Semi-Invariant Submanifolds of Riemannian Product Manifold

B. Şahin and M. Atçeken

Dedicated to the Memory of Grigorios TSAGAS (1935-2003), President of Balkan Society of Geometers (1997-2003)

Abstract

In this paper, the geometry of submanifolds of a Riemannian product manifold is studied. Fundamental properties of these submanifolds are investigated such as integrability of distributions, totally umbilical semi-invariant submanifold. Finally, necessary and sufficient conditions are given on a semi-invariant submanifold of a Riemannian product manifold to be a locally Riemannian manifold.

Mathematics Subject Classification: 53C42, 53C15. Key words: Riemannian product manifold, totally umbilical submanifold, mixed

geodesic submanifold, constant sectional curved manifold

1 Introduction

The geometry of a submanifold (M,g) of a locally Riemannian product manifold $(\overline{M}_1 \times \overline{M}_2, \overline{g}_1 \otimes \overline{g}_2)$ was widely studied by many geometers. In particularly, K. Matsumoto has proved that (M,g) is a locally product Riemannian manifold of Riemannian manifolds (M_a, g_a) and (M_b, g_b) , if it is an invariant submanifold of a Riemannian product manifold $(\overline{M}_1 \times \overline{M}_2, \overline{g}_1 \otimes \overline{g}_2)$ (see [4]). After then Senlin, Xu., and Yilong, Ni., have updated theorem of Matsumoto and proved that $M_a \subset \overline{M}_1$ and $M_b \subset \overline{M}_2$. Moreover, they have proved that (M_a, g_a) and (M_b, g_b) are pseudoumbilical submanifolds of $(\overline{M}_1, \overline{g}_1)$ and $(\overline{M}_2, \overline{g}_2)$, respectively, if (M, g) is a pseudoumbilical submanifold of $(\overline{M}, \overline{g}) = (\overline{M}_1 \times \overline{M}_2, \overline{g}_1 \otimes \overline{g}_2)$. They have also demonstrated that M is isometric to the production of its two totally geodesic submanifolds (M_a, g_a) and (M_b, g_b) which are submanifolds of $(\overline{M}_1, \overline{g}_1)$ and $(\overline{M}_2, \overline{g}_2)$, respectively (see [5]).

In this work, we study the geometry of semi-invariant submanifolds of a Riemannian manifold and proved that a semi-invariant submanifold of a Riemannian product manifold is a locally Riemannian product manifold iff $A_{FD^{\perp}}D = 0$, which is equivalent to $\nabla f = 0$, or Bh(X, Y) = 0 for any $X \in \Gamma(TM)$ and $Y \in \Gamma(D)$. Moreover, necessary and sufficient conditions are given on distributions D and D^{\perp} of

Balkan Journal of Geometry and Its Applications, Vol.8, No.1, 2003, pp. 91-100.

[©] Balkan Society of Geometers, Geometry Balkan Press 2003.

a semi-invariant submanifold M are integrable. Finally, we show that there exists no totally umbilical semi-invariant submanifold of positively or negatively curved Riemannian product manifold. Also we give an example for semi-invariant submanifold to illustrate the our results.

2 Preliminaries

In this section, we give some notations and terminology used throughout this paper. We recall some necessary facts and formulas from the theory of submanifolds. For an arbitrary submanifold M of a Riemannian manifold \overline{M} , Gauss and Weingarten formulas are given by

(2.1)
$$\overline{\nabla}_X Y = \nabla_X Y + h(X, Y),$$

and

(2.2)
$$\overline{\nabla}_X \xi = -A_\xi X + \nabla_X^{\perp} \xi,$$

respectively, where $\overline{\nabla}$, ∇ are Levi-Civita connections on the Riemannian manifolds \overline{M} and its submanifold M, respectively, and X, Y are vector fields tangent to M, ξ is a vector field normal to $M, h: TM \times TM \longrightarrow TM^{\perp}$ is the second fundamental form of M, ∇^{\perp} is the normal connection in the normal vector bundle TM^{\perp} , and A_{ξ} is the shape operator of the second quadratic form for a normal vector ξ . Moreover, we have

(2.3)
$$g(A_{\xi}X,Y) = \overline{g}(h(X,Y),\xi),$$

where the symbols \overline{g} and g mean the Riemannian metrics of \overline{M} and its submanifold M, respectively.

