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Abstract

In this paper, the geometry of submanifolds of a Riemannian product man-
ifold is studied. Fundamental properties of these submanifolds are investigated
such as integrability of distributions, totally umbilical semi-invariant subman-
ifold. Finally, necessary and sufficient conditions are given on a semi-invariant
submanifold of a Riemannian product manifold to be a locally Riemannian man-
ifold.
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1 Introduction

The geometry of a submanifold (M, g) of a locally Riemannian product man-
ifold (M1 × M2, g1 ⊗ g2) was widely studied by many geometers. In particularly,
K. Matsumoto has proved that (M, g) is a locally product Riemannian manifold of
Riemannian manifolds (Ma, ga) and (Mb, gb), if it is an invariant submanifold of a
Riemannian product manifold (M1 × M2, g1 ⊗ g2)(see [4]). After then Senlin, Xu.,
and Yilong, Ni., have updated theorem of Matsumoto and proved that Ma ⊂ M1

and Mb ⊂ M2. Moreover, they have proved that (Ma, ga) and (Mb, gb) are pseudo-
umbilical submanifolds of (M1, g1) and (M2, g2), respectively, if (M, g) is a pseudo-
umbilical submanifold of (M, g) = (M1×M2, g1⊗ g2). They have also demonstrated
that M is isometric to the production of its two totally geodesic submanifolds (Ma, ga)
and (Mb, gb) which are submanifolds of (M1, g1) and (M2, g2), respectively (see [5]).

In this work, we study the geometry of semi-invariant submanifolds of a Rie-
mannian manifold and proved that a semi-invariant submanifold of a Riemannian
product manifold is a locally Riemannian product manifold iff AFD⊥D = 0, which
is equivalent to ∇f = 0, or Bh(X,Y ) = 0 for any X ∈ Γ(TM) and Y ∈ Γ(D).
Moreover, necessary and sufficient conditions are given on distributions D and D⊥ of
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a semi-invariant submanifold M are integrable. Finally, we show that there exists no
totally umbilical semi-invariant submanifold of positively or negatively curved Rie-
mannian product manifold. Also we give an example for semi-invariant submanifold
to illustrate the our results.

2 Preliminaries

In this section, we give some notations and terminology used througthout this
paper. We recall some necessary facts and formulas from the theory of submanifolds.
For an arbitrary submanifold M of a Riemannian manifold M , Gauss and Weingarten
formulas are given by

∇XY = ∇XY + h(X, Y ),(2.1)

and

∇Xξ = −AξX +∇⊥Xξ,(2.2)

respectively, where ∇, ∇ are Levi-Civita connections on the Riemannian manifolds
M and its submanifold M , respectively, and X, Y are vector fields tangent to M , ξ
is a vector field normal to M , h : TM × TM −→ TM⊥ is the second fundamental
form of M , ∇⊥ is the normal connection in the normal vector bundle TM⊥, and Aξ

is the shape operator of the second quadratic form for a normal vector ξ. Moreover,
we have

g(AξX,Y ) = g(h(X, Y ), ξ),(2.3)

where the symbols g and g mean the Riemannian metrics of M and its submanifold
M , respectively.

We denote the Riemannian curvature tensors of the Levi-Civita connections ∇ and
∇ on M and M by R and R, respectively. The Gauss, Codazzi, and Ricci equations
are given by

g(R(X, Y )Z,W ) = g(R(X, Y )Z, W ) + g(h(X, W ), h(Y,Z))
− g(h(X, Z), h(Y,W ))(2.4)

(R(X, Y )Z)⊥ = (∇Xh)(Y,Z)− (∇Y h)(X, Z),(2.5)

g(R(X, Y )ξ, η) = g(R
⊥

(X, Y )ξ, η)− g([Aξ, Aη]X, Y )(2.6)

respectively, where the vector fields X,Y, Z, W are tangent to M , the vector fields ξ
and η are orthogonal to M , (R(X, Y )Z)⊥ denotes the normal of R(X,Y )Z and the
derivative ∇h is defined by

(∇Xh)(Y, Z) = (∇⊥Xh)(Y, Z)− h(∇XY, Z)− h(∇XZ, Y ).(2.7)
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We recall that M is called a curvature-invariant submanifold, if it has

(R(X,Y )Z)⊥ = 0,(2.8)

which is equivalent to
(∇Xh)(Y, Z) = (∇Y h)(X, Z),

for all X, Y, Z ∈ Γ(TM) [3].

