity constraints, selector of curves

1 Extremum constrained by a selector of curves

Let D be an open set of \mathbf{R}^{n}. For each point $x \in D$, we denote by Γ_{x} the set of all C^{1} parametrized curves $\alpha: I \rightarrow D$ which passs through the point x at a given moment $t \in I$.
1.1. Definition. Any function

$$
\hat{\Gamma}: D \rightarrow \bigcup_{x \in D} \Gamma_{x}, \quad \hat{\Gamma}(x) \subset \Gamma_{x}
$$

is called selector of curves on D. The elements of $\hat{\Gamma}(x)$ are called admissible curves at the point x.
1.2. Definition. Let $f: D \rightarrow \mathbf{R}$ be a function and $\hat{\Gamma}$ be a selector of curves on D. If

$$
f(\alpha(t)) \geq f\left(x_{0}\right), \quad \forall t \in\left[t_{0}, t_{0}+\varepsilon\right), \quad \forall \alpha \in \hat{\Gamma}\left(x_{0}\right), \quad x_{0}=\alpha\left(t_{0}\right)
$$

then $x_{0} \in D$ is called a minimum point of f constrained by the selector $\hat{\Gamma}$.
Examples. Suppose Γ_{x} is either the set of regular curves at x or the set of C^{2} curves having x either as a regular point or as singular point of order 2. Define the selector $\hat{\Gamma}$ by $\hat{\Gamma}(x)=\Gamma_{x}$.
Balkan Journal of Geometry and Its Applications, Vol.8, No.1, 2003, pp. 115-123.
(c) Balkan Society of Geometers, Geometry Balkan Press 2003.

1) In ([11]) was proved the following
1.3. Theorem. 1) $x_{0} \in D$ is a minimum point of f iff $x_{0} \in D$ is a minimum point of f constrained by the selector $\hat{\Gamma}$.
2) Let $g^{a}: D \rightarrow \mathbf{R}, a=\overline{1, p}, p<n$ be C^{1} functions. These functions can be used to create equality constraints (equations) or inequality constraints (inequations) on points.
a) The equations $g^{a}(x)=0$ introduce the partial selectors

$$
\hat{\Gamma}^{a}(x)= \begin{cases}\left\{\alpha \in \Gamma_{x} \mid g^{a}(\operatorname{Im} \alpha)=0\right\} & \text { for } x \in D \text { with } g^{a}(x)=0 \\ \emptyset & \text { for } x \in D \text { with } g^{a}(x) \neq 0\end{cases}
$$

These produce the general selector

$$
\hat{\Gamma}(x)=\bigcap_{a=1}^{p} \hat{\Gamma}^{a}(x) .
$$

Now we can formulate
1.4. Theorem. ([16]) Suppose g^{a} are $C^{1} \quad$ functions on $D \quad$ satisfying rank $\left[\frac{\partial g^{a}}{\partial x^{j}}(x)\right]=$ p, at any point x of D, and the subset defined by $g^{a}(x)=0, a=\overline{1, p}$ is nonvoid. Then $x_{0} \in D$ is a minimum point of a function $f: D \rightarrow \mathbf{R}$ constrained by the selector $\hat{\Gamma}$ iff $g^{a}\left(x_{0}\right)=0, a=\overline{1, p}$ and x_{0} is a minimum point for f constrained by $g^{a}(x)=0$, $a=\overline{1, p}$.
b) The inequations $g^{a}(x) \geq 0$ give the partial selectors

$$
\hat{\Gamma}^{a}(x)= \begin{cases}\left.\left\{\alpha \in \Gamma_{x} \mid g^{a}(\alpha(t)) \geq 0, t \geq t_{0}\right)\right\} & \text { for } x \in D \text { with } g^{a}(x)=0 \\ \Gamma_{x} & \text { for } x \in D \text { with } g^{a}(x)>0 \\ \emptyset & \text { for } x \in D \text { with } g^{a}(x)<0\end{cases}
$$

