Semi-Invariant Submanifolds of Riemannian Product Manifold

B. Şahin and M. Atçeken
Dedicated to the Memory of Grigorios TSAGAS (1935-2003), President of Balkan Society of Geometers (1997-2003)

Abstract

In this paper, the geometry of submanifolds of a Riemannian product manifold is studied. Fundamental properties of these submanifolds are investigated such as integrability of distributions, totally umbilical semi-invariant submanifold. Finally, necessary and sufficient conditions are given on a semi-invariant submanifold of a Riemannian product manifold to be a locally Riemannian manifold.

Mathematics Subject Classification: 53C42, 53C15.
Key words: Riemannian product manifold, totally umbilical submanifold, mixed geodesic submanifold, constant sectional curved manifold

1 Introduction

The geometry of a submanifold (M, g) of a locally Riemannian product manifold $\left(\bar{M}_{1} \times \bar{M}_{2}, \bar{g}_{1} \otimes \bar{g}_{2}\right)$ was widely studied by many geometers. In particularly, K. Matsumoto has proved that (M, g) is a locally product Riemannian manifold of Riemannian manifolds $\left(M_{a}, g_{a}\right)$ and $\left(M_{b}, g_{b}\right)$, if it is an invariant submanifold of a Riemannian product manifold $\left(\bar{M}_{1} \times \bar{M}_{2}, \bar{g}_{1} \otimes \bar{g}_{2}\right)$ (see [4]). After then Senlin, Xu., and Yilong, Ni., have updated theorem of Matsumoto and proved that $M_{a} \subset \bar{M}_{1}$ and $M_{b} \subset \bar{M}_{2}$. Moreover, they have proved that $\left(M_{a}, g_{a}\right)$ and $\left(M_{b}, g_{b}\right)$ are pseudoumbilical submanifolds of $\left(\bar{M}_{1}, \bar{g}_{1}\right)$ and $\left(\bar{M}_{2}, \bar{g}_{2}\right)$, respectively, if (M, g) is a pseudoumbilical submanifold of $(\bar{M}, \bar{g})=\left(\bar{M}_{1} \times \bar{M}_{2}, \bar{g}_{1} \otimes \bar{g}_{2}\right)$. They have also demonstrated that M is isometric to the production of its two totally geodesic submanifolds (M_{a}, g_{a}) and $\left(M_{b}, g_{b}\right)$ which are submanifolds of $\left(\bar{M}_{1}, \bar{g}_{1}\right)$ and $\left(\bar{M}_{2}, \bar{g}_{2}\right)$, respectively (see [5]).

In this work, we study the geometry of semi-invariant submanifolds of a Riemannian manifold and proved that a semi-invariant submanifold of a Riemannian product manifold is a locally Riemannian product manifold iff $A_{F D^{\perp}} D=0$, which is equivalent to $\nabla f=0$, or $B h(X, Y)=0$ for any $X \in \Gamma(T M)$ and $Y \in \Gamma(D)$. Moreover, necessary and sufficient conditions are given on distributions D and D^{\perp} of

[^0]a semi-invariant submanifold M are integrable. Finally, we show that there exists no totally umbilical semi-invariant submanifold of positively or negatively curved Riemannian product manifold. Also we give an example for semi-invariant submanifold to illustrate the our results.

2 Preliminaries

In this section, we give some notations and terminology used througthout this paper. We recall some necessary facts and formulas from the theory of submanifolds. For an arbitrary submanifold M of a Riemannian manifold \bar{M}, Gauss and Weingarten formulas are given by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\nabla}_{X} \xi=-A_{\xi} X+\nabla_{X}^{\perp} \xi \tag{2.2}
\end{equation*}
$$

respectively, where $\bar{\nabla}, \nabla$ are Levi-Civita connections on the Riemannian manifolds \bar{M} and its submanifold M, respectively, and X, Y are vector fields tangent to M, ξ is a vector field normal to $M, h: T M \times T M \longrightarrow T M^{\perp}$ is the second fundamental form of M, ∇^{\perp} is the normal connection in the normal vector bundle $T M^{\perp}$, and A_{ξ} is the shape operator of the second quadratic form for a normal vector ξ. Moreover, we have

$$
\begin{equation*}
g\left(A_{\xi} X, Y\right)=\bar{g}(h(X, Y), \xi) \tag{2.3}
\end{equation*}
$$

where the symbols \bar{g} and g mean the Riemannian metrics of \bar{M} and its submanifold M, respectively.

