
On the Geometric Meaning of the Classical Equation

of Gauss

Giovanni Battista Rizza

Dedicated to the Memory of Grigorios TSAGAS (1935-2003),
President of Balkan Society of Geometers (1997-2003)

Abstract

Let M be a submanifold of a Riemannian manifold M̃. Some geometrical
relations, expressing the difference of the sectional (and bisectional) curvatures
of M̃ and of M are obtained. These relations result to be equivalent to the
classical Equation of Gauss.

The special case when M is λ-isotropic at a point x is also examined.
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1 Introduction

The aim of the present paper is to obtain formulas, involving only geometrical ele-
ments, that result to be equivalent to the classical Equation of Gauss.

Let M̃ be a Riemannian manifold and M a submanifold of M. Consider a point
x of M ⊂ M̃ and a pair p, q of oriented planes of Tx(M) ⊂ Tx(M̃).

It is known that, starting from the Equation of Gauss, we can derive a formula
expressing the difference χ̃pq −χpq of the bisectional curvatures of M̃ and of M. This
relation, however, cannot be considered as completely satisfactory from a geometrical
point of view (Sec.3).

In Sec. 4-7 we show how the above formula can be rewritten, in two different ways,
in terms of the planes p, q only, by introducing convenient means on p, q (Theorem 1,
Sec. 4; Theorem 2, Sec.6). In particular, when q = p we obtain two relations for the
difference K̃p −Kp of the sectional curvatures.

The research ends by showing that, if at any point x of M and for any plane p
of Tx(M) one of the mentioned relations expressing K̃p −Kp is satisfied, then we are
able to derive the classical Equation of Gauss (Theorem 3, Sec.8).

In Sec. 9-13 we apply the general results of Sec. 4,6 to the special case, when the
submanifold M is assumed to be λ-isotropic at the point x in the sense of B. O’Neill
(Sec.11). Using the geometric notions of related bases and of canonical isometries
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(Sec.10), we obtain interesting formulas concerning sectional and bisectional curva-
tures of M and M̃ (Theorem 4, Sec.12). In particular, if M is umbilical at x, we are
led to known relations.

2 Preliminaries

Let V be an n-dimensional real vector space and g an inner product on V. In the
sequel the 2-dimensional subspaces of V are called planes. Let p, q be two oriented
planes of V.

We denote by ρp, ρq the rotations of π
2 on p, q, respectively. Let i : p −→ q be an

isometry. We say that i preserves the orientation if and only if i maps an oriented
orthonormal basis of p onto an oriented orthonormal basis of q.

More explicitly, let X, Y be an oriented orthonormal basis of p, then ρp is the
isomorphism defined by ρpX = Y, ρpY = −X. Similarly for ρq. An isometry i preserves
the orientation, if and only if iX, iY is an oriented orthonormal basis of q.

It is worth remarking that the geometrical notion of rotation of π
2 in an oriented

plane and of isometry preserving the orientation for a pair of oriented planes are
intrinsic notions. In effect, we can easily prove that the definitions do not depend on
the oriented orthonormal basis X, Y of the plane p.

3 The Equation of Gauss

Let M̃ = M̃(g) be an m̃-dimensional Riemannian manifold and M an m-dimensional
submanifold (m ≥ 2), with induced metric still denoted by g.

We refer to [4]II Ch.7, to [1] Ch.2 and to [10] Ch.2 for the basic facts about the
geometry of the submanifolds. In the sequel B denotes the second fundamental form
and H = 1

m trace B the mean curvature vector field of M.

