The Spectrum of the Symmetric Space $S P(l) / S U(l)$

Gr. Tsagas and K. Kalogeridis

Abstract

The aim of the present paper is to determine the spectrum of the Laplace operator on the functions on $S P(l) / S U(l)$.

Mathematics Subject Classification: 58G25
Key words: symmetric space, Lie algebra, Lie group, roots and Cartan subalgebra

1 Intoduction

Let (M, g) be a compact Riemannian manifold of dimension n. From this Riemannian manifold we obtain the vector spaces $\Lambda^{q}(M, R), q=0,1, \ldots, n$. If we apply the Laplace operator $\Delta=d \delta+\delta d$ on $\Lambda^{q}(M, R)$ we obtain the spectrum $S p^{q}(M, g)$.

One problem in the spectral theory is to determine $S p^{q}(M, g)$, where (M, g) is a known compact Riemannian manifold.

The aim of the present paper is to determine $S p^{0}(M, g)$, that means the spectrum of Δ on the functions on M , where $M=S P(l) / S U(l)$ and g is the Riemannian metric on M, coming from the Killing-Cartan form of the Lie algebra $s p(l)$.

2 Basic elements for symmetric spaces

Let $M=G / H$ be a compact homogenous space. One of the problems concerning of the spectrum is to calculate

$$
\begin{equation*}
S p^{q}(M=G / H, g), q=0,1, \ldots, \operatorname{dim} M \tag{2.1}
\end{equation*}
$$

Let t and v be the Lie algebras of G and H respectively. If m is the tangent space of M at its origin, we have the relation

$$
\begin{equation*}
t=v \oplus m \tag{2.2}
\end{equation*}
$$

Let \langle,$\rangle be a positively definite inner product on the vector space m$ which comes from the Riemannian metric g, which is an $\operatorname{ad}(H)$-invariant. Conversely, an inner

[^0]product on m which is an $a d(H)$-invariant gives a G-invariant metric on the homogeneous space M, which is also called homogeneous manifold.

We assume that the Lie group G is compact and semisimple and the Lie subgroup H of G is its closed subgroup.

Let b be the Cartan subalgebra of t. The set of the simple roots which are linear forms on the b_{C}, that is elements of b_{C}^{*}, is given as follows:

$$
\begin{equation*}
\Psi=\left\{\psi_{1}, \ldots, \psi_{l}\right\} \tag{2.3}
\end{equation*}
$$

where $l=\operatorname{dim} b$.
We denote by Λ the set of all roots of b_{C},

$$
\begin{equation*}
\Lambda=\left\{\lambda=\sum_{i=1}^{l} r_{i} \psi_{i} / r_{i} \in \mathbf{Z}\right\} \tag{2.4}
\end{equation*}
$$

and with Λ^{+}the set of all positive roots, so we have

$$
\Lambda^{+}=\left\{\lambda=\sum_{i=1}^{l} r_{i} \psi_{i} / r_{i} \geq 0\right\}
$$

For each element $p \in b^{*}$, we take $p^{*}=\frac{2 p}{\langle p, p>}$ so we can construct the following set:

$$
\begin{equation*}
\Psi^{*}=\left\{\psi_{1}^{*}, \ldots, \psi_{l}^{*}\right\} \tag{2.5}
\end{equation*}
$$

where:

$$
\psi_{1}^{*}=\frac{2 \psi_{1}}{\left\langle\psi_{1}, \psi_{1}\right\rangle}, \ldots, \psi_{l}^{*}=\frac{2 \psi_{l}}{\left\langle\psi_{l}, \psi_{l}\right\rangle}
$$

and consequently for each λ, we take λ^{*} defined as follows:

$$
\begin{equation*}
\lambda^{*}=\frac{2 \lambda}{<\lambda, \lambda>} \tag{2.6}
\end{equation*}
$$

Now, we can define the fundamental weights $\mu_{i} \in b, i=1, \ldots, l$, via

$$
\begin{equation*}
<\mu_{i}, \psi_{j}>=\delta_{i j}, i=1, \ldots l, j=1, \ldots, l \tag{2.7}
\end{equation*}
$$

We construct the set of the weights

$$
\begin{equation*}
B=\left\{\mu=\sum_{i=1}^{l} m_{i} \mu_{i} / m_{i} \in \mathbf{Z}, m_{i} \geq 0\right\} \tag{2.8}
\end{equation*}
$$

