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Abstract

The aim of the present paper is to determine the spectrum of the Laplace
operator on the functions on SP(l)/SU (l).
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1 Intoduction

Let (M, g) be a compact Riemannian manifold of dimension n. From this Riemannian
manifold we obtain the vector spaces Λq(M,R), q = 0, 1, ..., n. If we apply the Laplace
operator ∆ = dδ + δd on Λq(M, R) we obtain the spectrum Spq(M, g).

One problem in the spectral theory is to determine Spq(M, g), where (M, g) is a
known compact Riemannian manifold.

The aim of the present paper is to determine Sp0(M, g), that means the spectrum
of ∆ on the functions on M, where M = SP (l)/SU(l) and g is the Riemannian metric
on M, coming from the Killing-Cartan form of the Lie algebra sp(l).

2 Basic elements for symmetric spaces

Let M = G/H be a compact homogenous space. One of the problems concerning of
the spectrum is to calculate

Spq(M = G/H, g), q = 0, 1, ..., dim M(2.1)

Let t and v be the Lie algebras of G and H respectively. If m is the tangent space
of M at its origin, we have the relation

t = v ⊕m(2.2)

Let 〈, 〉 be a positively definite inner product on the vector space m which comes
from the Riemannian metric g, which is an ad(H)-invariant. Conversely, an inner
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product on m which is an ad(H)-invariant gives a G-invariant metric on the homoge-
neous space M , which is also called homogeneous manifold.

We assume that the Lie group G is compact and semisimple and the Lie subgroup
H of G is its closed subgroup.

Let b be the Cartan subalgebra of t. The set of the simple roots which are linear
forms on the bC, that is elements of b∗C, is given as follows:

Ψ = {ψ1, ..., ψl} ,(2.3)

where l = dim b.
We denote by Λ the set of all roots of bC,

Λ =

{
λ =

l∑

i=1

riψi/ri ∈ Z

}
(2.4)

and with Λ+ the set of all positive roots, so we have

Λ+ =

{
λ =

l∑

i=1

riψi/ri ≥ 0

}
.

For each element p ∈ b∗, we take p∗ =
2p

< p, p >
so we can construct the following

set:

Ψ∗ = {ψ∗1 , ..., ψ∗l }(2.5)

where:

ψ∗1 =
2ψ1

〈ψ1, ψ1〉 , ..., ψ
∗
l =

2ψl

〈ψl, ψl〉
and consequently for each λ, we take λ∗ defined as follows:

λ∗ =
2λ

< λ, λ >
.(2.6)

Now, we can define the fundamental weights µi ∈ b, i = 1, ..., l, via

< µi, ψj >= δij , i = 1, ...l, j = 1, ..., l(2.7)

We construct the set of the weights

B =

{
µ =

l∑

i=1

miµi/mi ∈ Z,mi ≥ 0

}
.(2.8)

If we consider the set

{I = µ ∈ b/ < µ, ψ∗i >∈ Z, i = 1, ..., l} ,(2.9)

then B is equivalent to the set
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N1 = {µ ∈ / < µ, λ >≥ 0,∀λ ∈ Λ} ,(2.10)

or

N2 = {µ ∈ I/ < µ, ψi >≥ 0, i = 1, ..., l} .(2.11)

The above relations are used for the calculations of the spectrum of a symmetric
space M = G/H, where G is a simply connected compact semisimple Lie group and
H is a closed subgroup of G, where the Riemannian metric on M comes from the
Killing-Cartan form 〈, 〉 on the Lie algebra t of G. If v is the Lie algebra of H, then
we have

t = v ⊕ s,

where v is the eigenspace with the eigenvalue +1 and s is the eigenspace with the
eigenvalue −1.

Let m be the maximal abelian subspace of s and Λ+
m the system of positive roots

on mC.
We define the subset k of v as follows

k = {x ∈ v/[x, m] = 0} ,(2.12)

and we consider the Cartan subalgebra b1 of k.
The following relaton is valid

b = b1 + m,

and therefore b is a Cartan subalgebra of t. We define the Λ+
m as follows:

Λ+
m =

{
λ/m : λ ∈ Λ+ and λ/m 6= 0

}
,(2.13)

and we construct the set

Bm =
{

µ ∈∗ |< µ, λ >

< λ, λ >
≥ 0, ∀λ ∈ Λ+

m

}
.(2.14)

The following theorem is valid
Theorem. Let M = G/H the compact symmetric space of Riemann, where G is a
simply connected, compact, semisimple Lie group and H is a closed subgroup of G,
where the metric g on M comes from the Killing-Cartan form of the Lie algebra t of
G. The spectrum Sp(M, g) is given by

Sp(M, g) = {< µ, µ > +2 < µ, δm >,µ ∈ Bm} ,(2.15)

where δ is the half of the sum of the positive roots and δm is the restriction of δ on
m, which is the maximal abelian subspace of s (the eigenspace with eigenvalue −1).
The multiplicity of the eigenvalue is given by

P (µ) =
∏

λ∈Λ+

< µ + δ, λ >

< δ, λ >
.(2.16)
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3 The spectrum Sp0(M, g), where M = SP (l)/SU(l)

Let sp(l) and su(l) be the Lie algebras of SP (l) and SU(l) respectively. Then we have

sp(l) = su(l)⊕m = h⊕m,

where the direct sum is valid if the Lie algebras are considered as vector spaces and
m is the tangent space of the SP (l)/SU(l) at its origin.