Let x be a point of M ⊂ M̃ and R, R̃ be the Riemann curvature tensor of M, M̃
at x, respectively. Then, for any vectors X, Y, Z, W of Tx(M) ⊂ Tx(M̃), we have the
well known Equation of Gauss

(1) R̃(X, Y, Z, W )−R(X,Y, Z, W ) = g(B(X, W ), B(Y, Z))− g(B(X,Z), B(Y, W ))

where the metric tensor g and the form B must be considered at x.
Now, let p, q be two oriented planes of Tx(M) ⊂ Tx(M̃). Denote by χpq and by

χ̃pq the bisectional curvatures of M and of M̃ with respect to the pair p, q. Let X, Y
and Z, W be oriented orthonormal bases of p and of q, respectively. Since we have

χpq = R(X,Y, Z,W ) χ̃pq = R̃(X, Y, Z, W )

(see for example [7],(1) p.148), from relation (1) we derive relation

(2) χ̃pq − χpq = g(B(X,W ), B(Y,Z))− g(B(X, Z), B(Y, W ))

In particular, when q = p, we get the relation
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(2′) K̃p −Kp = g(B(X,Y ), B(X,Y ))− g(B(X,X), B(Y, Y ))

concerning the sectional curvatures.
It is worth remarking that equation (2), (2′) already evidence the strict connection

of the Equation of Gauss with the geometrical notions of bisectional and sectional
creature. However, these equations cannot be considered as completely satisfactory
from a geometrical point of view. As a matter of fact, the first members of (2),(2′)
depend only on the oriented planes p, q; at the same time we see that in their second
members oriented orthonormal bases occur.

In the sections 4-7, our problem will be that of rewriting the second members of
(2), (2′) in terms of the oriented planes p,q only.

4 A first result

The problem posed at the end of Sec. 3 can be solved in more ways. The basic idea
is that of making use of the notion of mean.

Let X, Y and Z, W be oriented orthonormal bases of the oriented planes p and q,
respectively. Consider the sets

Sp = {P ∈ p | g(P, P ) = 1} Sq = {Q ∈ q|g(Q,Q) = 1}.
We can write

P = X cos φ + Y sin φ Q = Z cosψ + W sin ψ

and consequently

ρpP = Y cosφ−X sin φ ρqQ = W cosψ − Z sin ψ

where ρp, ρq are the rotations of π
2 on the oriented planes p, q, respectively (Sec. 2).

Last we introduce the mean

(3) mρ =
1

4π2

∫

Sp×Sq

g(B(P,Q), B(ρpP, ρqQ)) dφ dψ.

In particular, if q = p, we can choose Z = X, W = Y. Putting P = P1, φ =
φ1, Q = P2, ψ = φ2, the mean mρ reduces to the mean

(3∗) m∗
ρ =

1
4π2

∫

Sp×Sp

g(B(P1, P2), B(ρpP1, ρpP2)) dφ1 dφ2.

We are now able to state
Theorem l. The relations (2), (2′) of Sec. 3, derived from the Equation of Gauss,
can be written in the form
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(4) χ̃pq − χpq = −2 mρ

(4′) K̃p −Kp = −2 m∗
ρ

where mρ,m∗
ρ are given by (3), (3∗).

Since the notion of rotation of π
2 in an oriented plane is an intrinsic notion (Sec.2),

Theorem 1 gives an exaustive answer to our problem.

5 Proof of Theorem 1

Since we have

B(P, Q) = cos φ cosψ B(X,Z) + cos φ sin ψ B(X, W )
+ sin φ cosψ B(Y,Z) + sin φ sin ψ B(Y, W )

B(ρpP, ρpQ) = cos φ cosψ B(Y, W )− cos φ sin ψ B(Y, Z)
− sin φ cosψ B(X, W ) + sin φ sin ψ B(X,Z)

we derive

g(B(P,Q), B(ρpP, ρqQ)) = g(B(X, Z), B(Y, W ))[cos2 φ cos2 ψ + sin2 φ sin2 ψ]
− g(B(X, W ), B(Y, Z))[cos2 φ sin2 ψ + sin2 φ cos2 ψ] + ...

Here and in the sequel, the dots stand for terms, that will give zero by integration on
Sp or on Sq.

It is elementary to check that the second member of relation (2) of Sec.3 can be
replaced by −2 mρ and this proves Theorem l.

6 A second result

In the present section, by using the intrinsic notion of isometry preserving the orien-
tation (Sec.2), we will be able to give a second answer to the problem, we posed at
the end of Sec.3.