The general selector is

$$
\hat{\Gamma}(x)=\bigcap_{a=1}^{p} \hat{\Gamma}^{a}(x)
$$

1.5. Theorem. ([16]) Suppose g^{a} are C^{1} functions on D satisfying

$$
\operatorname{rank}\left[\frac{\partial g^{a}}{\partial x^{j}}(x)\right]=p,
$$

at any point x of D, and the subset defined by $g^{a}(x) \geq 0$ is nonvoid. Then x_{0} is a minimum point of a continuous function $f: D \rightarrow \mathbf{R}$ constrained by the selector Γ iff x_{0} is a minimum point for f constrained by $g^{a}(x) \geq 0, a=\overline{1, p}$.
3) Let $\omega^{a}(x)=\sum_{j=1}^{n} \omega_{j}^{a}(x) d x^{j}, a=\overline{1, p}, p<n$ be C^{1} Pfaff forms. These Pfaff forms can be used to create equality constraints (Pfaff equations) or inequality constraints (for example, Pfaff inequalities) on velocities.
a) The Pfaff equations generate the partial selectors

$$
\hat{\Gamma}^{a}(x)=\left\{\alpha \in \Gamma_{x} \mid \alpha \text { is an integral curve of the Pfaff equation } \omega^{a}(x)=0\right\}
$$

which produce the general selector (associated to the Pfaff system)

$$
\hat{\Gamma}(x)=\bigcap_{a=1}^{p} \Gamma^{a}(x)
$$

The previous selector is connected to extrema with nonholonomic constraints (see [2], [10], [11]), by the following
1.6. Theorem. $x_{0} \in D$ is a minimum point of the function $f: D \rightarrow \mathbf{R}$ constrained by the selector $\hat{\Gamma}$ iff $x_{0} \in D$ is a minimum point for f constrained by the Pfaff system $\omega^{a}(x)=0, a=\overline{1, p}$.
b) The primitive of each Pfaff form $\omega^{a}(x)$ defines the partial selectors

$$
\hat{\Gamma}^{a}\left(x_{0}\right)=\left\{\alpha \in \Gamma_{x_{0}} \mid \int_{t_{0}}^{t}\left(\omega^{a}(\alpha(u)), \alpha^{\prime}(u)\right) d u \geq 0, \forall t \in\left[t_{0}, t_{0}+\varepsilon\right)\right\}
$$

where $\alpha\left(t_{0}\right)=x_{0}$. From this point of view, the selector associated to all Pfaff forms is

$$
\hat{\Gamma}\left(x_{0}\right)=\bigcap_{a=1}^{p} \hat{\Gamma}^{a}\left(x_{0}\right)
$$

1.7. Definition. $x_{0} \in D$ is a minimum point of the function $f: D \rightarrow \mathbf{R}$ constrained by $\omega^{a} \geq 0, a=\overline{1, p}$ if x_{0} is a minimum point of f constrained by the selector $\hat{\Gamma}$.

This type of extremum was studied in [11].
Remark. Generally, there are two types of constraints. One given by constraints on points and other as constraints on velocities. A equation constraint on points induces an equation constraint on velocities; this last constrained does not contribute for finding critical points, but contribute in establishing the nature of critical points. The converse is not true. In the case of extrema of type 2), the point constraints select certain semicurves. In the case of extrema of type 3), the point constraints dissapear, any point of D being susceptible to be an extremum point. In the sequel we introduce a type of extremum where the point constraints and velocity constraints are not correlate.

2 Extremum with constraints on points and / or velocities

Let $\omega(x)=\sum_{j=1}^{n} \omega_{j}(x) d x^{j}$ be a C^{1} Pfaff form with rank $\left[\omega_{j}(x)\right]=1$. Let $M=S \cup b S$ be a subset of D, where S and $b S$ are disjoint.

The pair (ω, M) determines the following selector of curves:

$$
\hat{\Gamma}\left(x_{0}\right)=\left\{\begin{array}{l}
\Gamma_{x_{0}} \text { if } x_{0} \in S \\
\left\{\alpha \in \Gamma_{x_{0}} \mid \int_{t_{0}}^{t}\left(\omega(\alpha(u)), \alpha^{\prime}(u)\right) d u \geq 0, \forall t \in\left[t_{0}, t_{0}+\varepsilon\right)\right\} \text { if } x_{0} \in b S \\
\emptyset \text { if } x_{0} \in D \backslash M
\end{array}\right.
$$

Similarly, for each $a=\overline{1, p}$, we consider the pair $\left(\omega^{a}, M_{a}\right)$, where $\omega^{a}(x)=$ $\sum_{j=1}^{n} \omega_{j}^{a}(x) d x^{j}$ are C^{1} Pfaff forms, and $M_{a}=S_{a} \cup b S_{a}$. The pair (ω^{a}, M_{a}) determines the selector $\hat{\Gamma}^{a}$. If we denote $\omega=\left\{\omega^{a} \mid a=\overline{1, p}\right\}, S=\bigcap_{i=1}^{p} S_{a}, b S=\bigcup_{a=1}^{p} b S_{a}, M=S \cup b S$, then the pair (ω, M) induces the selector

$$
\hat{\Gamma}\left(x_{0}\right)=\bigcap_{a=1}^{p} \hat{\Gamma}^{a}\left(x_{0}\right), \quad \forall x_{0} \in D .
$$

Let $f: D \rightarrow \mathbf{R}$ be a function. If $x_{0} \in M$ is a minimum point of f constrained by the selector $\hat{\Gamma}$, then we say that x_{0} is a minimum of f constrained by the pair (ω, M). Specifying $M_{a}=S_{a} \cup b S_{a}$, we obtain all the examples in $\S 1$.