We denote the Riemannian curvature tensors of the Levi-Civita connections $\overline{\nabla}$ and ∇ on \overline{M} and M by \overline{R} and R, respectively. The Gauss, Codazzi, and Ricci equations are given by

(2.4)
$$\overline{g}(R(X,Y)Z,W) = \overline{g}(R(X,Y)Z,W) + \overline{g}(h(X,W),h(Y,Z)) - \overline{g}(h(X,Z),h(Y,W))$$

(2.5)
$$(\overline{R}(X,Y)Z)^{\perp} = (\overline{\nabla}_X h)(Y,Z) - (\overline{\nabla}_Y h)(X,Z),$$

(2.6)
$$\overline{g}(\overline{R}(X,Y)\xi,\eta) = \overline{g}(\overline{R}^{\perp}(X,Y)\xi,\eta) - \overline{g}([A_{\xi},A_{\eta}]X,Y)$$

respectively, where the vector fields X, Y, Z, W are tangent to M, the vector fields ξ and η are orthogonal to M, $(\overline{R}(X,Y)Z)^{\perp}$ denotes the normal of $\overline{R}(X,Y)Z$ and the derivative $\overline{\nabla}h$ is defined by

(2.7)
$$(\overline{\nabla}_X h)(Y,Z) = (\nabla_X^\perp h)(Y,Z) - h(\nabla_X Y,Z) - h(\nabla_X Z,Y).$$

We recall that M is called a curvature-invariant submanifold, if it has

(2.8)
$$(\overline{R}(X,Y)Z)^{\perp} = 0,$$

which is equivalent to

$$(\overline{\nabla}_X h)(Y, Z) = (\overline{\nabla}_Y h)(X, Z),$$

for all $X, Y, Z \in \Gamma(TM)$ [3].

Definition 2.1 For a submanifold $M \subseteq \overline{M}$ the mean-curvature vector field H is defined by the formula

(2.9)
$$H = \frac{1}{n} \sum_{i=1}^{n} h(e_i, e_i),$$

where $\{e_i\}$ is a local orthonormal basis in TM. If a submanifold $M \subseteq \overline{M}$ having one of the conditions

$$h=0, h(X,Y)=g(X,Y)H, \quad g(h(X,Y),H)=\lambda g(X,Y),$$

(2.10)
$$H = 0, \lambda \in C^{\infty}(M, R),$$

then it is called totally geodesic, totally umbilical, pseudo-umbilical and minimal, respectively [2].

Let $(\overline{M}_1, \overline{g}_1)$ and $(\overline{M}_2, \overline{g}_2)$ be Riemannian manifolds with dimensions n_1 and n_2 , respectively. Then $\overline{M} = \overline{M}_1 \times \overline{M}_2$ is the Riemannian product manifold of Riemannian manifolds \overline{M}_1 and \overline{M}_2 . We denote the projection mappings of $T(\overline{M}_1 \times \overline{M}_2)$ to $T\overline{M}_1$ and $T\overline{M}_2$ by π_* and σ_* , respectively. Then we have

(2.11)
$$\pi_* + \sigma_* = I, \pi_*^2 = \pi_*, \sigma_*^2 = \sigma_*, \pi_* \times \sigma_* = \sigma_* \times \pi_* = 0.$$

Then the Riemannian metric of $\overline{M}_1 \times \overline{M}_2$ is given by

(2.12)
$$\overline{g}(X,Y) = \overline{g}_1(\pi_*X,\pi_*Y) + \overline{g}_2(\sigma_*X,\sigma_*Y)$$

for all $X, Y \in \Gamma(\overline{M}_1 \times \overline{M}_2))$. Set $F = \pi_* - \sigma_*$, then we can easily see that $F^2 = I$. It follows

(2.13)
$$\overline{g}(X,Y) = \overline{g}(FX,FY)$$

for all $X, Y \in \Gamma(T(\overline{M}_1 \times \overline{M}_2))$.