We denote the Riemannian curvature tensors of the Levi-Civita connections $\bar{\nabla}$ and ∇ on \bar{M} and M by \bar{R} and R, respectively. The Gauss, Codazzi, and Ricci equations are given by

$$
\begin{align*}
\bar{g}(\bar{R}(X, Y) Z, W) & =\bar{g}(R(X, Y) Z, W)+\bar{g}(h(X, W), h(Y, Z)) \\
& -\bar{g}(h(X, Z), h(Y, W)) \tag{2.4}\\
(\bar{R}(X, Y) Z)^{\perp} & =\left(\bar{\nabla}_{X} h\right)(Y, Z)-\left(\bar{\nabla}_{Y} h\right)(X, Z) \tag{2.5}\\
\bar{g}(\bar{R}(X, Y) \xi, \eta) & =\bar{g}\left(\bar{R}^{\perp}(X, Y) \xi, \eta\right)-\bar{g}\left(\left[A_{\xi}, A_{\eta}\right] X, Y\right) \tag{2.6}
\end{align*}
$$

respectively, where the vector fields X, Y, Z, W are tangent to M, the vector fields ξ and η are orthogonal to $M,(\bar{R}(X, Y) Z)^{\perp}$ denotes the normal of $\bar{R}(X, Y) Z$ and the derivative $\bar{\nabla} h$ is defined by

$$
\begin{equation*}
\left(\bar{\nabla}_{X} h\right)(Y, Z)=\left(\nabla_{X}^{\perp} h\right)(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(\nabla_{X} Z, Y\right) \tag{2.7}
\end{equation*}
$$

We recall that M is called a curvature-invariant submanifold, if it has

$$
\begin{equation*}
(\bar{R}(X, Y) Z)^{\perp}=0 \tag{2.8}
\end{equation*}
$$

which is equivalent to

$$
\left(\bar{\nabla}_{X} h\right)(Y, Z)=\left(\bar{\nabla}_{Y} h\right)(X, Z)
$$

for all $X, Y, Z \in \Gamma(T M)[3]$.
Definition 2.1 For a submanifold $M \subseteq \bar{M}$ the mean-curvature vector field H is defined by the formula

$$
\begin{equation*}
H=\frac{1}{n} \sum_{i=1}^{n} h\left(e_{i}, e_{i}\right) \tag{2.9}
\end{equation*}
$$

where $\left\{e_{i}\right\}$ is a local orthonormal basis in $T M$. If a submanifold $M \subseteq \bar{M}$ having one of the conditions

$$
\begin{gather*}
h=0, h(X, Y)=g(X, Y) H, \quad g(h(X, Y), H)=\lambda g(X, Y), \\
H=0, \lambda \in C^{\infty}(M, R) \tag{رrer}
\end{gather*}
$$

then it is called totally geodesic, totally umbilical, pseudo-umbilical and minimal, respectively [2].

Let $\left(\bar{M}_{1}, \bar{g}_{1}\right)$ and $\left(\bar{M}_{2}, \bar{g}_{2}\right)$ be Riemannian manifolds with dimensions n_{1} and n_{2}, respectively. Then $\bar{M}=\bar{M}_{1} \times \bar{M}_{2}$ is the Riemannian product manifold of Riemannian manifolds \bar{M}_{1} and \bar{M}_{2}. We denote the projection mappings of $T\left(\bar{M}_{1} \times \bar{M}_{2}\right)$ to $T \bar{M}_{1}$ and $T \bar{M}_{2}$ by π_{*} and σ_{*}, respectively. Then we have

$$
\begin{equation*}
\pi_{*}+\sigma_{*}=I, \pi_{*}^{2}=\pi_{*}, \sigma_{*}^{2}=\sigma_{*}, \pi_{*} \times \sigma_{*}=\sigma_{*} \times \pi_{*}=0 \tag{2.11}
\end{equation*}
$$