Example 1: $S_{a}=D, b S_{a}=\emptyset$.
Example 2a): $S_{a}=\emptyset, b S_{a}=\left\{x \in D \mid g^{a}(x)=0, a=\overline{1, p}\right\}, \omega^{a}=d g^{a}$.
Example 2b): $S_{a}=\left\{x \in D \mid g^{a}(x)>0\right\}, b S_{a}=\left\{x \in D \mid g^{a}(x)=0\right\}, \omega^{a}=d g^{a}$.
Example 3a): $S_{a}=\emptyset, b S_{a}=D$.

$$
\hat{\Gamma}^{a}\left(x_{0}\right)=\left\{\alpha \in \Gamma_{x_{0}} \mid \int_{t_{0}}^{t}\left(\omega^{a}(\alpha(u)), \alpha^{\prime}(u)\right) d u=0, \forall t \in\left[t_{0}, t_{0}+\varepsilon\right)\right\}
$$

Example 3b): $S_{a}=\emptyset, b S_{a}=D$.
Remark. In the Theorems 2.1 and 2.2, the set Γ_{x} is the family of all C^{1} parametrized curves passing by x and regular at x. In Theorem 2.2, the set Γ_{x} can be also the family of all C^{2} parametrized curves passing by x and with singularities of order 2 at x.
2.1. Theorem. Let $f: D \rightarrow \mathbf{R}$ be a C^{1} function, and (ω, M) be the pair described above. If $x_{0} \in M$ is a minimum point of f constrained by the pair (ω, M), then there exist $\lambda_{a} \geq 0, a=\overline{1, p}$ such that $d f\left(x_{0}\right)=\sum_{a=1}^{p} \lambda_{a} \omega^{a}\left(x_{0}\right)$. Moreover, if $\lambda_{a} \neq 0$, then $x_{0} \in b S_{a}$.
Proof. Let $B\left(x_{0}\right)=\left\{a \mid x_{0} \in b S_{a}\right\}$. Let $v \neq 0$ be a vector of \mathbf{R}^{n} such that

$$
\left(\omega^{a}\left(x_{0}\right), v\right) \geq 0, \quad \forall a \in B\left(x_{0}\right)
$$

We denote

$$
J\left(x_{0}\right)=\left\{a \in B\left(x_{0}\right) \mid\left(\omega^{a}\left(x_{0}\right), v\right)=0\right\}
$$

Let α be an integral curve of the Pfaff system $\omega^{a}(x)=0, a \in J\left(x_{0}\right)$, satisfying $\alpha\left(t_{0}\right)=x_{0}, \alpha^{\prime}\left(t_{0}\right)=v$. The existence of this curve is ensured by the hypothesis on the rank of the Pfaff form (In case $J\left(x_{0}\right)=\emptyset$, the curve α is arbitrary, with $\alpha\left(t_{0}\right)=x_{0}$, $\left.\alpha^{\prime}\left(t_{0}\right)=v\right)$. If $a \in J\left(x_{0}\right)$, then it follows $\int_{t_{0}}^{t}\left(\omega^{a}(\alpha(u)), \alpha^{\prime}(u)\right) d u=0, \forall t \in\left[t_{0}, t_{0}+\varepsilon\right) ;$ if $a \in B\left(x_{0}\right) \backslash J\left(x_{0}\right)$, then $\int_{t_{0}}^{t}\left(\omega^{i}(\alpha(u)), \alpha^{\prime}(u)\right) d u \geq 0, \forall t \in\left[t_{0}, t_{0}+\varepsilon\right)$. Since x_{0} is a minimum point of f constrained by (ω, M), i.e., $f(\alpha(t)) \geq f\left(\alpha\left(t_{0}\right)\right), \forall t \in\left[t_{0}, t_{0}+\varepsilon\right)$, we have $\left(\operatorname{grad} f\left(x_{0}\right), v\right) \geq 0$. By the Farkas Lemma we find $d f\left(x_{0}\right)=\sum_{a \in B\left(x_{0}\right)} \lambda_{a} \omega^{a}\left(x_{0}\right)$ with $\lambda_{a} \geq 0$. For $a \notin B\left(x_{0}\right)$, we take $\lambda_{a}=0$.