By the definition of \overline{g} , \overline{M}_1 and \overline{M}_2 are totally geodesic submanifolds of $\overline{M}_1 \times \overline{M}_2$. We denote the Levi-Civita connection of $\overline{M}_1 \times \overline{M}_2$ by $\overline{\nabla}$, we can easily see that

(2.14)
$$(\overline{\nabla}_X F)Y = 0.$$

for any $X, Y \in \Gamma(T(\overline{M}_1 \times \overline{M}_2))$ (For the detail, we refer to [5]).

3 Semi-invariant submanifold of a Riemannian product manifold

We denote the Riemannian product manifold $(\overline{M}_1 \times \overline{M}_2, \overline{g}_1 \times \overline{g}_2)$ by $(\overline{M}, \overline{g})$ throughout this paper.

Definition 3.1 let M be a submanifold of a Riemannian product manifold \overline{M} . We suppose that M has two the distributions such as D and D^{\perp} such that $TM = D \oplus D^{\perp}$, $F(\underline{D}) = D$ and $F(D^{\perp}) \subset TM^{\perp}$. In this case, M is called semi-invariant submanifold of \overline{M} .

In the rest of this paper, we assume that M semi-invariant submanifold of \overline{M} . We denote the orthogonal complementary of $F(D^{\perp})$ in TM^{\perp} by V, then we have direct sum

$$TM^{\perp} = F(D^{\perp}) \oplus V.$$

We denote the projection mappings of TM to D and D^{\perp} by P and Q, respectively. Then for each X tangent to TM, we can write FX in the following way:

$$FX = fX + \omega X,$$

where fX = FPX and $\omega X = FQX$ are respectively the tangent part and the normal part of FX. Also, for each vector field ξ normal to M, we put

$$F\xi = B\xi + C\xi$$

where $B\xi$ and $C\xi$ are respectively the tangent part and the normal part of $F\xi$.

We denote dimensions of the distributions D and D^{\perp} by p and q, respectively. Then for q = 0 (resp. p = 0) a semi-invariant submanifold becomes an invariant submanifold (resp. an anti-invariant submanifold). A proper semi-invariant submanifold is a semi-invariant submanifold which is neither an invariant submanifold nor an anti-invariant submanifold.

Example 3.2 We consider a submanifold M in \mathbb{R}^6 given by the equations:

$$X_1 = X_6 + \frac{1}{2}(X_3 + X_4)^2, X_2 = X_5.$$

It is easy check that M is a semi-invariant submanifold of $R^6 = R^3 \times R^3$. Then by direct calculation we obtain

$$TM = Span\{U_1 = \frac{\partial}{\partial X_2} + \frac{\partial}{\partial X_5}, U_2 = (X_3 + X_4)\frac{\partial}{\partial X_1} + \frac{\partial}{\partial X_3}, U_3 = (X_3 + X_4)\frac{\partial}{\partial X_1} + \frac{\partial}{\partial X_4}, U_4 = \frac{\partial}{\partial X_1} + \frac{\partial}{\partial X_6}\}$$

and

$$TM^{\perp} = Span\{\xi_1 = -\frac{\partial}{\partial X_1} + (X_3 + X_4)\frac{\partial}{\partial X_3} + (X_3 + X_4)\frac{\partial}{\partial X_4} + \frac{\partial}{\partial X_6}, \\ \xi_2 = \frac{\partial}{\partial X_2} - \frac{\partial}{\partial X_5}\}$$

where $D = Span\{U_2, U_3, U_4\}$ and $D^{\perp} = Span\{U_1\}$.

94

Definition 3.3 Let \overline{M} be a Riemannian product manifold and M be a semi-invariant submanifold of \overline{M} . Then M is called mixed-geodesic semi-invariant submanifold if h(X,Y) = 0 for any $X \in \Gamma(D)$ and $Y \in \Gamma(D^{\perp})$.

We denote the Levi-Civita connections on M and \overline{M} by ∇ and $\overline{\nabla}$, respectively.