The Lie algebra sp(l) has the form

sp(l) =
{

X ∈ M2l|XK + KXT = O, where K =
[

O Il

Il O

]}
.

An element of the Lie algebra sp(l) is split into an element of su(l) and an element
of the tangent space m in the following way

X ∈ sp(l) ⇒ X =




A
l × l

B
l × l

C
l × l

AT

l × l


 ,

where B and C are symmetric martices of order l.

The matrix A can be written A =


 a11

A12

1× (l − 1)
A21

(l − 1)× 1
A22

(l − 1)× (l − 1)


 .

Therefore the vector X takes the form

X =




a11

A12

1× (l − 1)
A21

(l − 1)× 1
A22

(l − 1)× (l − 1)

B
l × l

C
l × l

−a11 −AT
21

−AT
12 −AT

22




=

=




−tr(A22) A12

A21 A22
O

O
tr(A22) −AT

21

−AT
12 −AT

22


⊕

⊕




tr(A22) + a11 O
O O

B

C
−tr(A22)− a11 O

O O




Hence the tangent space m takes the following form

m =








k O
O O

B

C
−k O
O O


 , k ∈ R





,

and the Lie algebra h becomes
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−tr(A22) A12

A21 A22
O

O
tr(A22) −AT

21

−AT
12 −AT

22








.

Therefore the Lie algebra sp(l) can be written sp(l) = h ⊕m. The roots of sp(l)

are given by {±ei ± ek,±2ei|i < k, i, k = 1, ..., l} , where ei =
1

4l + 4
·(Ei − Ei+l) , i =

1, ..., l and Ei is a matrix of order 2l which has at the position (i, i) the number one
and everywhere else the number zero.

Taking into consideration the form of the tangent space m, the quantities ei take
the following form:

- for i = 1, ei =
1

4l + 4
· (E1 − E1+l) = O ⊕ 1

4l + 4
· (E1 − El+1)

- for 2 ≤ i ≤ l, ei =
1

4l + 4
· (Ei − Ei+l) =

1
4l + 4

· (Ei − Ei+l)⊕O.

At first we construct the weights of sp(l),

wi = e1 + e2 + ... + ei ⇒ wim = e1 =
1

4l + 4
· (E1 − E1+l) , i = 1, ..., l .

Then we construct the quantity

µ = m1w1m + ... + mlwlm where m1, ...,ml ∈ Z+ .

Taking into consideration the form of the weights restricted to the tangent space,
the quantity µ takes the form µ = (m1 + m2 + ... + ml) · e1 = m · e1.

Now, we construct the half of the sum of all positive roots δ

2δ = 2le1 + (2l − 2) e2 + ... + 4el−1 + 2el.

Subsequently the restriction of the half of the sum of all positive roots to the tangent
space takes the following form δm = l · e1. At first we calculate the quantities which
appeare in formula (17)

〈µ, µ〉 = 〈m · e1,m · e1〉 = m2〈e1, e1〉 =
m2

4l + 4
;

〈µ, δm〉 = 〈m · e1, l · e1〉 = m · l · 〈e1, e1〉 =
ml

4l + 4
.

So, the spectrum takes the form

Sp(SP (l)/SU(l), g) =
{

m2 + 2ml

4l + 4
,m ∈ Z

}
.(3.1)

The positive roots are
i) ei − ej , 1 ≤ i < j ≤ l
ii) ei + ej , 1 ≤ i < j ≤ l
iii) 2ei, 1 ≤ i ≤ l

and for

µ + δ = me1 + le1 + (l − 1)e2 + ... + el = (m + l)e1 + (l − 1)e2 + ... + el,
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we construct
P1 =

∏

1≤i<j≤l

< µ + δ, ei − ej >

< δ, ei − ej >
=

∏

2≤j≤l

< µ + δ, e1 − ej >

< δ, e1 − ej >
=

∏

2≤j≤l

m + j − 1
j − 1

=

(
m + l − 1

l − 1

)
;

P2 =
∏

1≤i<j≤l

< µ + δ, ei + ej >

< δ, ei + ej >
=

∏

2≤j≤l

< µ + δ, e1 + ej >

< δ, e1 + ej >
=

∏

2≤j≤l

∏m + 2l − j + 1
2l − j + 1

;

P3 =
∏

1≤i≤l

< µ + δ, 2ei >

< δ, 2ei >
=

< µ + δ, 2e1 >

< δ, 2e1 >
=

m + l

l
.

Having taken into consideration the relation (18) the multiplicity of the eigenvalue
is taken then

dµ2 = P1P2P3 =
2l−1∏

k=1

m + k

k
=

(
m + 2l − 1

2l − 1

)
.(3.2)

We conclude with the following
Theorem. The spectrum Sp(M, g), where M = SP (L)/SU(l), is given by the relation
(19). The multiplicity of the eigenvalue is given by the relation (20).
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