The hypothesis regarding the rank of the Pfaff forms can be replaced with a regularity condition of Kuhn-Tucker type.
2.2. Definition. We say that (ω, M) satisfies the Kuhn-Tucker regularity condition at $x_{0} \in b S$ if for each vector $v \neq 0$ with $\left\langle\omega^{a}\left(x_{0}\right), v\right\rangle \geq 0, \forall a \in B\left(x_{0}\right)=\left\{a \mid x_{0} \in b S_{a}\right\}$, there exists a parametrized curve $\alpha \in \hat{\Gamma}_{x_{0}}\left(\alpha\left(t_{0}\right)=x_{0}\right)$ such that $\alpha^{\prime}\left(t_{0}\right)=v$.
2.3. Theorem. Let $f: D \rightarrow \mathbf{R}$ be a C^{1} function and (ω, M) be the pair described above. If (ω, M) satisfies the Kuhn-Tucker regularity condition at $x_{0} \in M$ and x_{0} is a minimum point of f, then there exist $\lambda_{a} \geq 0$ such that

$$
d f\left(x_{0}\right)=\sum_{a=1}^{p} \lambda_{a} \omega^{a}\left(x_{0}\right) .
$$

Moreover, if $\lambda_{a} \neq 0$, then $x_{0} \in b S_{a}$.
Proof. Let $v \neq 0$ be a vector of \mathbf{R}^{n} with $\left(\omega^{a}\left(x_{0}\right), v\right) \geq 0, \forall a \in B\left(x_{0}\right)$. By the KuhnTucker regularity condition there exists a parametrized curve ($\alpha \in \hat{\Gamma}_{x_{0}}\left(\alpha\left(t_{0}\right)=x_{0}\right)$ with $\alpha^{\prime}\left(t_{0}\right)=v$. Consequently, $\int_{t_{0}}^{t}\left(\omega^{i}(\alpha(u)), \alpha^{\prime}(u)\right) d u \geq 0, \forall t \in\left[t_{0}, t_{0}+\varepsilon\right)$. In rest, the same arguments as in the proof of the Theorem 2.1.
2.4. Theorem . Let Γ_{x} be the set of all C^{2} parametrized curves passing by the point x and being regular at x. Suppose the Pfaff forms ω and the function f be of class C^{1} on D. Let (ω, M) be the pair described above and $x_{0} \in M$.

Suppose: i) there exist $\lambda_{a} \geq 0, a=\overline{1, p}$, such that

$$
d f\left(x_{0}\right)=\sum_{a=1}^{p} \lambda_{a} \omega^{a}\left(x_{0}\right),
$$

and, if $\lambda_{a} \neq 0$, then $x_{0} \in b S_{a}$;
ii) the restriction of the quadratic form

$$
d^{2} f\left(x_{0}\right)-\frac{1}{2} \sum_{a=1}^{p} \lambda_{a} \sum_{j, k=1}^{n}\left(\frac{\partial \omega_{j}^{a}}{\partial x^{k}}+\frac{\partial \omega_{k}^{a}}{\partial x^{j}}\right)\left(x_{0}\right) d x^{j} d x^{k}
$$

to the subspace

$$
\sum_{j=1}^{n} \omega_{j}^{a}\left(x_{0}\right) d x^{j}=0, a \in J^{1}=\left\{a \in B\left(x_{0}\right) \mid \lambda_{a}>0\right\}
$$

is positive definite.
Then x_{0} is a minimum point of f constrained by the pair (ω, M).
Proof. Let $\alpha: I \rightarrow D$ be a C^{2} curve with $\alpha\left(t_{0}\right)=x_{0}$, regular at the point x_{0} and $\alpha \in \hat{\Gamma}\left(x_{0}\right)$. It follows

$$
\int_{t_{0}}^{t}\left(\omega^{a}(\alpha(u)), \alpha^{\prime}(u)\right) d u \geq 0, \forall a \in\left[t_{0}, t_{0}+\varepsilon\right), \forall j \in B\left(x_{0}\right)=\left\{a=\mid x_{0} \in b S_{a}\right\}
$$