Proposition 3.4 Let \overline{M} be a Riemannian product manifold and M be a semiinvariant submanifold of \overline{M} . Then we have

for all $Z, W \in \Gamma(D^{\perp})$

Proof. From (2.1), (2.2), (2.14) and (3.1) we have

 $-A_{FZ}X + \nabla_X^{\perp}FZ = F\nabla_X Z + Fh(X,Z)$

for any $X \in \Gamma(TM)$ and $Z \in \Gamma(D^{\perp})$. Using (2.13) we obtain

 $-\overline{g}(A_{FZ}X,W) = \overline{g}(h(X,Z),FW),$

for any $W \in \Gamma(D^{\perp})$. Since A is self adjoint, from (2.3) we get

$$-\overline{g}(A_{FZ}W,X) = \overline{g}(A_{FW}Z,X),$$

which proves our assertion.

Lemma 3.5 Let \overline{M} be a Riemannian product manifold and M be a semi-invariant submanifold of \overline{M} . Then we have

for any $X \in \Gamma(D)$ and $\xi \in \Gamma(V)$.

Proof. Since $\overline{\nabla}$ is the Levi-Civita connection, from (2.14) we derive

$$\overline{g}(h(FX,Y),\xi) = -\overline{g}(\overline{\nabla}_Y F\xi,X),$$

for any $X \in \Gamma(D)$, $Y \in \Gamma(TM)$ and $\xi \in \Gamma(V)$. Using (2.2) and (2.3) we get

$$\overline{g}(A_{\xi}FX,Y) = \overline{g}(A_{F\xi}X,Y).$$

Thus proof is complete.

Lemma 3.6 Let \overline{M} be a Riemannian product manifold and M be a semi-invariant submanifold of \overline{M} . Then we have

(3.5)
$$\nabla_Z^{\perp} FW - \nabla_W^{\perp} FZ \in \Gamma(D^{\perp}),$$

for any $Z, W \in \Gamma(D^{\perp})$.

Proof. From (2.1) and (2.2) we have

(3.6)
$$\overline{g}(A_{F\xi}Z,W) = \overline{g}(\nabla_Z^{\perp}FW,\xi)$$

for any $W, Z \in \Gamma(D^{\perp})$ and $\xi \in \Gamma(V)$. Since A is self adjoint, from (3.6) we get

$$\overline{g}(\nabla_Z^{\perp} FW - \nabla_W^{\perp} FZ, \xi) = 0,$$

which gives (3.5).

Theorem 3.7 Let \overline{M} be a Riemannian product manifold and M be a semi-invariant submanifold of \overline{M} . Then D^{\perp} is integrable if and only if

$$h(X,W) \in \Gamma(V)$$

for any $X \in \Gamma(D)$ and $W \in \Gamma D^{\perp}$.

Proof. From (2.2), (2.14) and (3.3) we get

$$F[Z,W] = 2A_{FZ}W + \nabla_Z^{\perp}FW - \nabla_W^{\perp}FZ$$

for any $Z \in \Gamma(D^{\perp})$. Thus from (2.3) and (2.13) we derive

$$\overline{g}([Z,W],FX) = 2\overline{g}(h(W,X),FZ).$$

Hence the proof is complete.

Theorem 3.8 Let \overline{M} be a Riemannian product manifold and M be a semi-invariant submanifold of \overline{M} . Then D is integrable if and only if

h(X, FY) = h(Y, FX)

for any $X, Y \in \Gamma(D)$.

Proof. By using (2.1), (2.2), (2.14) and (3.1) we derive

$$\nabla_X FY + h(X, FY) = P\nabla_X Y + \omega \nabla_X Y + Fh(X, Y),$$

where interchanging role of vector fields X and Y, we obtain

$$\nabla_Y FX + h(Y, FX) = P\nabla_Y X + \omega \nabla_Y X + Fh(Y, X)$$

Thus we have

$$h(X, FY) - h(FX, Y) = \omega([X, Y]).$$

This completes the proof of the theorem.

