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Abstract

In this paper, the geometry of submanifolds of a Riemannian product man-
ifold is studied. Fundamental properties of these submanifolds are investigated
such as integrability of distributions, totally umbilical semi-invariant subman-
ifold. Finally, necessary and sufficient conditions are given on a semi-invariant
submanifold of a Riemannian product manifold to be a locally Riemannian man-
ifold.
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1 Introduction

The geometry of a submanifold (M, g) of a locally Riemannian product man-
ifold (M7 x Ma,g; ® g,) was widely studied by many geometers. In particularly,
K. Matsumoto has proved that (M, g) is a locally product Riemannian manifold of
Riemannian manifolds (Mg, g,) and (My,gp), if it is an invariant submanifold of a
Riemannian product manifold (M; x Ms,g, ® g)(see [4]). After then Senlin, Xu.,
and Yilong, Ni., have updated theorem of Matsumoto and proved that M, C M,
and Mj, C M,. Moreover, they have proved that (M,,g,) and (M, g) are pseudo-
umbilical submanifolds of (M1,g;) and (Ma,g,), respectively, if (M, g) is a pseudo-
umbilical submanifold of (M, g) = (M, x M,§, ®7,). They have also demonstrated
that M is isometric to the production of its two totally geodesic submanifolds (M, g,)
and (M, gp) which are submanifolds of (M1,g,) and (Maz,7,), respectively (see [5]).

In this work, we study the geometry of semi-invariant submanifolds of a Rie-
mannian manifold and proved that a semi-invariant submanifold of a Riemannian
product manifold is a locally Riemannian product manifold iff Appi D = 0, which
is equivalent to Vf = 0, or Bh(X,Y) = 0 for any X € I'(TM) and Y € I'(D).
Moreover, necessary and sufficient conditions are given on distributions D and D+ of
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a semi-invariant submanifold M are integrable. Finally, we show that there exists no
totally umbilical semi-invariant submanifold of positively or negatively curved Rie-
mannian product manifold. Also we give an example for semi-invariant submanifold
to illustrate the our results.

2 Preliminaries

In this section, we give some notations and terminology used througthout this
paper. We recall some necessary facts and formulas from the theory of submanifolds.
For an arbitrary submanifold M of a Riemannian manifold M, Gauss and Weingarten
formulas are given by

(2.1) VxY = VxY + h(X,Y),
and
(2.2) Vx€=—AeX + Vx¢,

respectively, where V, V are Levi-Civita connections on the Riemannian manifolds
M and its submanifold M, respectively, and X,Y are vector fields tangent to M, &
is a vector field normal to M, h : TM x TM — TM+* is the second fundamental
form of M, V+ is the normal connection in the normal vector bundle TM=*, and Ag
is the shape operator of the second quadratic form for a normal vector £. Moreover,
we have

(2.3) 9(AeX,Y) =g(h(X,Y),£),

where the symbols § and g mean the Riemannian metrics of M and its submanifold
M, respectively.

We denote the Riemannian curvature tensors of the Levi-Civita connections V and
V on M and M by R and R, respectively. The Gauss, Codazzi, and Ricci equations
are given by

FRX,YV)Z,W) = g(R(X,Y)Z,W)+g(h(X,W),h(Y,Z))
(2.4) g(h(X, 2),h(Y,W))

(2.5) RX,Y)Z)" = (Vxh)(Y,Z) - (Vyh)(X, 2),
(2.6) JRXY)E) = R (X,Y)En) - g([Ae, A,]X.Y)

respectively, where the vector iields X,Y,Z,W are tangent to M, the vector fields &
and 7 are orthogonal to M, (R(X,Y)Z)* denotes the normal of R(X,Y)Z and the
derivative Vh is defined by

(2.7) (Vxh)(Y, Z) = (Vxh)(Y, Z) = h(VxY, Z) = h(Vx Z,Y).
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We recall that M is called a curvature-invariant submanifold, if it has
(2.8) (R(X,Y)Z)* =0,

which is equivalent to - -
(Vxh)(Y, Z) = (Vyh)(X, Z),

forall X,Y,Z e T(TM) [3].
Definition 2.1 For a submanifold M C M the mean-curvature vector field H is
defined by the formula
(2.9) H L Xn: h( )

. = - €i,€i)s

Lt

where {e;} is a local orthonormal basis in TM. If a submanifold M C M having one
of the conditions

h=0,h(X,Y)=9g(X,Y)H, g(h(X,Y),H)=X(X,Y),

(2.10) H=0,\¢eC®M,R),

then it is called totally geodesic, totally umbilical, pseudo-umbilical and minimal, re-
spectively [2].