Then the Riemannian metric of $\bar{M}_{1} \times \bar{M}_{2}$ is given by

$$
\begin{equation*}
\bar{g}(X, Y)=\bar{g}_{1}\left(\pi_{*} X, \pi_{*} Y\right)+\bar{g}_{2}\left(\sigma_{*} X, \sigma_{*} Y\right) \tag{2.12}
\end{equation*}
$$

for all $X, Y \in \Gamma\left(T\left(\bar{M}_{1} \times \bar{M}_{2}\right)\right)$. Set $F=\pi_{*}-\sigma_{*}$, then we can easily see that $F^{2}=I$. It follows

$$
\begin{equation*}
\bar{g}(X, Y)=\bar{g}(F X, F Y) \tag{2.13}
\end{equation*}
$$

for all $X, Y \in \Gamma\left(T\left(\bar{M}_{1} \times \bar{M}_{2}\right)\right)$.
By the definition of \bar{g}, \bar{M}_{1} and \bar{M}_{2} are totally geodesic submanifolds of $\bar{M}_{1} \times \bar{M}_{2}$. We denote the Levi-Civita connection of $\bar{M}_{1} \times \bar{M}_{2}$ by $\bar{\nabla}$, we can easily see that

$$
\begin{equation*}
\left(\bar{\nabla}_{X} F\right) Y=0 \tag{2.14}
\end{equation*}
$$

for any $X, Y \in \Gamma\left(T\left(\bar{M}_{1} \times \bar{M}_{2}\right)\right)($ For the detail, we refer to[5]).

3 Semi-invariant submanifold of a Riemannian product manifold

We denote the Riemannian product manifold $\left(\bar{M}_{1} \times \bar{M}_{2}, \bar{g}_{1} \times \bar{g}_{2}\right)$ by (\bar{M}, \bar{g}) througthout this paper.
Definition 3.1 let M be a submanifold of a Riemannian product manifold \bar{M}. We suppose that M has two the distributions such as D and D^{\perp} such that $T M=D \oplus D^{\perp}$, $F(\underline{D})=D$ and $F\left(D^{\perp}\right) \subset T M^{\perp}$. In this case, M is called semi-invariant submanifold of \bar{M}.
In the rest of this paper, we assume that M semi-invariant submanifold of \bar{M}. We denote the orthogonal complementary of $F\left(D^{\perp}\right)$ in $T M^{\perp}$ by V, then we have direct sum

$$
T M^{\perp}=F\left(D^{\perp}\right) \oplus V
$$

We denote the projection mappings of $T M$ to D and D^{\perp} by P and Q, respectively. Then for each X tangent to $T M$, we can write $F X$ in the following way:

$$
\begin{equation*}
F X=f X+\omega X \tag{3.1}
\end{equation*}
$$

where $f X=F P X$ and $\omega X=F Q X$ are respectively the tangent part and the normal part of $F X$. Also, for each vector field ξ normal to M, we put

$$
\begin{equation*}
F \xi=B \xi+C \xi \tag{3.2}
\end{equation*}
$$

where $B \xi$ and $C \xi$ are respectively the tangent part and the normal part of $F \xi$.
We denote dimensions of the distributions D and D^{\perp} by p and q, respectively. Then for $q=0$ (resp. $p=0$) a semi-invariant submanifold becomes an invariant submanifold(resp. an anti-invariant submanifold). A proper semi-invariant submanifold is a semi-invariant submanifold which is neither an invariant submanifold nor an anti-invariant submanifold.
Example 3.2 We consider a submanifold M in R^{6} given by the equations:

$$
X_{1}=X_{6}+\frac{1}{2}\left(X_{3}+X_{4}\right)^{2}, X_{2}=X_{5}
$$

It is easy check that M is a semi-invariant submanifold of $R^{6}=R^{3} \times R^{3}$. Then by direct calculation we obtain