We begin by remarking that to any oriented plane p of Tx(M) ⊂ Tx(M̃) we can
intrinsecally associate the vector

(5) Bp =
1
2π

∫

Sp

B(P, P )dφ

where Sp is the set of the unit vectors of p. In other words, we consider the mean of
the normal curvature vectors ([5], p.149) of the unit vectors of p.

Now, let P1, P2 be two vectors of Sp and let i : p −→ q be any isometry, that
preserves the orientation (Sec.2). We introduce the means
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(6) mC(i) =
1

4π2

∫

Sp×Sp

g(B(P1, iP2), B(P2, iP1))dφ1dφ2

(7) mS(i) =
1

4π2

∫

Sp×Sp

g(B(P1, iP1), B(P2, iP2))dφ1dφ2

Remark that in (7) the vectors P1, P2 act separately, while in (6) they act in a
crossed way. Hence the notations mS(i),mC(i), respectively.

In particular, if q = p, we can choose i = identity. Then mC(i),mS(i) reduce to

(6∗) mN =
1

4π2

∫

Sp×Sp

g(B(P1, P2), B(P1, P2))dφ1dφ2

(7∗) g(Bp, Bp) =
1

4π2

∫

Sp×Sp

g(B(P1, P1), B(P2, P2))dφ1dφ2

respectively.
Note that the second member of (6*) is, essentially, the integral of a norm. Hence

the notation mN . To prove (7*), just remark that the second member can be written
in the form

g(
1
2π

∫

Sp

B(P1, P1)dφ1,
1
2π

∫

Sp

B(P2, P2)dφ2)

and that Bp is defined by (5).
We are now able to state

Theorem 2. The relations (2),(2′) of Sec. 3, derived from the Equation of Gauss, can
be written in the form

(8) χ̃pq − χpq = 2(mC(i)−mS(i))

(8′) K̃p −Kp = 2(mN − g(Bp, Bp))

where i : p −→ q is any isometry preserving the orientation and mC(i),mS(i),mN , Bp

are defined by (6),(7),(6*),(5), respectively.
Since the notions of isometry preserving the orientation, that occurs in (6),(7),

as well as the definitions of mN and of Bp, are intrinsic, so Theorem 2 represents a
completely satisfactory solution of the problem at the end of Sec.3.
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7 Proof of Theorem 2

Let X, Y be an oriented orthonormal basis of the oriented plane p. Consequently,
since i : p −→ q is assumed to be an isometry that preserves the orientation, we can
choose as oriented orthonormal basis of q the pair Z = iX, W = iY (Sec.2).

Consequently, if P1, P2 are vectors of Sp, i.e.

P1 = X cos φ1 + Y sin φ1 P2 = X cos φ2 + Y sin φ2

iP1 = Z cosφ1 + W sin φ1 iP2 = Z cosφ2 + W sin φ2.

It follows

B(P1, iP2) = B(X, Z) cos φ1 cos φ2 + B(X,W ) cos φ1 sin φ2

+ B(Y, Z) sin φ1 cos φ2 + B(Y, W ) sin φ1 sin φ2

B(P2, iP1) = B(X, Z) cos φ1 cos φ2 + B(X,W ) sin φ1 cos φ2

+ B(Y, Z) cos φ1 sin φ2 + B(Y, W ) sin φ1 sin φ2

B(P1, iP1) = B(X, Z) cos2 φ1 + B(X,W ) cos φ1 sin φ1

+ B(Y, Z) sin φ1 cos φ1 + B(Y, W ) sin2 φ1

B(P2, iP2) = B(X, Z) cos2 φ2 + B(X,W ) cos φ2 sin φ2

+ B(Y, Z) sin φ2 cos φ2 + B(Y, W ) sin2 φ2.