Let (M1,g;) and (Ma,g,) be Riemannian manifolds with dimensions n; and na,
respectively. Then M = M x M is the Riemannian product manifold of Riemannian
manifolds M; and M. We denote the projection mappings of T(M; x M3) to T M,
and TM, by 7, and 0., respectively. Then we have

(2.11) 7T*+O'*:I,7Tz:7r*70320'*,’ﬂ'*XJ*:J*XW*:O.
Then the Riemannian metric of M| x M is given by
(2.12) G(X,Y) = 3, (m X, m.Y) + G0 X, 0. Y)

for all X,Y € T(T(M; x Ms)). Set F = 7, — 0., then we can easily see that F? = I.
It follows

(2.13) 4(X,Y) = G(FX,FY)
for all X,Y € F(T(Ml X MQ))

By the definition of g, M, and M, are > totally geodesic submanifolds of M x M.
We denote the Levi-Civita connection of M1 x My by V, we can easily see that

(2.14) (VxF)Y =0.

for any X,Y € I'(T(My x M3))(For the detail, we refer to[5]).
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3 Semi-invariant submanifold of a Riemannian
product manifold

We denote the Riemannian product manifold (M; x Ma,g; X go) by (M,3)
througthout this paper.

Definition 3.1 let M be a submanifold of a Riemannian product manifold M. We
suppose that M has two the distributions such as D and D+ such that TM = D& D,
F(D) = D and F(D*) c TM*. In this case, M is called semi-invariant submanifold
of M.
In the rest of this paper, we assume that M semi-invariant submanifold of M. We
denote the orthogonal complementary of F(D) in TM=* by V, then we have direct
sum

TM* =F(DY) a V.
We denote the projection mappings of TM to D and D+ by P and Q, respectively.
Then for each X tangent to TM, we can write F'X in the following way:

(3.1) FX = fX +wX,

where fX = FPX and wX = FQX are respectively the tangent part and the normal
part of FFX. Also, for each vector field £ normal to M, we put

(3.2) F¢ = BE + C€,

where B¢ and C¢ are respectively the tangent part and the normal part of F¢.

We denote dimensions of the distributions D and D+ by p and g, respectively.
Then for ¢ = O(resp. p = 0) a semi-invariant submanifold becomes an invariant sub-
manifold(resp. an anti-invariant submanifold). A proper semi-invariant submanifold
is a semi-invariant submanifold which is neither an invariant submanifold nor an
anti-invariant submanifold.

Example 3.2 We consider a submanifold M in RS given by the equations:
1
X1 = X+ §(X3 + X4)%, Xo = Xs.

It is easy check that M is a semi-invariant submanifold of R® = R® x R3. Then by
direct calculation we obtain

TM = Span{U; = 8iX2 + %,UQ = (X3 +X4)aiX1 + 8iX3’
U3:(X3+X4)aiX1+aiX4,U4: aixlﬂaixﬁ
and
TAL = Spanes = — 55 + (X + X050 + (Xs + X055+ 5
& = ang - %}7

where D = Span{Us,Us,Us} and D+ = Span{U,}.
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Definition 3.3 Let M be a Riemannian product manifold and M be a semi-invariant
submanifold of M. Then M is called mized-geodesic semi-invariant submanifold if
h(X,Y) =0 for any X € T(D) and Y € T(D4).

We denote the Levi-Civita connections on M and M by V and V, respectively.

Proposition 3.4 Let Mje a Riemannian product manifold and M be a semi-
mwvariant submanifold of M. Then we have

(3.3) ApzW = —Arpw Z,
for all Z,W € T'(D%1)
Proof. From (2.1), (2.2), (2.14) and (3.1) we have
~ApzX +V%xFZ =FVxZ+ Fh(X,Z)
for any X € ['(TM) and Z € I'(D%). Using (2.13) we obtain
G(Ap2 X, W) = g(h(X, Z), FW),
for any W € T'(D%). Since A is self adjoint, from (2.3) we get
—9(ArzW,X) =g(Arw Z, X),
which proves our assertion.

Lemma 3.5 Lgﬂ be a Riemannian product manifold and M be a semi-invariant
submanifold of M. Then we have

(3.4) AcFX = ApeX
for any X € T'(D) and £ € (V).
Proof. Since V is the Levi-Civita connection, from (2.14) we derive
g(MFX,Y),§) = —g(Vy F¢, X),
forany X € T'(D), Y e I'(TM) and £ € T'(V). Using (2.2) and (2.3) we get
G(AFX,Y) = g(Ape X, Y).
Thus proof is complete.