$$
\begin{aligned}
T M=\operatorname{Span}\left\{U_{1}\right. & =\frac{\partial}{\partial X_{2}}+\frac{\partial}{\partial X_{5}}, U_{2}=\left(X_{3}+X_{4}\right) \frac{\partial}{\partial X_{1}}+\frac{\partial}{\partial X_{3}} \\
U_{3} & \left.=\left(X_{3}+X_{4}\right) \frac{\partial}{\partial X_{1}}+\frac{\partial}{\partial X_{4}}, U_{4}=\frac{\partial}{\partial X_{1}}+\frac{\partial}{\partial X_{6}}\right\}
\end{aligned}
$$

and

$$
\begin{array}{r}
T M^{\perp}=\operatorname{Span}\left\{\xi_{1}=-\frac{\partial}{\partial X_{1}}+\left(X_{3}+X_{4}\right) \frac{\partial}{\partial X_{3}}+\left(X_{3}+X_{4}\right) \frac{\partial}{\partial X_{4}}+\frac{\partial}{\partial X_{6}}\right. \\
\left.\xi_{2}=\frac{\partial}{\partial X_{2}}-\frac{\partial}{\partial X_{5}}\right\}
\end{array}
$$

where $D=\operatorname{Span}\left\{U_{2}, U_{3}, U_{4}\right\}$ and $D^{\perp}=\operatorname{Span}\left\{U_{1}\right\}$.

Definition 3.3 Let \bar{M} be a Riemannian product manifold and M be a semi-invariant submanifold of \bar{M}. Then M is called mixed-geodesic semi-invariant submanifold if $h(X, Y)=0$ for any $X \in \Gamma(D)$ and $Y \in \Gamma\left(D^{\perp}\right)$.

We denote the Levi-Civita connections on M and \bar{M} by ∇ and $\bar{\nabla}$, respectively.
Proposition 3.4 Let \bar{M} be a Riemannian product manifold and M be a semiinvariant submanifold of \bar{M}. Then we have

$$
\begin{equation*}
A_{F Z} W=-A_{F W} Z \tag{3.3}
\end{equation*}
$$

for all $Z, W \in \Gamma\left(D^{\perp}\right)$
Proof. From (2.1), (2.2), (2.14) and (3.1) we have

$$
-A_{F Z} X+\nabla_{X}^{\perp} F Z=F \nabla_{X} Z+F h(X, Z)
$$

for any $X \in \Gamma(T M)$ and $Z \in \Gamma\left(D^{\perp}\right)$. Using (2.13) we obtain

$$
-\bar{g}\left(A_{F Z} X, W\right)=\bar{g}(h(X, Z), F W),
$$

for any $W \in \Gamma\left(D^{\perp}\right)$. Since A is self adjoint, from (2.3) we get

$$
-\bar{g}\left(A_{F Z} W, X\right)=\bar{g}\left(A_{F W} Z, X\right),
$$

which proves our assertion.
Lemma 3.5 Let \bar{M} be a Riemannian product manifold and M be a semi-invariant submanifold of \bar{M}. Then we have

$$
\begin{equation*}
A_{\xi} F X=A_{F \xi} X \tag{3.4}
\end{equation*}
$$

for any $X \in \Gamma(D)$ and $\xi \in \Gamma(V)$.
Proof. Since $\bar{\nabla}$ is the Levi-Civita connection, from (2.14) we derive

$$
\bar{g}(h(F X, Y), \xi)=-\bar{g}\left(\bar{\nabla}_{Y} F \xi, X\right)
$$

for any $X \in \Gamma(D), Y \in \Gamma(T M)$ and $\xi \in \Gamma(V)$. Using (2.2) and (2.3) we get

$$
\bar{g}\left(A_{\xi} F X, Y\right)=\bar{g}\left(A_{F \xi} X, Y\right)
$$

Thus proof is complete.
Lemma 3.6 Let \bar{M} be a Riemannian product manifold and M be a semi-invariant submanifold of \bar{M}. Then we have

$$
\begin{equation*}
\nabla \stackrel{\perp}{Z} F W-\nabla \stackrel{\perp}{W} F Z \in \Gamma\left(D^{\perp}\right) \tag{3.5}
\end{equation*}
$$

for any $Z, W \in \Gamma\left(D^{\perp}\right)$.