Lemma 3.9 Let \overline{M} be a Riemannian product manifold and M be a mixed-geodesic semi-invariant submanifold of \overline{M} . Then we have

for any $X \in \Gamma(D)$ and $\xi \in \Gamma(V)$.

Proof. From (2.1) and (2.2) we have

$$\overline{g}(A_{F\xi}X - FA_{\xi}X, Y) = \overline{g}(A_{F\xi}X, Y) - \overline{g}(A_{\xi}X, FY)$$

for any $X \in \Gamma(D)$, $Y \in \Gamma(D^{\perp})$ and $\xi \in \Gamma(V)$. Since *M* is a mixed-geodesic submanifold, we have $A_{F\xi}X \in \Gamma(D)$. Thus using the equation (2.3) we obtain

$$\overline{g}(A_{F\xi}X - FA_{\xi}, Y) = 0.$$

On the other hand, from (2.3) we get

$$\overline{g}(A_{F\xi}X - FA_{\xi}X, Z) = \overline{g}(h(X, Z), F\xi) - \overline{g}(h(X, FZ), \xi)$$

for any $X, Z \in \Gamma(D)$. Thus from (2.14) we derive

$$\overline{g}(A_{F\xi}X - FA_{\xi}, Z) = 0,$$

which proves our assertion.

Theorem 3.10 Let \overline{M} be a Riemannian product manifold and M be a semi-invariant submanifold of \overline{M} . Then M is a locally Riemannian product manifold if and only if $A_{FZ}X = 0$ for all $X \in \Gamma(D)$ and $Z \in \Gamma(D^{\perp})$.

Proof. Let M be a semi-invariant submanifold of a Riemannian product manifold $(\overline{M}, \overline{g})$. Then from (2.1) and (2.2) we have

(3.10)
$$\overline{g}(\nabla_X FY, Z) = \overline{g}(A_{FZ}X, Y)$$

and

(3.11)
$$\overline{g}(\nabla_W Z, FX) = -\overline{g}(A_{FZ}X, W)$$

for any $X, Y \in \Gamma(D)$ and $Z, W \in \Gamma(D^{\perp})$. Now, we suppose that M is a locally Riemannian product manifold. Then the distributions D and D^{\perp} are parallel. From (3.10) and (3.11) we have $A_{FZ}X \in \Gamma(D)$ and $A_{FZ}X \in \Gamma(D^{\perp})$. Since $D \cap D^{\perp} = \{0\}$ we obtain $A_{FZ}X = 0$.

Conversely, if $A_{FZ}X = 0$, then from (3.10) and (3.11) we have the distributions D and D^{\perp} are integrable and leaves of them are parallel. This completes the proof of the theorem.

Proposition 3.11 Any pseudo umbilical proper semi-invariant submanifold of a Riemannian product manifold is a mixed-geodesic submanifold.

Proof. We suppose that M is a pseudo-umbilical proper semi-invariant submanifold of a Riemannian product manifold $(\overline{M}, \overline{g})$. Then we have

$$\overline{g}(h(X,Z),H) = \overline{g}(H,H)g(X,Z) = 0,$$

for all $X \in \Gamma(D)$ and $Z \in \Gamma(D^{\perp})$, which implies that h(X, Z) = 0.

Theorem 3.12 Let \overline{M} be a Riemannian product manifold and M be a semi-invariant submanifold of \overline{M} . Then M is a locally Riemannian product manifold if and only if $\nabla f = 0$.

Proof. Let M be a locally Riemannian product semi-invariant submanifold of \overline{M} . Then we have $\nabla_U Y \in \Gamma(D)$ for all $U \in \Gamma(TM)$ and $Y \in \Gamma(D)$. Thus from (2.2) and (3.1) we obtain

$$h(U, FY) = F\nabla_U Y + Bh(U, FY) + Ch(U, FY) - \nabla_U FY$$

for any $U \in \Gamma(TM)$ and $Y \in \Gamma(D)$. Hence we get

$$h(U, FY) = Ch(U, FY)$$

$$(\nabla_U f)Y = 0$$

$$(3.12) \qquad Bh(U, FY) = 0.$$

In the similar way, we obtain $(\nabla_U f)Z = 0$ for any $Z \in \Gamma(D^{\perp})$.