If we consider the set

$$
\begin{equation*}
\left\{I=\mu \in b /<\mu, \psi_{i}^{*}>\in \mathbf{Z}, i=1, \ldots, l\right\} \tag{2.9}
\end{equation*}
$$

then B is equivalent to the set

$$
\begin{equation*}
N_{1}=\{\mu \in /<\mu, \lambda>\geq 0, \forall \lambda \in \Lambda\} \tag{2.10}
\end{equation*}
$$

or

$$
\begin{equation*}
N_{2}=\left\{\mu \in I /<\mu, \psi_{i}>\geq 0, i=1, \ldots, l\right\} \tag{2.11}
\end{equation*}
$$

The above relations are used for the calculations of the spectrum of a symmetric space $M=G / H$, where G is a simply connected compact semisimple Lie group and H is a closed subgroup of G, where the Riemannian metric on M comes from the Killing-Cartan form \langle,$\rangle on the Lie algebra t$ of G. If v is the Lie algebra of H, then we have

$$
t=v \oplus s
$$

where v is the eigenspace with the eigenvalue +1 and s is the eigenspace with the eigenvalue -1 .

Let m be the maximal abelian subspace of s and Λ_{m}^{+}the system of positive roots on m_{C}.

We define the subset k of v as follows

$$
\begin{equation*}
k=\{x \in v /[x, m]=0\} \tag{2.12}
\end{equation*}
$$

and we consider the Cartan subalgebra b_{1} of k.
The following relaton is valid

$$
b=b_{1}+m
$$

and therefore b is a Cartan subalgebra of t. We define the Λ_{m}^{+}as follows:

$$
\begin{equation*}
\Lambda_{m}^{+}=\left\{\lambda / m: \lambda \in \Lambda^{+} \text {and } \lambda / m \neq 0\right\} \tag{2.13}
\end{equation*}
$$

and we construct the set

$$
\begin{equation*}
B_{m}=\left\{\mu \in^{*} \left\lvert\, \frac{<\mu, \lambda>}{<\lambda, \lambda>} \geq 0\right., \quad \forall \lambda \in \Lambda_{m}^{+}\right\} \tag{2.14}
\end{equation*}
$$

The following theorem is valid
Theorem. Let $M=G / H$ the compact symmetric space of Riemann, where G is a simply connected, compact, semisimple Lie group and H is a closed subgroup of G, where the metric g on M comes from the Killing-Cartan form of the Lie algebra t of G. The spectrum $\operatorname{Sp}(M, g)$ is given by

$$
\begin{equation*}
S p(M, g)=\left\{<\mu, \mu>+2<\mu, \delta_{m}>, \mu \in B_{m}\right\} \tag{2.15}
\end{equation*}
$$

where δ is the half of the sum of the positive roots and δ_{m} is the restriction of δ on m, which is the maximal abelian subspace of s (the eigenspace with eigenvalue -1). The multiplicity of the eigenvalue is given by

$$
\begin{equation*}
P(\mu)=\prod_{\lambda \in \Lambda^{+}} \frac{<\mu+\delta, \lambda>}{<\delta, \lambda>} \tag{2.16}
\end{equation*}
$$

3 The spectrum $S p^{0}(M, g)$, where $M=S P(l) / S U(l)$

Let $s p(l)$ and $s u(l)$ be the Lie algebras of $S P(l)$ and $S U(l)$ respectively. Then we have

$$
s p(l)=s u(l) \oplus m=h \oplus m
$$

where the direct sum is valid if the Lie algebras are considered as vector spaces and m is the tangent space of the $S P(l) / S U(l)$ at its origin.

The Lie algebra $s p(l)$ has the form

$$
\operatorname{sp}(l)=\left\{X \in M_{2 l} \mid X K+K X^{T}=O, \quad \text { where } \quad K=\left[\begin{array}{cc}
O & I_{l} \\
I_{l} & O
\end{array}\right]\right\}
$$