Proof. From (2.1) and (2.2) we have

$$
\begin{equation*}
\bar{g}\left(A_{F \xi} Z, W\right)=\bar{g}\left(\nabla \frac{\perp}{Z} F W, \xi\right) \tag{3.6}
\end{equation*}
$$

for any $W, Z \in \Gamma\left(D^{\perp}\right)$ and $\xi \in \Gamma(V)$. Since A is self adjoint, from (3.6) we get

$$
\bar{g}\left(\nabla \frac{\perp}{Z} F W-\nabla \stackrel{\perp}{W} F Z, \xi\right)=0
$$

which gives (3.5).
Theorem 3.7 Let \bar{M} be a Riemannian product manifold and M be a semi-invariant submanifold of \bar{M}. Then D^{\perp} is integrable if and only if

$$
\begin{equation*}
h(X, W) \in \Gamma(V) \tag{3.7}
\end{equation*}
$$

for any $X \in \Gamma(D)$ and $W \in \Gamma D^{\perp}$.
Proof. From (2.2), (2.14) and (3.3) we get

$$
F[Z, W]=2 A_{F Z} W+\nabla_{Z}^{\perp} F W-\nabla_{W}^{\perp} F Z
$$

for any $Z \in \Gamma\left(D^{\perp}\right)$. Thus from (2.3) and (2.13) we derive

$$
\bar{g}([Z, W], F X)=2 \bar{g}(h(W, X), F Z)
$$

Hence the proof is complete.
Theorem 3.8 Let \bar{M} be a Riemannian product manifold and M be a semi-invariant submanifold of \bar{M}. Then D is integrable if and only if

$$
\begin{equation*}
h(X, F Y)=h(Y, F X) \tag{3.8}
\end{equation*}
$$

for any $X, Y \in \Gamma(D)$.
Proof. By using (2.1), (2.2), (2.14) and (3.1) we derive

$$
\nabla_{X} F Y+h(X, F Y)=P \nabla_{X} Y+\omega \nabla_{X} Y+F h(X, Y)
$$

where interchanging role of vector fields X and Y, we obtain

$$
\nabla_{Y} F X+h(Y, F X)=P \nabla_{Y} X+\omega \nabla_{Y} X+F h(Y, X)
$$

Thus we have

$$
h(X, F Y)-h(F X, Y)=\omega([X, Y])
$$

This completes the proof of the theorem.
Lemma 3.9 Let \bar{M} be a Riemannian product manifold and M be a mixed-geodesic semi-invariant submanifold of \bar{M}. Then we have

$$
\begin{equation*}
A_{F \xi} X=F A_{\xi} X \tag{3.9}
\end{equation*}
$$

for any $X \in \Gamma(D)$ and $\xi \in \Gamma(V)$.

Proof. From (2.1) and (2.2) we have

$$
\bar{g}\left(A_{F \xi} X-F A_{\xi} X, Y\right)=\bar{g}\left(A_{F \xi} X, Y\right)-\bar{g}\left(A_{\xi} X, F Y\right)
$$

for any $X \in \Gamma(D), Y \in \Gamma\left(D^{\perp}\right)$ and $\xi \in \Gamma(V)$. Since M is a mixed-geodesic submanifold, we have $A_{F \xi} X \in \Gamma(D)$. Thus using the equation (2.3) we obtain

$$
\bar{g}\left(A_{F \xi} X-F A_{\xi}, Y\right)=0
$$

On the other hand, from (2.3) we get

$$
\bar{g}\left(A_{F \xi} X-F A_{\xi} X, Z\right)=\bar{g}(h(X, Z), F \xi)-\bar{g}(h(X, F Z), \xi)
$$

for any $X, Z \in \Gamma(D)$. Thus from (2.14) we derive

$$
\bar{g}\left(A_{F \xi} X-F A_{\xi}, Z\right)=0
$$

which proves our assertion.
Theorem 3.10 Let \bar{M} be a Riemannian product manifold and M be a semi-invariant submanifold of \bar{M}. Then M is a locally Riemannian product manifold if and only if $A_{F Z} X=0$ for all $X \in \Gamma(D)$ and $Z \in \Gamma\left(D^{\perp}\right)$.