Definition 2.1 For a submanifold M ⊆ M the mean-curvature vector field H is
defined by the formula

H =
1
n

n∑

i=1

h(ei, ei),(2.9)

where {ei} is a local orthonormal basis in TM . If a submanifold M ⊆ M having one
of the conditions

h = 0, h(X,Y ) = g(X, Y )H, g(h(X, Y ),H) = λg(X,Y ),

H = 0, λ ∈ C∞(M, R),(2.10)

then it is called totally geodesic, totally umbilical, pseudo-umbilical and minimal, re-
spectively [2].

Let (M1, g1) and (M2, g2) be Riemannian manifolds with dimensions n1 and n2,
respectively. Then M = M1×M2 is the Riemannian product manifold of Riemannian
manifolds M1 and M2. We denote the projection mappings of T (M1 ×M2) to TM1

and TM2 by π∗ and σ∗, respectively. Then we have

π∗ + σ∗ = I, π2
∗ = π∗, σ2

∗ = σ∗, π∗ × σ∗ = σ∗ × π∗ = 0.(2.11)

Then the Riemannian metric of M1 ×M2 is given by

g(X, Y ) = g1(π∗X, π∗Y ) + g2(σ∗X, σ∗Y )(2.12)

for all X, Y ∈ Γ(T (M1 ×M2)). Set F = π∗ − σ∗, then we can easily see that F 2 = I.
It follows

g(X,Y ) = g(FX, FY )(2.13)

for all X, Y ∈ Γ(T (M1 ×M2)).

By the definition of g, M1 and M2 are totally geodesic submanifolds of M1×M2.
We denote the Levi-Civita connection of M1 ×M2 by ∇, we can easily see that

(∇XF )Y = 0.(2.14)

for any X, Y ∈ Γ(T (M1 ×M2))(For the detail, we refer to[5]).
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3 Semi-invariant submanifold of a Riemannian
product manifold

We denote the Riemannian product manifold (M1 × M2, g1 × g2) by (M, g)
througthout this paper.

Definition 3.1 let M be a submanifold of a Riemannian product manifold M . We
suppose that M has two the distributions such as D and D⊥ such that TM = D⊕D⊥,
F (D) = D and F (D⊥) ⊂ TM⊥. In this case, M is called semi-invariant submanifold
of M .

In the rest of this paper, we assume that M semi-invariant submanifold of M . We
denote the orthogonal complementary of F (D⊥) in TM⊥ by V , then we have direct
sum

TM⊥ = F (D⊥)⊕ V.

We denote the projection mappings of TM to D and D⊥ by P and Q, respectively.
Then for each X tangent to TM , we can write FX in the following way:

FX = fX + ωX,(3.1)

where fX = FPX and ωX = FQX are respectively the tangent part and the normal
part of FX. Also, for each vector field ξ normal to M , we put

Fξ = Bξ + Cξ,(3.2)

where Bξ and Cξ are respectively the tangent part and the normal part of Fξ.
We denote dimensions of the distributions D and D⊥ by p and q, respectively.

Then for q = 0(resp. p = 0) a semi-invariant submanifold becomes an invariant sub-
manifold(resp. an anti-invariant submanifold). A proper semi-invariant submanifold
is a semi-invariant submanifold which is neither an invariant submanifold nor an
anti-invariant submanifold.

Example 3.2 We consider a submanifold M in R6 given by the equations:

X1 = X6 +
1
2
(X3 + X4)2, X2 = X5.

It is easy check that M is a semi-invariant submanifold of R6 = R3 × R3. Then by
direct calculation we obtain

TM = Span{U1 =
∂

∂X2
+

∂

∂X5
, U2 = (X3 + X4)

∂

∂X1
+

∂

∂X3
,

U3 = (X3 + X4)
∂

∂X1
+

∂

∂X4
, U4 =

∂

∂X1
+

∂

∂X6
}

and

TM⊥ = Span{ξ1 = − ∂

∂X1
+ (X3 + X4)

∂

∂X3
+ (X3 + X4)

∂

∂X4
+

∂

∂X6
,

ξ2 =
∂

∂X2
− ∂

∂X5
},

where D = Span{U2, U3, U4} and D⊥ = Span{U1}.



Semi-Invariant Submanifolds of Riemannian Product Manifold 95

Definition 3.3 Let M be a Riemannian product manifold and M be a semi-invariant
submanifold of M . Then M is called mixed-geodesic semi-invariant submanifold if
h(X, Y ) = 0 for any X ∈ Γ(D) and Y ∈ Γ(D⊥).