An element of the Lie algebra $s p(l)$ is split into an element of $s u(l)$ and an element of the tangent space m in the following way

$$
X \in s p(l) \Rightarrow X=\left[\begin{array}{cc}
\mathrm{A} & \mathrm{~B} \\
l \times l & l \times l \\
\mathrm{C} & \mathrm{~A}^{T} \\
l \times l & l \times l
\end{array}\right]
$$

where B and C are symmetric martices of order l.
The matrix A can be written $A=\left[\begin{array}{cc}a_{11} & 1 \times(l-1) \\ \mathrm{A}_{21} & \mathrm{~A}_{22} \\ (l-1) \times 1 & (l-1) \times(l-1)\end{array}\right]$.
Therefore the vector X takes the form

$$
\begin{aligned}
& X=\left[\begin{array}{ccc}
& \mathrm{A}_{12} & \\
a_{11} & 1 \times(l-1) & l \times l \\
\mathrm{~A}_{21} \times 1 & (l-1) \times(l-1) & \\
(l-1) \times 1 & \mathrm{~A}_{22} \\
& l \times l & -a_{11} \\
& -A_{21}^{T} \\
& & -A_{12}^{T}
\end{array}\right]= \\
& =\left[\right] \oplus \\
& \oplus\left[\begin{array}{cccc}
\operatorname{tr}\left(A_{22}\right)+a_{11} & O & B & \\
O & O & -\operatorname{tr}\left(A_{22}\right)-a_{11} & O \\
C & & O & O
\end{array}\right]
\end{aligned}
$$

Hence the tangent space m takes the following form

$$
m=\left\{\left[\begin{array}{cccc}
k & O & & B \\
O & O & & \\
& C & -k & O \\
& & O & O
\end{array}\right], k \in \mathbf{R}\right\}
$$

and the Lie algebra h becomes

$$
\left\{\left[\begin{array}{cccc}
-\operatorname{tr}\left(A_{22}\right) & A_{12} & O \\
A_{21} & A_{22} & & \\
O & & \operatorname{tr}\left(A_{22}\right) & -A_{21}^{T} \\
& & -A_{12}^{T} & -A_{22}^{T}
\end{array}\right]\right\}
$$

Therefore the Lie algebra $s p(l)$ can be written $s p(l)=h \oplus m$. The roots of $s p(l)$ are given by $\left\{ \pm e_{i} \pm e_{k}, \pm 2 e_{i} \mid i<k, i, k=1, \ldots, l\right\}$, where $e_{i}=\frac{1}{4 l+4} \cdot\left(E_{i}-E_{i+l}\right), i=$ $1, \ldots, l$ and E_{i} is a matrix of order $2 l$ which has at the position (i, i) the number one and everywhere else the number zero.

Taking into consideration the form of the tangent space m, the quantities e_{i} take the following form:

$$
\begin{aligned}
& \text { - for } i=1, e_{i}=\frac{1}{4 l+4} \cdot\left(E_{1}-E_{1+l}\right)=O \oplus \frac{1}{4 l+4} \cdot\left(E_{1}-E_{l+1}\right) \\
& \text { - for } 2 \leq i \leq l, e_{i}=\frac{1}{4 l+4} \cdot\left(E_{i}-E_{i+l}\right)=\frac{1}{4 l+4} \cdot\left(E_{i}-E_{i+l}\right) \oplus O
\end{aligned}
$$

At first we construct the weights of $s p(l)$,

$$
w_{i}=e_{1}+e_{2}+\ldots+e_{i} \Rightarrow w_{i_{m}}=e_{1}=\frac{1}{4 l+4} \cdot\left(E_{1}-E_{1+l}\right), \quad i=1, \ldots, l
$$

Then we construct the quantity

$$
\mu=m_{1} w_{1_{m}}+\ldots+m_{l} w_{l_{m}} \quad \text { where } \quad m_{1}, \ldots, m_{l} \in Z^{+}
$$

Taking into consideration the form of the weights restricted to the tangent space, the quantity μ takes the form $\mu=\left(m_{1}+m_{2}+\ldots+m_{l}\right) \cdot e_{1}=m \cdot e_{1}$.

Now, we construct the half of the sum of all positive roots δ

$$
2 \delta=2 l e_{1}+(2 l-2) e_{2}+\ldots+4 e_{l-1}+2 e_{l}
$$

Subsequently the restriction of the half of the sum of all positive roots to the tangent space takes the following form $\delta_{m}=l \cdot e_{1}$. At first we calculate the quantities which appeare in formula (17)

$$
\begin{aligned}
\langle\mu, \mu\rangle & =\left\langle m \cdot e_{1}, m \cdot e_{1}\right\rangle=m^{2}\left\langle e_{1}, e_{1}\right\rangle=\frac{m^{2}}{4 l+4} \\
\left\langle\mu, \delta_{m}\right\rangle & =\left\langle m \cdot e_{1}, l \cdot e_{1}\right\rangle=m \cdot l \cdot\left\langle e_{1}, e_{1}\right\rangle=\frac{m l}{4 l+4}
\end{aligned}
$$