Case 1. If there exists $a_{0} \in J^{\prime}$ with $\left(\omega^{a}\left(x_{0}\right), \alpha^{\prime}\left(t_{0}\right)\right)>0$, then $d f\left(x_{0}\right)\left(\alpha^{\prime}\left(t_{0}\right)\right)=$ $\sum_{a=1}^{p} \lambda_{a}\left(\omega^{a}\left(x_{0}\right), \alpha^{\prime}\left(t_{0}\right)\right)>0$. Using Taylor expansion

$$
f(x)-f\left(x_{0}\right)=d f\left(x_{0}\right)\left(x-x_{0}\right)+\mathcal{O}\left(\left\|x-x_{0}\right\|\right)
$$

and

$$
\alpha(t)-\alpha\left(t_{0}\right)=\alpha^{\prime}\left(t_{0}\right)\left(t-t_{0}\right)+\beta(t) \cdot\left(t-t_{0}\right)
$$

with $\lim _{t \rightarrow t_{0}} \beta(t)=0$, we find

$$
\begin{gathered}
f(\alpha(t))-f\left(\alpha\left(t_{0}\right)\right)=\left(t-t_{0}\right) d f\left(x_{0}\right)\left(\alpha^{\prime}\left(t_{0}\right)\right)+\left(t-t_{0}\right) d f\left(x_{0}\right)(\beta(t))+ \\
+\mathcal{O}\left(\left\|\alpha(t)-\alpha\left(t_{0}\right)\right\|\right)=\left(t-t_{0}\right) d f\left(x_{0}\right)\left(\alpha^{\prime}\left(t_{0}\right)\right)+\mathcal{O}\left(t-t_{0}\right) \geq 0, \quad \forall t \in\left[t_{0}, t_{0}+\varepsilon\right)
\end{gathered}
$$

Case 2. Suppose

$$
\left(\omega^{a}\left(x_{0}\right), \alpha^{\prime}\left(t_{0}\right)\right)=0, \quad \forall a \in J^{\prime}
$$

The function

$$
\varphi(t)=f(\alpha(t))-\sum_{a=1}^{p} \lambda_{a} \int_{t_{0}}^{t}\left(\omega^{a}(\alpha(\tau)), \alpha^{\prime}(\tau)\right) d \tau
$$

has the derivative

$$
\varphi^{\prime}(t)=\sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(\alpha(t)) \frac{d x^{i}}{d t}-\sum_{a=1}^{p} \lambda_{a} \sum_{i=1}^{n} \omega_{i}^{a}(\alpha(t)) \frac{d x^{i}}{d t}
$$

and hence

$$
\begin{gathered}
\varphi^{\prime}\left(t_{0}\right)=\sum_{i=1}^{n}\left(\frac{\partial f}{\partial x^{i}}\left(x_{0}\right)-\sum_{a=1}^{p} \lambda_{a} \omega_{i}^{a}\left(x_{0}\right)\right) \frac{d x^{i}}{d t}= \\
=\left(d f\left(x_{0}\right)-\sum_{a=1}^{p} \lambda_{a} \omega^{a}\left(x_{0}\right)\right)\left(\alpha^{\prime}\left(t_{0}\right)\right)=0
\end{gathered}
$$

Also

$$
\begin{gathered}
\varphi^{\prime \prime}(t)=\sum_{i, j=1}^{n} \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}(\alpha(t)) \frac{d x^{i}}{d t} \frac{d x^{j}}{d t}+\sum_{i=1}^{n} \frac{\partial f}{d x^{i}}(\alpha(t)) \frac{d^{2} x^{i}}{d t^{2}}- \\
-\frac{1}{2} \sum_{a=1}^{p} \lambda_{a} \sum_{i, j=1}^{n}\left(\frac{\partial \omega_{i}^{a}}{\partial x^{j}}+\frac{\partial \omega_{j}^{a}}{\partial x^{i}}\right)(\alpha(t)) \frac{d x^{i}}{d t} \frac{d x^{j}}{d t}+\sum_{a=1}^{p} \lambda_{a} \sum_{i=1}^{n} \omega_{i}^{a}(\alpha(t)) \frac{d^{2} x^{i}}{d t^{2}} .
\end{gathered}
$$