Conversely, we suppose that $\nabla f = 0$. Then we have $\nabla_X fY = f\nabla_X Y$, for any $X, Y \in \Gamma(D)$. It follows that $\nabla_X Y \in \Gamma(D)$. In the similar way $\nabla_Z W \in \Gamma(D^{\perp})$ for any $Z, W \in \Gamma(D^{\perp})$. Thus M is a locally Riemannian product manifold.

Theorem 3.13 Let M be a semi-invariant submanifold of a Riemannian product manifold \overline{M} . Then M is a locally Riemannian product manifold if and only if Bh(X,Y) = 0 for all $X \in \Gamma(TM)$ and $Y \in \Gamma(D)$.

Proof. We assume that M is a locally Riemannian product manifold. Then from (3.12) we have Bh(X, Y) = 0 for any $X \in \Gamma(TM)$ and $Y \in \Gamma(D)$.

Conversely, we assume that Bh(X,Y) = 0 for any $X \in \Gamma(TM)$ and $Y \in \Gamma(D)$. Then from (2.1), (2.14), (3.1) and (3.2) we get

$$\nabla_X fY + h(X, FY) = f\nabla_X Y + \omega \nabla_X Y + Bh(X, Y) + Ch(X, Y)$$

for any $X \in \Gamma(TM)$ and $Y \in \Gamma(D)$. Thus we derive $(\nabla_X f)Y = 0$, that is, $\nabla_X Y \in \Gamma(D)$. On the other hand, making use of (2.1), (2.2), (2.14), (3.1) and (3.2) we obtain

$$-A_{FZ}X + \nabla_X^{\perp}FZ = f\nabla_X Z + \omega\nabla_X Z + Bh(X,Z) + Ch(X,Z)$$

for any $X \in \Gamma(TM)$ and $Z \in \Gamma(D^{\perp})$. Thus we obtain

$$(3.13) -A_{FZ}X = f\nabla_X Z$$

for any $X \in \Gamma(TM)$ and $Z \in \Gamma(D^{\perp})$. By the using (2.3), (2.13) and (3.2) we derive

$$\overline{g}(f\nabla_X Z, Y) = -\overline{g}(Ch(X, Y), Z) = 0,$$

for all $X \in \Gamma(TM)$, $Y \in \Gamma(D)$ and $Z \in \Gamma(D^{\perp})$. Hence we have $\nabla_X Z \in \Gamma(D^{\perp})$. Thus proof is complete.

In case $F(D^{\perp}) = TM^{\perp}$, we can give the following theorem.

Theorem 3.14 Let \overline{M} be a Riemannian product manifold and M be a semi-invariant submanifold of \overline{M} such that $F(D^{\perp}) = TM^{\perp}$. Then M is a locally Riemannian product manifold if and only if h(X, Y) = 0 for all $X \in \Gamma(TM)$ and $Y \in \Gamma(D)$.

Theorem 3.15 Let M be a totally umbilical proper semi-invariant submanifold of a Riemannian product manifold \overline{M} . Then one only of the following assertions are valid: 1) dim $D^{\perp} = 1$

2) M is a totally geodesic submanifold.

Proof. We suppose that M is a totally umbilical submanifold of a Riemannian product manifold \overline{M} . Then from (2.1) and (2.2) and (3.1) we have

$$-\overline{g}(A_{FW}Z,Z) = \overline{g}(Fh(Z,W),Z)$$

for all $Z, W \in \Gamma(D^{\perp})$. Since M is a totally umbilical submanifold, from (2.3) and (2.13) we obtain

(3.14)
$$-\overline{g}(Z,Z)\overline{g}(FH,W) = \overline{g}(Z,Z)\overline{g}(FH,Z),$$

where H is the mean curvature vector field of M in \overline{M} . Interchanging role of Z and W in (3.14) we get

(3.15)
$$-\overline{g}(W,W)\overline{g}(FH,Z) = \overline{g}(W,W)\overline{g}(FH,W).$$

Thus from (3.14) and (3.15) we obtain

(3.16)
$$\overline{g}(FH,Z) = \frac{\overline{g}(Z,W)^2}{\|Z\|^2 \|W\|^2} \overline{g}(FH,Z).$$

Hence, either $\overline{g}(FH, Z) = 0$ or Z and W are linearly dependent. If Z and W are linearly dependent, then dim $D^{\perp} = 1$.