We denote the Levi-Civita connections on M and M by ∇ and ∇, respectively.

Proposition 3.4 Let M be a Riemannian product manifold and M be a semi-
invariant submanifold of M . Then we have

AFZW = −AFW Z,(3.3)

for all Z, W ∈ Γ(D⊥)

Proof. From (2.1), (2.2), (2.14) and (3.1) we have

−AFZX +∇⊥XFZ = F∇XZ + Fh(X, Z)

for any X ∈ Γ(TM) and Z ∈ Γ(D⊥). Using (2.13) we obtain

−g(AFZX,W ) = g(h(X, Z), FW ),

for any W ∈ Γ(D⊥). Since A is self adjoint, from (2.3) we get

−g(AFZW,X) = g(AFW Z,X),

which proves our assertion.

Lemma 3.5 Let M be a Riemannian product manifold and M be a semi-invariant
submanifold of M . Then we have

AξFX = AFξX(3.4)

for any X ∈ Γ(D) and ξ ∈ Γ(V ).

Proof. Since ∇ is the Levi-Civita connection, from (2.14) we derive

g(h(FX, Y ), ξ) = −g(∇Y Fξ, X),

for any X ∈ Γ(D), Y ∈ Γ(TM) and ξ ∈ Γ(V ). Using (2.2) and (2.3) we get

g(AξFX, Y ) = g(AFξX, Y ).

Thus proof is complete.

Lemma 3.6 Let M be a Riemannian product manifold and M be a semi-invariant
submanifold of M . Then we have

∇⊥ZFW −∇⊥W FZ ∈ Γ(D⊥),(3.5)

for any Z,W ∈ Γ(D⊥).
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Proof. From (2.1) and (2.2) we have

g(AFξZ,W ) = g(∇⊥ZFW, ξ)(3.6)

for any W,Z ∈ Γ(D⊥) and ξ ∈ Γ(V ). Since A is self adjoint, from (3.6) we get

g(∇⊥ZFW −∇⊥W FZ, ξ) = 0,

which gives (3.5).

Theorem 3.7 Let M be a Riemannian product manifold and M be a semi-invariant
submanifold of M . Then D⊥ is integrable if and only if

h(X, W ) ∈ Γ(V )(3.7)

for any X ∈ Γ(D) and W ∈ ΓD⊥.

Proof. From (2.2), (2.14) and (3.3) we get

F [Z, W ] = 2AFZW +∇⊥ZFW −∇⊥W FZ

for any Z ∈ Γ(D⊥). Thus from (2.3) and (2.13) we derive

g([Z,W ], FX) = 2g(h(W,X), FZ).

Hence the proof is complete.

Theorem 3.8 Let M be a Riemannian product manifold and M be a semi-invariant
submanifold of M . Then D is integrable if and only if

h(X, FY ) = h(Y, FX)(3.8)

for any X, Y ∈ Γ(D).

Proof. By using (2.1), (2.2), (2.14) and (3.1) we derive

∇XFY + h(X, FY ) = P∇XY + ω∇XY + Fh(X, Y ),

where interchanging role of vector fields X and Y , we obtain

∇Y FX + h(Y, FX) = P∇Y X + ω∇Y X + Fh(Y, X).

Thus we have
h(X, FY )− h(FX, Y ) = ω([X, Y ]).

This completes the proof of the theorem.

Lemma 3.9 Let M be a Riemannian product manifold and M be a mixed-geodesic
semi-invariant submanifold of M . Then we have

AFξX = FAξX(3.9)

for any X ∈ Γ(D) and ξ ∈ Γ(V ).
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Proof. From (2.1) and (2.2) we have

g(AFξX − FAξX, Y ) = g(AFξX, Y )− g(AξX, FY )

for any X ∈ Γ(D), Y ∈ Γ(D⊥) and ξ ∈ Γ(V ). Since M is a mixed-geodesic submani-
fold, we have AFξX ∈ Γ(D). Thus using the equation (2.3) we obtain

g(AFξX − FAξ, Y ) = 0.

On the other hand, from (2.3) we get

g(AFξX − FAξX,Z) = g(h(X, Z), F ξ)− g(h(X, FZ), ξ)

for any X, Z ∈ Γ(D). Thus from (2.14) we derive

g(AFξX − FAξ, Z) = 0,

which proves our assertion.