Then

$$
\begin{aligned}
& \varphi^{\prime \prime}\left(t_{0}\right)=d^{2} f\left(x_{0}\right)- \frac{1}{2} \sum_{a=1}^{p} \lambda_{a} \sum_{i, j=1}^{n}\left(\frac{\partial \omega_{i}^{a}}{\partial x^{j}}+\frac{\partial \omega_{j}^{a}}{\partial x^{i}}\right)\left(x_{0}\right) \frac{d x^{i}}{d t}\left(t_{0}\right) \frac{d x^{j}}{d t}\left(t_{0}\right)+ \\
&+ \sum_{i=1}^{n}\left(\frac{\partial f}{\partial x^{i}}\left(x_{0}\right)-\sum_{a=1}^{p} \lambda_{a} \omega_{i}^{a}\left(x_{0}\right)\right) \frac{d^{2} x^{i}}{d t^{2}}\left(t_{0}\right)= \\
&=d^{2} f\left(x_{0}\right)-\frac{1}{2} \sum_{a=1}^{p} \lambda_{a} \sum_{i, j=1}^{n}\left(\frac{\partial \omega_{i}^{a}}{\partial x^{j}}+\frac{\partial \omega_{j}^{a}}{\partial x^{i}}\right)\left(x_{0}\right) \frac{d x^{i}}{d t}\left(t_{0}\right) \frac{d x^{j}}{d t}\left(t_{0}\right)
\end{aligned}
$$

Finally,

$$
\varphi(t)-\varphi\left(t_{0}\right)=\frac{1}{2} \varphi^{\prime \prime}\left(t_{0}\right)\left(t-t_{0}\right)^{2}+\mathcal{O}\left(\left(t-t_{0}\right)^{2}\right)
$$

whence $\varphi(t) \geq \varphi\left(t_{0}\right), \forall t \in\left(t_{0}-\varepsilon, t_{0}+\varepsilon\right)$. But $\varphi\left(t_{0}\right)=f\left(x_{0}\right)$ and, for $t \geq t_{0}$, $f(\alpha(t)) \geq \varphi(t)$ so that there follows $f(\alpha(t)) \geq f\left(x_{0}\right)$ for $t \in\left[t_{0}, t_{0}+\varepsilon\right)$.

3 Extremum constrained by inequalities associated to a family of primitives of a Pfaff form

Let D be an open set in \mathbf{R}^{n} and $\omega(x)=\sum_{j=1}^{n} \omega_{j}(x) d x^{j}$ be a C^{0} Pfaff form. Let Γ be the family of all C^{1} parametrized curves $\alpha: I \rightarrow D$. Each curve α generates a family $\left\{g_{\alpha}\right\}$ of functions,

$$
g_{\alpha}: I \rightarrow \mathbf{R}, \quad g_{\alpha}^{\prime}(t)=\left(\omega(\alpha(t)), \alpha^{\prime}(t)\right),
$$

called the primitives of ω along α. On the other hand, each curve α defines an equivalence class $\{\beta=\alpha \circ \varphi \mid \varphi: J \rightarrow I\}$ is C^{1} diffeomorphism.
3.1. Definition. Let g : be a function which associates to each parametrized curve α a function g_{α} from the family $\left\{g_{\alpha}\right\}$. If $g_{\beta}=g_{\alpha} \circ \varphi$, for any equivalent curves α and β, then the function g is called system of ω-primitives.

For a Pfaff form ω and its associated system of primitives we can associate the set $M=S \cup b S$, where

$$
\begin{aligned}
& b S=\left\{x_{0} \in D \mid \exists \alpha \in \Gamma_{x_{0}}, \alpha\left(t_{0}\right)=x_{0}, g_{\alpha}\left(t_{0}\right)=0\right\} \\
& S=\left\{x_{0} \in D \backslash b S \mid \exists \alpha \in \Gamma_{x_{0}}, \alpha\left(t_{0}\right)=x_{0}, g_{\alpha}\left(t_{0}\right)>0\right\}
\end{aligned}
$$

The pair (ω, M) induces a selector $\hat{\Gamma}$ of curves.
Similarly, for each $a=\overline{1, p}$, we consider the pair $\left(\omega^{a}, M_{a}\right)$, where $\omega^{a}(x)=$ $\sum_{j=1}^{n} \omega_{j}^{a}(x) d x^{j}$ are C^{0} Pfaff forms, and $M_{a}=S_{a} \cup b S_{a}$ are defined using the system of ω^{a}-primitives g^{a}. The pair (ω, M) induces a selector of curves via the system of primitives $g=\left(g^{a}\right)$.