Lemma 3.6 Liﬂ be a Riemannian product manifold and M be a semi-invariant
submanifold of M. Then we have

(3.5) VzFW — Vi FZ € T(D4Y),

for any Z,W € T(D%1).
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Proof. From (2.1) and (2.2) we have

(3.6) 9(AreZ, W) =g(VzFW,¢)

for any W, Z € T(D+) and ¢ € T'(V). Since A is self adjoint, from (3.6) we get
g(VzFW — Vi, FZ,¢) =0,

which gives (3.5).

Theorem 3.7 Let M be a Riemannian product manifold and M be a semi-invariant
submanifold of M. Then D is integrable if and only if

(3.7) X, W) eI(V)
for any X € T(D) and W € TD+.
Proof. From (2.2), (2.14) and (3.3) we get
F(Z,W]| =2Ap;W +VZFW — Vi FZ
for any Z € T'(D+). Thus from (2.3) and (2.13) we derive
9([2, W], FX) = 29(h(W, X), FZ).
Hence the proof is complete.

Theorem 3.8 Let M be a Riemannian product manifold and M be a semi-invariant
submanifold of M. Then D is integrable if and only if

(3.8) WX, FY) = h(Y,FX)
for any XY € T'(D).
Proof. By using (2.1), (2.2), (2.14) and (3.1) we derive
VxFY +h(X,FY) = PVxY +wVxY + Fh(X,Y),
where interchanging role of vector fields X and Y, we obtain
VyFX + h(Y,FX) = PVy X +wVyX + Fh(Y, X).

Thus we have
MX,FY)—h(FX,Y)=w(X,Y]).

This completes the proof of the theorem.

Lemma 3.9 Let M be a Riemannian product manifold and M be a mized-geodesic
semi-invariant submanifold of M. Then we have

(3.9) ApeX = FA:X

for any X € T(D) and £ e T(V).
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Proof. From (2.1) and (2.2) we have
?(AFSX - FAva Y) = E(Afoa Y) - y(AfXa FY)

for any X € I'(D), Y € T'(D+) and ¢ € T(V). Since M is a mixed-geodesic submani-
fold, we have ApeX € I'(D). Thus using the equation (2.3) we obtain

G(ApeX — FAY) = 0.
On the other hand, from (2.3) we get
G(AreX — FA(X, Z) = 5(h(X, 2), F€) — 5(h(X, F2),€)
for any X, Z € I'(D). Thus from (2.14) we derive
G(ApeX —FA¢, Z) =0,
which proves our assertion.

Theorem 3.10 Let M be a Riemannian product manifold and M be a semi-invariant
submanifold of M. Then M is a locally Riemannian product manifold if and only if
ApzX =0 for all X € T(D) and Z € T'(D+).

Proof. Let M be a semi-invariant submanifold of a Riemannian product manifold
(M,g). Then from (2.1) and (2.2) we have

(3.10) 9(VxFY,Z) =g(ArzX,Y)
and

for any X,Y € I'(D) and Z,W € I'(D'). Now, we suppose that M is a locally
Riemannian product manifold. Then the distributions D and D+ are parallel. From
(3.10) and (3.11) we have ApzX € I'(D) and ApzX € T'(D+). Since DN D+ = {0}
we obtain Apz X = 0.

Conversely, if ApzX = 0, then from (3.10) and (3.11) we have the distributions
D and D' are integrable and leaves of them are parallel. This completes the proof of
the theorem.

Proposition 3.11 Any pseudo umbilical proper semi-invariant submanifold of a Rie-
mannian product manifold is a mized-geodesic submanifold.

Proof. We suppose that M is a pseudo-umbilical proper semi-invariant submanifold
of a Riemannian product manifold (M,g). Then we have

y(h(Xa Z)aH) :y(HaH)g(Xa Z) =0,

for all X € T\(D) and Z € T'(D*), which implies that h(X,Z) = 0.
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Theorem 3.12£etﬂ be a Riemannian product manifold and M be a semi-invariant
submanifold of M. Then M is a locally Riemannian product manifold if and only if
Vf=0.

Proof. Let M be a locally Riemannian product semi-invariant submanifold of M.
Then we have VY € T'(D) for all U € T(TM) and Y € I'(D). Thus from (2.2) and
(3.1) we obtain

hU,FY)=FVyY + Bh(U,FY)+ Ch(U,FY) - VyFY
for any U € I'(TM) and Y € I'(D). Hence we get

WU,FY) = Ch(U,FY)
(Vuf)Y =
(3.12) Bh(U,FY')

In the similar way, we obtain (Vyf)Z = 0 for any Z € T'(D4).

Conversely, we suppose that Vf = 0. Then we have Vx fY = fVxY, for any
X,Y € T(D). 1t follows that VxY € I'(D). In the similar way VW € I'(D1) for
any Z,W € I'(D*). Thus M is a locally Riemannian product manifold.