Theorem 3.10 Let M be a Riemannian product manifold and M be a semi-invariant
submanifold of M . Then M is a locally Riemannian product manifold if and only if
AFZX = 0 for all X ∈ Γ(D) and Z ∈ Γ(D⊥).

Proof. Let M be a semi-invariant submanifold of a Riemannian product manifold
(M, g). Then from (2.1) and (2.2) we have

g(∇XFY, Z) = g(AFZX, Y )(3.10)

and

g(∇W Z, FX) = −g(AFZX, W )(3.11)

for any X, Y ∈ Γ(D) and Z, W ∈ Γ(D⊥). Now, we suppose that M is a locally
Riemannian product manifold. Then the distributions D and D⊥ are parallel. From
(3.10) and (3.11) we have AFZX ∈ Γ(D) and AFZX ∈ Γ(D⊥). Since D ∩D⊥ = {0}
we obtain AFZX = 0.

Conversely, if AFZX = 0, then from (3.10) and (3.11) we have the distributions
D and D⊥ are integrable and leaves of them are parallel. This completes the proof of
the theorem.

Proposition 3.11 Any pseudo umbilical proper semi-invariant submanifold of a Rie-
mannian product manifold is a mixed-geodesic submanifold.

Proof. We suppose that M is a pseudo-umbilical proper semi-invariant submanifold
of a Riemannian product manifold (M, g). Then we have

g(h(X, Z),H) = g(H, H)g(X, Z) = 0,

for all X ∈ Γ(D) and Z ∈ Γ(D⊥), which implies that h(X,Z) = 0.
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Theorem 3.12 Let M be a Riemannian product manifold and M be a semi-invariant
submanifold of M . Then M is a locally Riemannian product manifold if and only if
∇f = 0.

Proof. Let M be a locally Riemannian product semi-invariant submanifold of M .
Then we have ∇UY ∈ Γ(D) for all U ∈ Γ(TM) and Y ∈ Γ(D). Thus from (2.2) and
(3.1) we obtain

h(U,FY ) = F∇UY + Bh(U,FY ) + Ch(U,FY )−∇UFY

for any U ∈ Γ(TM) and Y ∈ Γ(D). Hence we get

h(U,FY ) = Ch(U,FY )
(∇Uf)Y = 0

Bh(U,FY ) = 0.(3.12)

In the similar way, we obtain (∇Uf)Z = 0 for any Z ∈ Γ(D⊥).

Conversely, we suppose that ∇f = 0. Then we have ∇XfY = f∇XY, for any
X, Y ∈ Γ(D). It follows that ∇XY ∈ Γ(D). In the similar way ∇ZW ∈ Γ(D⊥) for
any Z,W ∈ Γ(D⊥). Thus M is a locally Riemannian product manifold.

Theorem 3.13 Let M be a semi-invariant submanifold of a Riemannian product
manifold M . Then M is a locally Riemannian product manifold if and only if
Bh(X,Y ) = 0 for all X ∈ Γ(TM) and Y ∈ Γ(D).

Proof. We assume that M is a locally Riemannian product manifold. Then from
(3.12) we have Bh(X,Y ) = 0 for any X ∈ Γ(TM) and Y ∈ Γ(D).

Conversely, we assume that Bh(X, Y ) = 0 for any X ∈ Γ(TM) and Y ∈ Γ(D).
Then from (2.1), (2.14), (3.1) and (3.2) we get

∇XfY + h(X, FY ) = f∇XY + ω∇XY + Bh(X,Y ) + Ch(X, Y )

for any X ∈ Γ(TM) and Y ∈ Γ(D). Thus we derive (∇Xf)Y = 0, that is, ∇XY ∈
Γ(D). On the other hand, making use of (2.1), (2.2), (2.14), (3.1) and (3.2) we obtain

−AFZX +∇⊥XFZ = f∇XZ + ω∇XZ + Bh(X, Z) + Ch(X,Z)

for any X ∈ Γ(TM) and Z ∈ Γ(D⊥). Thus we obtain

−AFZX = f∇XZ(3.13)

for any X ∈ Γ(TM) and Z ∈ Γ(D⊥). By the using (2.3), (2.13) and (3.2) we derive

g(f∇XZ, Y ) = −g(Ch(X, Y ), Z) = 0,

for all X ∈ Γ(TM), Y ∈ Γ(D) and Z ∈ Γ(D⊥). Hence we have ∇XZ ∈ Γ(D⊥). Thus
proof is complete.