Therefore we can write

g(B(P1, iP2), B(P2, iP1)) =

g(B(X,Z), B(X, Z)) cos2 φ1 cos2 φ2 + g(B(Y,W ), B(Y,W )) sin2 φ1 sin2 φ2

+g(B(X, W ), B(Y, Z))[sin2 φ1 cos2 φ2 + cos2 φ1 sin2 φ2] + ...

g(B(P1, iP1), B(P2, iP2)) =

g(B(X,Z), B(X, Z)) cos2 φ1 cos2 φ2 + g(B(Y,W ), B(Y,W )) sin2 φ1 sin2 φ2

+g(B(X, Z), B(Y,W ))[sin2 φ1 cos2 φ2 + cos2 φ1 sin2 φ2] + ...

where the dots stand for terms, that will give zero by integration on Sp × Sp

It is not difficult now to see that the second member of relation (2) of Sec.3 can
be replaced by 2(mC(i)−mS(i)) and this proves Theorem 2.
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8 The main result

The aim of the present section is to prove
Theorem 3. At any point x of the submanifold M the classical Equation of Gauss
results to be equivalent to relation (4′) as well as to relation (8′) for any plane p of
Tx(M).
Corollary l. Each one of the relations (4′) of Sec.4, (8′) of Sec.6, both concerning
the sectional curvature, summarizes the whole geometrical content of the Equation of
Gauss.

We begin with
Corollary 2. For the means mρ,m∗

ρ and the means mC(i),mS(i),mN , Bp, introduced
in Sec. 4, 6, we have

mρ = mS(i)−mC(i) m∗
ρ = g(Bp, Bp)−mN .

This fact follows immediately by comparing (4), (4′) with (8), (8′), respectively.
As a consequence, we see that relations (4′) and (8′), occurring in Theorem 3, are

equivalent. On the other hand, the last sentence of Sec.4 implies that (4) and (2) are
equivalent. In particular (4′) results to be equivalent to relation (2′).

In conclusion, since (2),(2′) have been derived from the Equation of Gauss, to
prove Theorem 3 we have only to prove (1) for any X, Y , Z, W of Tx(M), starting
from (2′) for any oriented plane p of Tx(M), being X, Y any oriented orthonormal
basis of p.

Recalling the definition of sectional curvature ([4]I, p.202), we first rewrite (2′) as

(1′) R̃(X, Y, X, Y )−R(X, Y, X, Y ) = g(B(X, Y ), B(X, Y ))− g(B(X, X), B(Y, Y ))

where X,Y is any pair of orthonormal vector of Tx(M). Then, it is elementary to
check that (1′) holds true for any pair X, Y of vectors of Tx(M).

Consider now the quadrilinear forms

Q1(X, Y , Z,W ) = R̃(X, Y , Z, W )−R(X, Y , Z, W )
Q2(X, Y , Z,W ) = g(B(X, W ), B(Y , Z))− g(B(X, Z), B(Y , W ))

It is an easy matter to check that Q1 and Q2 satisfy the conditions a, b, c of p.198 of
[4]I,

Finally, since by a preceeding remark we have Q1(X, Y , X, Y ) = Q2(X, Y , X, Y ),
by Proposition l.2 of [4]I, p.198 we find Q1 = Q2, that is the Equation of Gauss.

Therefore the proof of Theorem 3 is complete.

9 The means mC(i),mS(i)

In order to treat the special case of Sec.12 we need some premises.
First of all, we introduce the means

(6) mC(i) =
1

4π2

∫

Sp×Sp

g(B(P1, P2), B(iP1, iP2))dφ1dφ2
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(7) mS(i) =
1

4π2

∫

Sp×Sp

g(B(P1, P1), B(iP2, iP2))dφ1dφ2

that are analogous to the means mC(i),mS(i) defined by (6),(7) in Sec. 6.
Proceeding as in Sec.7, we get

g(B(P1, P2), B(iP1, iP2)) =

g(B(X,X), B(Z,Z)) cos2 φ1 cos2 φ2 + g(B(Y, Y ), B(W,W )) sin2 φ1 sin2 φ2

+g(B(X, Y ), B(Z, W ))[cos2 φ1 sin2 φ2 + sin2 φ1 cos2 φ2] + ...

g(B(P1, P1), B(iP2, iP2)) =

g(B(X,X), B(Z,Z)) cos2 φ1 cos2 φ2 + g(B(Y, Y ), B(W,W )) sin2 φ1 sin2 φ2

+g(B(X, X), B(W,W )) cos2 φ1 sin2 φ2 + g(B(Y, Y ), B(Z,Z)) sin2 φ1 cos2 φ2 + ...

where the dots stand for terms, that will give zero by integration on Sp × Sp.