Proof. Let M be a semi-invariant submanifold of a Riemannian product manifold (\bar{M}, \bar{g}). Then from (2.1) and (2.2) we have

$$
\begin{equation*}
\bar{g}\left(\nabla_{X} F Y, Z\right)=\bar{g}\left(A_{F Z} X, Y\right) \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{g}\left(\nabla_{W} Z, F X\right)=-\bar{g}\left(A_{F Z} X, W\right) \tag{3.11}
\end{equation*}
$$

for any $X, Y \in \Gamma(D)$ and $Z, W \in \Gamma\left(D^{\perp}\right)$. Now, we suppose that M is a locally Riemannian product manifold. Then the distributions D and D^{\perp} are parallel. From (3.10) and (3.11) we have $A_{F Z} X \in \Gamma(D)$ and $A_{F Z} X \in \Gamma\left(D^{\perp}\right)$. Since $D \cap D^{\perp}=\{0\}$ we obtain $A_{F Z} X=0$.

Conversely, if $A_{F Z} X=0$, then from (3.10) and (3.11) we have the distributions D and D^{\perp} are integrable and leaves of them are parallel. This completes the proof of the theorem.

Proposition 3.11 Any pseudo umbilical proper semi-invariant submanifold of a Riemannian product manifold is a mixed-geodesic submanifold.

Proof. We suppose that M is a pseudo-umbilical proper semi-invariant submanifold of a Riemannian product manifold (\bar{M}, \bar{g}). Then we have

$$
\bar{g}(h(X, Z), H)=\bar{g}(H, H) g(X, Z)=0
$$

for all $X \in \Gamma(D)$ and $Z \in \Gamma\left(D^{\perp}\right)$, which implies that $h(X, Z)=0$.

Theorem 3.12 Let \bar{M} be a Riemannian product manifold and M be a semi-invariant submanifold of \bar{M}. Then M is a locally Riemannian product manifold if and only if $\nabla f=0$.

Proof. Let M be a locally Riemannian product semi-invariant submanifold of \bar{M}. Then we have $\nabla_{U} Y \in \Gamma(D)$ for all $U \in \Gamma(T M)$ and $Y \in \Gamma(D)$. Thus from (2.2) and (3.1) we obtain

$$
h(U, F Y)=F \nabla_{U} Y+B h(U, F Y)+C h(U, F Y)-\nabla_{U} F Y
$$

for any $U \in \Gamma(T M)$ and $Y \in \Gamma(D)$. Hence we get

$$
\begin{align*}
h(U, F Y) & =C h(U, F Y) \\
\left(\nabla_{U} f\right) Y & =0 \\
B h(U, F Y) & =0 \tag{3.12}
\end{align*}
$$

In the similar way, we obtain $\left(\nabla_{U} f\right) Z=0$ for any $Z \in \Gamma\left(D^{\perp}\right)$.
Conversely, we suppose that $\nabla f=0$. Then we have $\nabla_{X} f Y=f \nabla_{X} Y$, for any $X, Y \in \Gamma(D)$. It follows that $\nabla_{X} Y \in \Gamma(D)$. In the similar way $\nabla_{Z} W \in \Gamma\left(D^{\perp}\right)$ for any $Z, W \in \Gamma\left(D^{\perp}\right)$. Thus M is a locally Riemannian product manifold.

Theorem 3.13 Let M be a semi-invariant submanifold of a Riemannian product manifold \bar{M}. Then M is a locally Riemannian product manifold if and only if $B h(X, Y)=0$ for all $X \in \Gamma(T M)$ and $Y \in \Gamma(D)$.