We suppose that $\dim D^{\perp} > 1$. Then from (3.3) we have

$$A_{FBH}Z = -A_{FZ}BH$$

for any $Z \in \Gamma(D^{\perp})$. By the using (2.3) we get

$$-\overline{g}(Z,W)\overline{g}(BH,BH) = \overline{g}(BH,W)\overline{g}(H,FZ).$$

Since dim $D^{\perp} > 1$, we can choose W orthogonal to BH. Then BH = 0, that is, $H \in \Gamma(V)$. Now we assume that $H \neq 0$. From (2.3) and (3.4) we derive

(3.17)
$$\overline{g}(FH,H)\overline{g}(X,Y) = \overline{g}(H,H)\overline{g}(FX,Y)$$

for any $X \in \Gamma(D)$. We note that the leaf of D is an invariant submanifold of Riemannian product manifold \overline{M} . We denote the leaf of D by N. Since N is an invariant submanifold of \overline{M} , it is a product manifold. Set $N = N_1 \times N_2$. Then we have

$$TN_1 = \{X \in \Gamma(TN) | FX = X\}$$

and

$$TN_2 = \{ X \in \Gamma(TN) | FX = -X \}.$$

From (3.17) we obtain

$$\overline{g}(X, FX) = \overline{g}(X, X)$$

for any $X \in \Gamma(D)$. Thus for $X = X_2 \in \Gamma(TN_2)$, we have

$$-\overline{g}(X_2, X_2) = \overline{g}(X_2, X_2),$$

i.e.,

$$|X_2|| = 0 \Longrightarrow X_2 = 0.$$

This is a contradiction.

Theorem 3.16 There exists no any totally umbilical proper semi-invariant submanifold of positively or negatively curved Riemannian product manifold \overline{M} .

Proof. We assume that Riemannian product manifold \overline{M} has constant sectional curvature $c \neq 0$ and let M be a totally umbilical proper semi-invariant submanifold of \overline{M} . Then form the equations Gauss and Codazzi, we have

$$\begin{split} \overline{K}(X,Y,X,Y) &= \overline{K}(X,Y,FX,FY) = -\overline{g}(X,FX)\overline{g}(\nabla_Y^{\perp}H,FY) \\ \overline{K}(X \wedge Y) &= -\overline{g}(X,FX)\overline{g}(\nabla_Y^{\perp}H,FY). \end{split}$$

Since the vector fields X and FX are linearly independent, we can choose X orthogonal to FX. In this case, we obtain

$$\overline{K}(X \wedge Y) = 0.$$

This is a contradiction, where \overline{K} denotes the Riemannian-Christoffel curvature tensor of \overline{M} .

References

- M. Atçeken and S. Keleş., On Product Riemannian Manifolds, Differential Geometry-Dynamical Systems, Vol.5 No.1, 2003, pp.1-7.
- [2] B.Y. Chen, Geometry of Submanifolds, Marcel Dekker Inc., New York, 1973.
- [3] B.Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific Publishing Co Pte Ltd., 1984.
- [4] K. Matsumoto, On Submanifolds of Locally Product Riemannian Manifolds, TRU Mathematics 18-2, 1982, 145-157.
- [5] X. Senlin and N. Yilong, Submanifolds of Product Riemannian Manifold, Acta Mathematica Scientia 2000, 20(B) 213-218.
- [6] B. O'Neill, Semi-Riemannian Geometry, Academic Press Inc., 1983.

Inonu University, Faculty of Science and Art, Department of Mathematics, 44100 Malatya/TURKEY email: matceken@inonu.edu.tr; bsahin@inonu.edu.tr