Let $f: D \rightarrow \mathbf{R}$ be a C^{0} function. Using the previous ingredients we define the Lagrange function

$$
L_{\alpha}(t, \lambda)=f(\alpha(t))-\sum_{a=1}^{p} \lambda_{a} g_{\alpha}^{a}(t), \forall t \in I, \forall \lambda_{a} \geq 0
$$

This function is defined along each curve $\alpha: I \rightarrow D$, using the restriction of function f to α and the primitives of the Pfaff forms ω^{a} along α. In this way obtain a family of Lagrange functions, which will satisfy conditions of saddle point type.
3.2. Definition. Let $x_{0} \in D$, and $\lambda^{0}=\left(\lambda_{a}^{0}\right)$ with $\lambda_{a}^{0} \geq 0, a=\overline{1, p}$. The point $\left(x_{0}, \lambda^{0}\right)$ is called saddle point for the family of all Lagrange functions L_{α} if
a) $L_{\alpha}\left(t_{0}, \lambda^{0}\right) \leq L_{\alpha}\left(t, \lambda^{0}\right), \forall \alpha \in \Gamma_{x_{0}}, \alpha\left(t_{0}\right)=x_{0}, \forall t \in\left[t_{0}, t_{0}+\varepsilon\right)$;
b) there exists $\alpha \in \Gamma_{x_{0}}$ with $\alpha\left(t_{0}\right)=x_{0}$ such that

$$
L_{\alpha}\left(t_{0}, \lambda^{0}\right) \geq L\left(t_{0}, \lambda\right), \forall \lambda=\left(\lambda_{a}\right) \geq 0
$$

3.3. Lemma. The condition b) in the Definition 3.2 is equivalent to:
$\left.b^{\prime}\right)$ there exists $\alpha \in \Gamma_{x_{0}}, \alpha\left(t_{0}\right)=x_{0}$, such that $g_{\alpha}^{a}\left(t_{0}\right) \geq 0, a=\overline{1, p}$ and $\lambda_{a}^{0} g_{\alpha}^{a}\left(t_{0}\right)=$ 0 (no summ).

This condition afirms: if $x_{0} \in M$ and if $\lambda_{a}^{0}>0$, then $x_{0} \in b S_{a}$.

Proof. Suppose b) is true: $\exists \alpha \in \Gamma_{x_{0}}$ with $\alpha\left(t_{0}\right)=x_{0}$, and $L_{\alpha}\left(t_{0}, \lambda^{0}\right) \geq L\left(t_{0}, \lambda\right)$, $\forall \lambda=\left(\lambda_{a}\right) \geq 0$. It follows $(*) \sum_{a=1}^{p}\left(\lambda_{a}-\lambda_{a}^{0}\right) g_{\alpha}^{a}\left(t_{0}\right) \geq 0, \forall \lambda_{a} \geq 0$. Suppose, $\exists a_{0} \in \overline{1, p}$ with $g_{\alpha}^{a_{0}}\left(t_{0}\right)<0$; taking $\lambda_{a_{0}}>\lambda_{a_{0}}^{0}$ and $\lambda_{a}=\lambda_{a}^{0}$ for $a \neq a_{0}$ we obtain a contradiction with $(*)$. Taking $\lambda_{a}=0, \forall a=\overline{1, p}$, in $(*)$, we obtain $\sum_{a=1}^{p} \lambda_{a}^{0} g_{\alpha}^{a}\left(t_{0}\right) \leq 0$, i.e., $\lambda_{a}^{0} g_{\alpha}^{a}\left(t_{0}\right)=0$ for each $a=\overline{1, p}$.

The converse is automatically true.
3.4. Theorem. Let $x_{0} \in D$. If there exists $\lambda^{0}=\left(\lambda_{a}^{0}\right) \geq 0, a=\overline{1, p}$ such that $\left(x_{0}, \lambda^{0}\right)$ is a saddle point for the family for all Lagrange functions L_{α}, then x_{0} is a minimum point of f constrained by (ω, M).
Proof. The condition b^{\prime}) from Lemma 4.3 shows that $x_{0} \in M$. Suppose $\lambda_{a}^{0}=0$, $\forall a=\overline{1, p}$. From the condition a) it follows: for each $\alpha \in \Gamma_{x_{0}}$, with $\alpha\left(t_{0}\right)=x_{0}$, $f(\alpha(t)) \geq f\left(x_{0}\right), \forall t \in\left[t_{0}, t_{0}+\varepsilon\right)$. Hence, x_{0} is a minimum point of f constrained by (ω, M); the point x_{0} is a free minimum point if $\Gamma_{x_{0}}$ is the set of all C^{1} parametrized curves, regular at x_{0} or the set of all C^{2} parametrized curves having x_{0} as a regular point or as a singular point of order 2 (Theorem 1.3.)