Proof. We assume that M is a locally Riemannian product manifold. Then from (3.12) we have $B h(X, Y)=0$ for any $X \in \Gamma(T M)$ and $Y \in \Gamma(D)$.

Conversely, we assume that $B h(X, Y)=0$ for any $X \in \Gamma(T M)$ and $Y \in \Gamma(D)$. Then from (2.1), (2.14), (3.1) and (3.2) we get

$$
\nabla_{X} f Y+h(X, F Y)=f \nabla_{X} Y+\omega \nabla_{X} Y+B h(X, Y)+C h(X, Y)
$$

for any $X \in \Gamma(T M)$ and $Y \in \Gamma(D)$. Thus we derive $\left(\nabla_{X} f\right) Y=0$, that is, $\nabla_{X} Y \in$ $\Gamma(D)$. On the other hand, making use of (2.1), (2.2), (2.14), (3.1) and (3.2) we obtain

$$
-A_{F Z} X+\nabla_{X}^{\perp} F Z=f \nabla_{X} Z+\omega \nabla_{X} Z+B h(X, Z)+C h(X, Z)
$$

for any $X \in \Gamma(T M)$ and $Z \in \Gamma\left(D^{\perp}\right)$. Thus we obtain

$$
\begin{equation*}
-A_{F Z} X=f \nabla_{X} Z \tag{3.13}
\end{equation*}
$$

for any $X \in \Gamma(T M)$ and $Z \in \Gamma\left(D^{\perp}\right)$. By the using (2.3), (2.13) and (3.2) we derive

$$
\bar{g}\left(f \nabla_{X} Z, Y\right)=-\bar{g}(C h(X, Y), Z)=0
$$

for all $X \in \Gamma(T M), Y \in \Gamma(D)$ and $Z \in \Gamma\left(D^{\perp}\right)$. Hence we have $\nabla_{X} Z \in \Gamma\left(D^{\perp}\right)$. Thus proof is complete.

In case $F\left(D^{\perp}\right)=T M^{\perp}$, we can give the following theorem.

Theorem 3.14 Let \bar{M} be a Riemannian product manifold and M be a semi-invariant submanifold of \bar{M} such that $F\left(D^{\perp}\right)=T M^{\perp}$. Then M is a locally Riemannian product manifold if and only if $h(X, Y)=0$ for all $X \in \Gamma(T M)$ and $Y \in \Gamma(D)$.

Theorem 3.15 Let M be a totally umbilical proper semi-invariant submanifold of a Riemannian product manifold \bar{M}. Then one only of the following assertions are valid: 1) $\operatorname{dim} D^{\perp}=1$
2) M is a totally geodesic submanifold.

Proof. We suppose that M is a totally umbilical submanifold of a Riemannian product manifold \bar{M}. Then from (2.1) and (2.2) and (3.1) we have

$$
-\bar{g}\left(A_{F W} Z, Z\right)=\bar{g}(F h(Z, W), Z)
$$

for all $Z, W \in \Gamma\left(D^{\perp}\right)$. Since M is a totally umbilical submanifold, from (2.3) and (2.13) we obtain

$$
\begin{equation*}
-\bar{g}(Z, Z) \bar{g}(F H, W)=\bar{g}(Z, Z) \bar{g}(F H, Z) \tag{3.14}
\end{equation*}
$$

where H is the mean curvature vector field of M in \bar{M}. Interchanging role of Z and W in (3.14) we get

$$
\begin{equation*}
-\bar{g}(W, W) \bar{g}(F H, Z)=\bar{g}(W, W) \bar{g}(F H, W) \tag{3.15}
\end{equation*}
$$

Thus from (3.14) and (3.15) we obtain

$$
\begin{equation*}
\bar{g}(F H, Z)=\frac{\bar{g}(Z, W)^{2}}{\|Z\|^{2}\|W\|^{2}} \bar{g}(F H, Z) \tag{3.16}
\end{equation*}
$$

Hence, either $\bar{g}(F H, Z)=0$ or Z and W are linearly dependent. If Z and W are linearly dependent, then $\operatorname{dim} D^{\perp}=1$.