In case F (D⊥) = TM⊥, we can give the following theorem.
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Theorem 3.14 Let M be a Riemannian product manifold and M be a semi-invariant
submanifold of M such that F (D⊥) = TM⊥. Then M is a locally Riemannian product
manifold if and only if h(X,Y ) = 0 for all X ∈ Γ(TM) and Y ∈ Γ(D).

Theorem 3.15 Let M be a totally umbilical proper semi-invariant submanifold of a
Riemannian product manifold M . Then one only of the following assertions are valid:
1) dimD⊥ = 1
2) M is a totally geodesic submanifold.

Proof. We suppose that M is a totally umbilical submanifold of a Riemannian product
manifold M . Then from (2.1) and (2.2) and (3.1) we have

−g(AFW Z,Z) = g(Fh(Z,W ), Z)

for all Z, W ∈ Γ(D⊥). Since M is a totally umbilical submanifold, from (2.3) and
(2.13) we obtain

−g(Z,Z)g(FH, W ) = g(Z, Z)g(FH,Z),(3.14)

where H is the mean curvature vector field of M in M . Interchanging role of Z and
W in (3.14) we get

−g(W,W )g(FH, Z) = g(W,W )g(FH,W ).(3.15)

Thus from (3.14) and (3.15) we obtain

g(FH, Z) =
g(Z, W )2

‖Z‖2‖W‖2 g(FH,Z).(3.16)

Hence, either g(FH, Z) = 0 or Z and W are linearly dependent. If Z and W are
linearly dependent, then dimD⊥ = 1.

We suppose that dimD⊥ > 1. Then from (3.3) we have

AFBHZ = −AFZBH

for any Z ∈ Γ(D⊥). By the using (2.3) we get

−g(Z, W )g(BH, BH) = g(BH, W )g(H, FZ).

Since dimD⊥ > 1, we can choose W orthogonal to BH. Then BH = 0, that is,
H ∈ Γ(V ). Now we assume that H 6= 0. From (2.3) and (3.4) we derive

g(FH,H)g(X, Y ) = g(H,H)g(FX, Y )(3.17)

for any X ∈ Γ(D). We note that the leaf of D is an invariant submanifold of Rie-
mannian product manifold M . We denote the leaf of D by N . Since N is an invariant
submanifold of M , it is a product manifold. Set N = N1 ×N2. Then we have

TN1 = {X ∈ Γ(TN)|FX = X}
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and
TN2 = {X ∈ Γ(TN)|FX = −X}.

From (3.17) we obtain
g(X,FX) = g(X,X)

for any X ∈ Γ(D). Thus for X = X2 ∈ Γ(TN2), we have

−g(X2, X2) = g(X2, X2),

i.e.,
‖X2‖ = 0 =⇒ X2 = 0.

This is a contradiction.

Theorem 3.16 There exists no any totally umbilical proper semi-invariant subman-
ifold of positively or negatively curved Riemannian product manifold M .

Proof. We assume that Riemannian product manifold M has constant sectional cur-
vature c 6= 0 and let M be a totally umbilical proper semi-invariant submanifold of
M . Then form the equations Gauss and Codazzi, we have

K(X,Y, X, Y ) = K(X, Y, FX,FY ) = −g(X, FX)g(∇⊥Y H, FY )
K(X ∧ Y ) = −g(X, FX)g(∇⊥Y H, FY ).

Since the vector fields X and FX are linearly independent, we can choose X orthog-
onal to FX. In this case, we obtain

K(X ∧ Y ) = 0.

This is a contradiction, where K denotes the Riemannian-Christoffel curvature tensor
of M .
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[1] M. Atc.eken and S. Keleş., On Product Riemannian Manifolds, Differential
Geometry-Dynamical Systems, Vol.5 No.1, 2003, pp.1-7.

[2] B.Y. Chen, Geometry of Submanifolds, Marcel Dekker Inc., New York, 1973.

[3] B.Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Sci-
entific Publishing Co Pte Ltd., 1984.

[4] K. Matsumoto, On Submanifolds of Locally Product Riemannian Manifolds, TRU
Mathematics 18-2, 1982, 145-157.

[5] X. Senlin and N. Yilong, Submanifolds of Product Riemannian Manifold, Acta
Mathematica Scientia 2000, 20(B) 213-218.

[6] B. O’Neill, Semi-Riemannian Geometry, Academic Press Inc., 1983.

Inonu University, Faculty of Science and Art,
Department of Mathematics, 44100 Malatya/TURKEY
email: matceken@inonu.edu.tr; bsahin@inonu.edu.tr