Theorem 3.13 Let M be a semi-invariant submanifold of a Riemannian product
manifold M. Then M is a locally Riemannian product manifold if and only if
Bh(X,Y)=0 for all X e T(TM) and Y € T'(D).

Proof. We assume that M is a locally Riemannian product manifold. Then from
(3.12) we have Bh(X,Y) =0 for any X € T'(TM) and Y € I'(D).

Conversely, we assume that Bh(X,Y) = 0 for any X € I'(TM) and Y € I'(D).
Then from (2.1), (2.14), (3.1) and (3.2) we get

VxfY + h(X,FY) = fVxY 4+ wVxY + Bh(X,Y) + Ch(X,Y)

for any X € T'(TM) and Y € I'(D). Thus we derive (Vx f)Y = 0, that is, VxY €
T'(D). On the other hand, making use of (2.1), (2.2), (2.14), (3.1) and (3.2) we obtain

~ApzX +VxFZ = fVxZ +wVxZ+ Bh(X,Z) + Ch(X, Z)
for any X € I'(TM) and Z € I'(D}). Thus we obtain
(3.13) —ApzX = fVxZ
for any X € I'(TM) and Z € I'(D1). By the using (2.3), (2.13) and (3.2) we derive
9(fVx2,Y) = —g(Ch(X,Y), Z) = 0,

forall X e T(TM), Y € T(D) and Z € T'(D+). Hence we have VxZ € I'(D+). Thus
proof is complete.
In case F(D+) = TM~, we can give the following theorem.
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Theorem 3.14 Let M be a Riemannian product manifold and M be a semi-invariant
submanifold of M such that F(D+) = TM~*. Then M is a locally Riemannian product
manifold if and only if h(X,Y) =0 for all X e T(TM) and Y € T(D).

Theorem 3.15 Let M be a totally umbilical proper semi-invariant submanifold of a
Riemannian product manifold M. Then one only of the following assertions are valid:
1) dimD+ =1

2) M is a totally geodesic submanifold.

Proof. We suppose that M is a totally umbilical submanifold of a Riemannian product
manifold M. Then from (2.1) and (2.2) and (3.1) we have

_E(AFWZ7 Z) = g(Fh(Z, W)7Z)

for all Z,W € T'(D1). Since M is a totally umbilical submanifold, from (2.3) and
(2.13) we obtain

(3'14) _E(Zv Z)g(FH7 W) :y(Z7 Z)?(FH’ Z),

where H is the mean curvature vector field of M in M. Interchanging role of Z and
W in (3.14) we get

(3.15) —gW.,W)g(FH,Z) =g(W,W)g(FH,W).
Thus from (3.14) and (3.15) we obtain

gz, w)?

(3.16) G(FH,Z) = 02
1Z]2|w]?

9(FH,Z).

Hence, either g(FH,Z) = 0 or Z and W are linearly dependent. If Z and W are
linearly dependent, then dimD~+ = 1.

We suppose that dimD~ > 1. Then from (3.3) we have
AppuZ = —ApzBH
for any Z € T'(D+). By the using (2.3) we get
—5(2,W)g(BH, BH) = g(BH, W)g(H, FZ).

Since dimD+ > 1, we can choose W orthogonal to BH. Then BH = 0, that is,
H € T'(V). Now we assume that H # 0. From (2.3) and (3.4) we derive

(3.17) g(FH,H)g(X,Y)=9g(H, H)g(FX,Y)

for any X € I'(D). We note that the leaf of D is an invariant submanifold of Rie-
mannian product manifold M. We denote the leaf of D by N. Since N is an invariant
submanifold of M, it is a product manifold. Set N = N; x N5. Then we have

TN, = {X eT(TN)|FX = X}
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and
TNy ={X eT(TN)|FX = -X}.

From (3.17) we obtain
9(X, FX) =9(X, X)
for any X € I'(D). Thus for X = X5 € I'(T'N3), we have
—9(X2, X2) = g(X2, X2),
ie.,
|Xa2|l =0 = X5 =0.
This is a contradiction.

Theorem 3.16 There exists no any totally umbilical proper semi-invariant subman-
ifold of positively or negatively curved Riemannian product manifold M.

Proof. We assume that Riemannian product manifold M has constant sectional cur-
vature ¢ # 0 and let M be a totally umbilical proper semi-invariant submanifold of
M. Then form the equations Gauss and Codazzi, we have

K(X,Y,X,Y) = K(X,Y,FX,FY)=—g(X,FX)g(VyH,FY)

K(XAY) = —g(X,FX)g(VyH,FY).

Since the vector fields X and FX are linearly independent, we can choose X orthog-
onal to F'X. In this case, we obtain

K(XAY)=0.

This is a contradiction, where K denotes the Riemannian-Christoffel curvature tensor
of M.
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