We suppose that $\operatorname{dim} D^{\perp}>1$. Then from (3.3) we have

$$
A_{F B H} Z=-A_{F Z} B H
$$

for any $Z \in \Gamma\left(D^{\perp}\right)$. By the using (2.3) we get

$$
-\bar{g}(Z, W) \bar{g}(B H, B H)=\bar{g}(B H, W) \bar{g}(H, F Z)
$$

Since $\operatorname{dim} D^{\perp}>1$, we can choose W orthogonal to $B H$. Then $B H=0$, that is, $H \in \Gamma(V)$. Now we assume that $H \neq 0$. From (2.3) and (3.4) we derive

$$
\begin{equation*}
\bar{g}(F H, H) \bar{g}(X, Y)=\bar{g}(H, H) \bar{g}(F X, Y) \tag{3.17}
\end{equation*}
$$

for any $X \in \Gamma(D)$. We note that the leaf of D is an invariant submanifold of Riemannian product manifold \bar{M}. We denote the leaf of D by N. Since N is an invariant submanifold of \bar{M}, it is a product manifold. Set $N=N_{1} \times N_{2}$. Then we have

$$
T N_{1}=\{X \in \Gamma(T N) \mid F X=X\}
$$

and

$$
T N_{2}=\{X \in \Gamma(T N) \mid F X=-X\}
$$

From (3.17) we obtain

$$
\bar{g}(X, F X)=\bar{g}(X, X)
$$

for any $X \in \Gamma(D)$. Thus for $X=X_{2} \in \Gamma\left(T N_{2}\right)$, we have

$$
-\bar{g}\left(X_{2}, X_{2}\right)=\bar{g}\left(X_{2}, X_{2}\right)
$$

i.e.,

$$
\left\|X_{2}\right\|=0 \Longrightarrow X_{2}=0
$$

This is a contradiction.
Theorem 3.16 There exists no any totally umbilical proper semi-invariant submanifold of positively or negatively curved Riemannian product manifold \bar{M}.

Proof. We assume that Riemannian product manifold \bar{M} has constant sectional curvature $c \neq 0$ and let M be a totally umbilical proper semi-invariant submanifold of \bar{M}. Then form the equations Gauss and Codazzi, we have

$$
\begin{aligned}
\bar{K}(X, Y, X, Y) & =\bar{K}(X, Y, F X, F Y)=-\bar{g}(X, F X) \bar{g}\left(\nabla_{Y}^{\perp} H, F Y\right) \\
\bar{K}(X \wedge Y) & =-\bar{g}(X, F X) \bar{g}\left(\nabla_{Y}^{\perp} H, F Y\right)
\end{aligned}
$$

Since the vector fields X and $F X$ are linearly independent, we can choose X orthogonal to $F X$. In this case, we obtain

$$
\bar{K}(X \wedge Y)=0
$$

This is a contradiction, where \bar{K} denotes the Riemannian-Christoffel curvature tensor of \bar{M}.

References

[1] M. Atc̣eken and S. Keleş., On Product Riemannian Manifolds, Differential Geometry-Dynamical Systems, Vol. 5 No.1, 2003, pp.1-7.
[2] B.Y. Chen, Geometry of Submanifolds, Marcel Dekker Inc., New York, 1973.
[3] B.Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific Publishing Co Pte Ltd., 1984.
[4] K. Matsumoto, On Submanifolds of Locally Product Riemannian Manifolds, TRU Mathematics 18-2, 1982, 145-157.
[5] X. Senlin and N. Yilong, Submanifolds of Product Riemannian Manifold, Acta Mathematica Scientia 2000, 20(B) 213-218.
[6] B. O’Neill, Semi-Riemannian Geometry, Academic Press Inc., 1983.

Inonu University, Faculty of Science and Art, Department of Mathematics, 44100 Malatya/TURKEY
email: matceken@inonu.edu.tr; bsahin@inonu.edu.tr

[^0]: Balkan Journal of Geometry and Its Applications, Vol.8, No.1, 2003, pp. 91-100.
 (c) Balkan Society of Geometers, Geometry Balkan Press 2003.