Suppose $J^{\prime}=\left\{a \mid \lambda_{a}^{0}>0\right\}$ is nonvoid. According the condition b^{\prime}), it follows $x_{0} \in b S_{a}, \forall a \in J^{\prime}$. Let $\alpha \in \hat{\Gamma}_{x_{0}}$, with $\alpha\left(t_{0}\right)=x_{0}$. Since $\int_{t_{0}}^{t}\left(\omega^{a}(\alpha(u)), \alpha^{\prime}(u)\right) d u \geq 0$, $\forall t \in\left[t_{0}, t_{0}+\varepsilon\right), \forall a \in J^{\prime}$, we find $g_{\alpha}^{a}(t)-g_{\alpha}^{a}\left(t_{0}\right) \geq 0, \forall t \in\left[t_{0}, t_{0}+\eta\right), \forall a \in J^{\prime}$. From the condition a) we get

$$
f(\alpha(t))-f\left(x_{0}\right) \geq \sum_{a \in J^{\prime}} \lambda_{a}^{0}\left(g_{\alpha}^{a}(t)-g_{\alpha}^{a}\left(t_{0}\right)\right) .
$$

Consequently x_{0} is also a minimum point of f constrained by the pair (ω, M).

References

[1] C. Udrişte and O. Dogaru, Mathematical Programming Problems with Nonholonomic Constraints, Seminarul de Mecanică, Univ. of Timişoara, Facultatea de Ştiinţe ale Naturii, vol. 14, 1988.
[2] C. Udrişte and O. Dogaru, Extrema with Nonholonomic Constraints, Bull. Int. Politehnica Bucureşti, Seria Energetică, Tomul L, 1988, 3-8.
[3] C. Udrişte and O. Dogaru, Extreme conditionate pe orbite, Sci. Bull., 51 (1991), 3-9.
[4] C. Udrişte and O. Dogaru, Convex Nonholonomic Hypersurfaces, Math. Heritage of C.F. Gauss, 769-784, Ed. G. Rassias, World Scientific, 1991.
[5] C. Udrişte, O. Dogaru and I. Țevy, Sufficient Systems and Their Interaction, Sci. Bull. P.I.B., Electrical Engineering, vol. 53, no. 3-4 (1991), 285-294.
[6] C. Udrişte, O. Dogaru and I. Ţevy, Sufficient Conditions for Extremum on Differentiable Manifolds, Sci. Bull. P.I.B., Electrical Engineering, vol. 53, no. 3-4 (1991), 341-344.
[7] C. Udrişte, O. Dogaru and I. Țevy, Extremum Points Associated with Pfaff Forms, Presented at the 90th Anniversary Conference of Akitsugu KAWAGUCHI's Birth, Bucharest, Aug. 24-29, 1992; Tensor, N.S., Vol. 54 (1993), 115-121.
[8] C. Udrişte, O. Dogaru and I. Ţevy, Open Problem in Extrema Theory, Sci. Bull. P.U.B., Series A, Vol. 55, no. 3-4 (1993), 273-277.
[9] O. Dogaru, I. Ţevy and C. Udrişte, Extrema Constrained by a Family of Curves and Local Extrema, JOTA, vol. 97, no.3, June 1998, 605-621.
[10] C. Udrişte, O. Dogaru and I. Ţevy, Extrema Constrained by a Pfaff system, Hadronic J. Supplement, USA, 1999 - Proc. Int. Workshop on Fundam. Open Problems in Math., Phys., and Other Sciences, Beijing, August 28, 1997.
[11] O. Dogaru and I. Ţevy, Extrema Constrained by a Family of Curves, Proc. Workshop ob Global Analysis, Diff. Geom. and Lie Algebras, 1996, Ed. Gr. Tsagas, Geometry Balkan Press, 1999, 185-195.
[12] O. Dogaru and V. Dogaru, Extrema Constrained by C^{k} Curves, B.J.G.A., vol. 4, no. 1 (1999), 45-52.
[13] C. Udrişte, I. Ţevy and M. Ferrara, Nonholonomic Economic Systems, Manuscript Notices, unpublished.
[14] C. Udrişte, I. Ţevy, Geometry of Test Functions and Pfaff Equations, see [15], 151-165.
[15] C. Udrişte, O. Dogaru and I. Ţevy, Extrema with Nonholonomic Constraints, Monographs and Textbooks 4, Geometry Balkan Press, 2002.
[16] C. Udrişte, O. Dogaru, M. Ferrara and I. Ţevy, Pfaff inequalities and semi-curves in optimum problems (manuscript).

University Politehnica of Bucharest
Department of Mathematics I
Splaiul Independentei 313
77206 Bucharest, Romania
email:udriste@mathem.pub.ro