So, the spectrum takes the form

$$
\begin{equation*}
S p(S P(l) / S U(l), g)=\left\{\frac{m^{2}+2 m l}{4 l+4}, m \in \mathbf{Z}\right\} \tag{3.1}
\end{equation*}
$$

The positive roots are
i) $e_{i}-e_{j}, 1 \leq i<j \leq l$
ii) $e_{i}+e_{j}, 1 \leq i<j \leq l$
iii) $2 e_{i}, 1 \leq i \leq l$
and for

$$
\mu+\delta=m e_{1}+l e_{1}+(l-1) e_{2}+\ldots+e_{l}=(m+l) e_{1}+(l-1) e_{2}+\ldots+e_{l}
$$

$$
\begin{aligned}
& \text { we construct } \\
& P_{1}=\prod_{1 \leq i<j \leq l} \frac{<\mu+\delta, e_{i}-e_{j}>}{<\delta, e_{i}-e_{j}>}=\prod_{2 \leq j \leq l} \frac{<\mu+\delta, e_{1}-e_{j}>}{<\delta, e_{1}-e_{j}>}=\prod_{2 \leq j \leq l} \frac{m+j-1}{j-1}= \\
& \binom{m+l-1}{l-1} ; \\
& P_{2}=\prod_{1 \leq i<j \leq l} \frac{<\mu+\delta, e_{i}+e_{j}>}{<\delta, e_{i}+e_{j}>}=\prod_{2 \leq j \leq l} \frac{<\mu+\delta, e_{1}+e_{j}>}{<\delta, e_{1}+e_{j}>}=\prod_{2 \leq j \leq l} \prod \frac{m+2 l-j+1}{2 l-j+1} ; \\
& P_{3}=\prod_{1 \leq i \leq l} \frac{<\mu+\delta, 2 e_{i}>}{<\delta, 2 e_{i}>}=\frac{<\mu+\delta, 2 e_{1}>}{<\delta, 2 e_{1}>}=\frac{m+l}{l} .
\end{aligned}
$$

Having taken into consideration the relation (18) the multiplicity of the eigenvalue is taken then

$$
\begin{equation*}
d \mu^{2}=P_{1} P_{2} P_{3}=\prod_{k=1}^{2 l-1} \frac{m+k}{k}=\binom{m+2 l-1}{2 l-1} \tag{3.2}
\end{equation*}
$$

We conclude with the following
Theorem. The spectrum $S p(M, g)$, where $M=S P(L) / S U(l)$, is given by the relation (19). The multiplicity of the eigenvalue is given by the relation (20).

References

[1] B. Beers and R.S. Millman, The spectra of the Laplace Beltrami operator on compact semisimple Lie groups, Amer.J. Math. 99 (1997), 801-807.
[2] P.H. Berard, Spectral Geometry: Direct and inverse problems with An Appendix by G. Besson, V.III, Lecture Notes in Mathematics 1207, 1986.
[3] F. A. Bezerin, Laplace operator on semisimple Lie groups, Trudy, Moscov. Mat. Obse 6 (1957) 371-463.
[4] I. Chavel, Eigenvalues in Riemannian Geometry, Academic Press, New York, 1984.
[5] J. Lepowsky, Multiplicity formula for certain semisimple Lie groups, Bull. Amer.Math. Soc. 77 (1971), 601-605.
[6] J. Milnor, Eigenvalues of the Laplace operator on certain manifolds, Proc. Nat. Acad. Scin. U.S.A. 51(1964) 542.
[7] Gr. Tsagas and Ch. Michaleas, The Spectrum of the exceptional Lie groups, Jour. of Inst. of Math. \& Comp. Sci. (Math. Ser.) Vol.9, No. 3 (1996) 221-232.
[8] Gr. Tsagas and Ch. Miachaleas, The spectra of the classical simple Lie groups, Jour. of Inst of Math. \& Comp. Sci. (Math. Ser.) Vol.9, No. 3 (1996) 273-282.

Division of Mathematics
Department of Mathematics and Physics
Aristotle University of Thessaloniki, Thessaloniki 54250
email: kkalogerid@yahoo.gr

[^0]: Balkan Journal of Geometry and Its Applications, Vol.8, No.1, 2003, pp. 109-114.
 (c) Balkan Society of Geometers, Geometry Balkan Press 2003.