Now, taking into account these relations and the analogous ones of Sec.7 concern-
ing g(B(P1, iP2), B(P2, iP1)) and g(B(P1, iP1), B(P2, iP2)) we can write the relations

(10) 2(mC(i) + mC(i) + mS(i)) = E(i)

(11) mS = g(Bp, Bq)

where

2E(i) = g(B(X, X), B(Z, Z)) + 2g(B(X, Z), B(X, Z))
(12) + g(B(Y, Y ), B(W,W )) + 2g(B(Y, W ), B(Y,W ))

+ 2[g(B(X, Y ), B(Z, W )) + g(B(X, Z), B(W,Y )) + g(B(X,W ), B(Y,Z))].

To prove (11) it is worth remarking that from definition (5) of Sec.6 we can derive

(13) Bp =
1
2
(B(X, X) + B(Y, Y )) Bq =

1
2
(B(Z, Z) + B(W,W )).



On the Geometric Meaning of the Classical Equation of Gauss 87

10 Canonical isometries

We recall first that two oriented orthonormal bases X, Y and Z, W for the oriented
planes p, q, respectively, are said to be related bases, if we have

(14) g(X, W ) = g(Y,Z) = 0

The geometric notion of related bases plays an essential role in the papers [8], [3]. We

refer to [9] for notations and details.
Let X, Y and Z, W be a pair of related bases of p, q. Then the isometry i∗ : p −→ q

defined by i∗X = Z, i∗Y = W is said to be a canonical isometry. By definition,
canonical isometries preserve the orientation. Denote by −i∗ the isometry defined
by (−i∗)P = −(i∗P ) for any vector P of p. Since X, Y and −Z,−W is a pair of
related bases of p, q, also −i∗ is a canonical isometry. Consequently Proposition 1 of
[9] ensures the existence of two canonical isometries for any pair of oriented planes.

Let’s denote by αm, αM the minimum, maximum value of the angle that a line
(1-dimensional subspace) of p forms with the plane q. Referring to Remarks 1,2,3 of
[9], we are now able to state
Remark 1. If p, q are not isoclinic planes, i.e. αm 6= αM , there exist only two canonical
isometries. If p, q are isoclinic not strictly orthogonal planes, that is αm = αM 6= π

2 ,
we have two cases, according to the fact that we act on the bases X,Y and Z, W by
equal or opposite rotations. Correspondingly, we have two or ∞1 canonical isometries.
Finally, if p, q are strictly orthogonal, that is αm = αM = π

2 , any isometry preserving
the orientation is a canonical isometry; so we have ∞2 canonical isometries.

The proof of Remark 1 is elementary.
We end the section by recalling that by virtue of (14) we have ([7],(4))

(15) cos pq = g(X, Z) g(Y, W ).

11 λ-isotropy

In 1965 B. O’Neill introduced and studied the λ-isotropy of the submanifolds ([5][6]).
A submanifold M of M̃ is said to be λ-isotropic at x(λ ≥ 0), if we have

(16) g(B(X, X), B(X, X)) = λ2(g(X, X))2

for any vector X of Tx(M).
It is immediate to check that the above definition is equivalent to the original one

of B. O’Neill. Moreover we have
Proposition l. The submanifold M of M̃ results to be λ-isotropic (λ ≥ 0) at x, if
and only if we have

(17)
g(B(X, Y ), B(Z, W )) + g(B(X, Z), B(W,Y )) + g(B(X,W ), B(Y,Z)) =

= λ2[g(X, Y )g(Z, W ) + g(X, Z)g(W,Y ) + g(X, W )g(Y, Z)]
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for any X, Y, Z,W of Tx(M).
It is worth remarking that the relation of Lemma 1 as well as the relations

(1),(2),(3) of Lemma 2 of [6] are special cases of (17).
Since relation (16) follows immediately from (17), to prove Proposition 1 we have

only to show that, starting from (16), we can obtain relation (17). In effect, this can
be done by using iterated polarizations and by remarking that at any step of the proof
you can replace a vector variable, say X, by kX(k ∈ IR) and then use the identity
principe of polynomials.

Finally, an immediate consequence of (17) is relation

(18)
g(B(X,X), B(Y, Y )) + 2g(B(X, Y ), B(X,Y )) =

= λ2[g(X, X)g(Y, Y ) + 2g(X, Y )g(X, Y )]

for any X, Y of Tx(M).

12 Special cases

We consider the case when the submanifold M of M̃ is λ-isotropic (λ ≥ 0) at the
point x.

Taking account of the remarks of Sec. 9,10,11, we are now able to state
Theorem 4. For any canonical isometry i∗ : p −→ q, we have

(19) χ̃pq − χpq = 4 mC(i∗) + 2 mC(i∗)− E = −4 mS(i∗)− 2 mC(i∗) + E

(20) K̃p −Kp = 2(3 mN − 2λ2) = 2λ2 − 3g(Bp, Bp)

where

(21) E = λ2(1 + cos2 αm + cos2 αM + cos pq)

Corollary 3. For any plane p of Tx(M) we have

(22) −4λ2 ≤ K̃p −Kp ≤ 2λ2

Few remarks complete the subject
Let’s denote by p′ the same plane as p with opposite orientation. Taking into

account of (3) of [7], we get

(23) χ̃pp′ − χpp′ = 2(2λ2 − 3 mN ) = 3g(Bp, Bp)− 2λ2.

Moreover, it is immediate to check that we have

mC(−i∗) = mC(i∗) mS(−i∗) = mS(i∗) mC(−i∗) = mC(i∗).
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So, by virtue of Remark 1 of Sec.10, if we have αm 6= αM or αm = αM 6= π
2 (first case),

then these three means are invariant under changements of the canonical isometries.
Last, the expression E depends only on the geometry of the pair of oriented planes

p, q. When p and q are orthogonal or isoclinic or have a line in common, then E takes
very simple forms.

We end the paper by considering the case when the submanifold M is umbilical at
the point x.

Since we have B(X,Y ) = g(X, Y )H for any X, Y of Tx(M), equation (16) is
satisfied and M is λ-isotropic with λ = |H|. On the other hand, it is elementary to
prove that, in the present case, we have

4mC(i∗) = g(H, H)[cos2 αm + cos2 αM ], 2mC(i∗) = g(H,H)
4mS(i∗) = g(H, H)[cos2 αm + cos2 αM + cos pq], mN = g(H, H)

E = g(H, H)[1 + cos2 αm + cos2 αM + cos pq], Bp = H

Consequently (19), (20) reduce to known relations (Cf. (8) of [2]).

13 Proofs

To prove Theorem 4 , we consider a pair X,Y and Z,W of related bases defining the
canonical isometry i∗. Taking account of (17), (18) and of (14), from relation (12) we
get

E(i∗) = λ2(1 + (g(X, Z))2 + (g(Y, W ))2 + g(X, Z)g(Y, W ))

Then, using (11) of [9] and (15), we find that E(i∗) coincide with the expression E
defined by (21). Finally, starting from (8),(10) with i = i∗, we prove (19) by sum and
difference.

When q = p we can choose Z = X, W = Y. Remarking that X, Y and Z,W
are related bases, we find that the corresponding canonical isometry is i∗ = identity.
We know from Sec.6 that mC(i),mS(i) reduce to mN , g(Bp, Bp), respectively. It is
immediate that also mC(i) reduces to MN . On the other hand, since q = p implies
cos pq = 1 and αm = αM = 0, the expression E reduces to 4λ2. Now, taking into
account that relation (10) gives

(24) 2mN + g(Bp, Bp) = 2λ2

starting from (19) we prove (20).
This completes the proof of Theorem 4.
Finally, Corollary 3 is an immediate consequence of (20).
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