
On Complex Cartan Spaces

Gh. Munteanu

Dedicated to the Memory of Grigorios TSAGAS (1935-2003),
President of Balkan Society of Geometers (1997-2003)

Abstract

In some recent articles ([13, 14]) we have studied the geometry of complex
Hamilton spaces.

In brief, the geometry of a complex Hamilton space is the geometry of the
dual holomorphic bundle (T ′M)∗ endowed with a Hermitian metric derived from
a Hamiltonian function. In this study the notion of complex nonlinear connec-
tion plays a special role. A significant result provides the complex nonlinear
connection derived only from the Hamiltonian function.

If in addition a positive Hamiltonian satisfies the condition of homogeneity,
then the notion of complex Cartan space is obtained. This is the correspondent
of complex Finsler space on the manifold (T ′M)∗, and coincides with the notion
of complex Finsler Hamiltonian introduced by S. Kobayashi ([7, 5]).

In the present paper we make a geometric study of the complex Cartan space
and of some its immediate generalizations.
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1 The bundle (T ′M)∗

Let M be a complex manifold, dimCM = n, and denote by (zk) the complex coor-
dinates in a local chart. T ′M is the holomorphic bundle of (1, 0)−type vectors and
(T ′M)∗ is its dual bundle. In a local chart on the manifold (T ′M)∗, a point u∗ is char-
acterized by the coordinates u∗ = (zk, ζk), k = 1, n, and the change of local charts
determines the following change of coordinates ([14]):

z′k = z′k(z) ; ζ ′k =
∂zj

∂z′k
ζj ; rank(

∂zj

∂z′k
) = n(1.1)

Now, let us consider the holomorphic bundle π∗T : T ′(T ′M)∗ → (T ′M)∗. A local
frame in u∗ is { ∂

∂zk , ∂
∂ζk
} and its changes are imposed by the Jacobi matrix of (1.1).

The vertical subbundle V (T ′M)∗ = ker π∗T is holomorphic too and a local base in
the vertical distribution V∗ is { ∂

∂ζk
}. A complex nonlinear connection (in brief (c.n.c.))

on (T ′M)∗ is a supplementary subbundle of V (T ′M)∗ in T ′(T ′M)∗ , i.e. T ′(T ′M)∗ =
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H(T ′M)∗ ⊕ V (T ′M)∗. If a (c.n.c.) is given, by conjugation a decomposition of the
whole complexification TC(T ′M)∗ is obtained.

In the horizontal distribution H∗ = Hu∗(T ′M)∗ a local basis has the form

δ

δzk
=

∂

∂zk
+

∗
Njk

∂

∂ζj
(1.2)

and this basis is said to be adapted if it transforms under the rule:

δ

δzi
=

∂z′j

∂zi

δ

δz′j
.(1.3)

The basis {δk = δ
δzk , ∂̇k = ∂

∂ζk
} is an adapted basis on T ′u∗(T ′M)∗. The corre-

sponding dual basis {dzk, δζk = dζk−
∗

Nkj dzj} is an adapted basis on T ′∗u∗(T
′M)∗.

Of course, the condition (1.3) involves that the coefficients
∗

Njk of (c.n.c.) obey

a certain rule of transformation. Let us note that if
∗

Njk is a (c.n.c.) then
∗

Nkj and
1
2 (

∗
Njk+

∗
Nkj) are (c.n.c) too.

Proposition 1.1 If
∗

Njk is a (c.n.c.) then ∂
∗

Njk

∂ζm
ζm determines a (c.n.c.), called the

spray connection of
∗

Njk .

In our approach a special meaning have those geometrical objects, called d−complex
tensors, which are transformed only by means of the matrices (∂zi/∂z′j) or (∂z̄i/∂z̄′j)
for the bar indices, and with their inverses, in a similar way as on the base manifold
M .

A linear connection D : χC(T ′M)∗ × χC(T ′M)∗ → χC(T ′M)∗ is said to be a
∗
N −complex linear connection (shortly

∗
N −(c.l.c.)) if for a given (c.n.c.) it preserves

the four distributions of TC(T ′M)∗ and its coefficients coincide two by two ([14]).
Note that for a d − (c.l.c.) D we have DXY = DXY , and so it is well defined in
respect to the adapted base if the following local expression is given:

Dδk
δj = Hi

jkδi ; Dδk
∂̇i = −Hi

jk∂̇j ; Dδk
δj̄ = H ī

j̄kδī ; Dδk
∂̇ ī = −H ī

j̄k∂̇ j̄

D∂̇kδj = Cik
j δi ; D∂̇k ∂̇i = −Cik

j ∂̇j ; D∂̇kδj̄ = C īk
j̄ δī ; D∂̇k ∂̇ ī = −C īk

j̄ ∂̇ j̄(1.4)

Therefore, a
∗
N −(c.l.c.) is characterized only by the set of coefficients (Hi

jk ; H ī
j̄k

;

Cik
j ;C īk

j̄
), and their conjugates. The covariant derivatives of a d−complex tensor in

respect to a
∗
N −(c.l.c.) D will be denoted by “|k”, “ |k ” or “|k̄”, “ |k̄ ”. The local

expressions of curvatures and torsions of a
∗
N −(c.l.c.) are calculated in [14].

2 Complex Hamilton space

Let
∗
N be a fixed (c.n.c.) and gij̄(z, ζ) a Hermitian metric on (T ′M)∗, i.e. gij̄ is a

d−complex tensor, gij̄ = gjī and det(gij̄) 6= 0. By (gīj) we denote the inverse matrix
of (gij̄). The following metric structure on TC(T ′M)∗,
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G = gij̄dzi ⊗ dz̄j + gj̄iδζi ⊗ δζ̄j(2.1)

is called the
∗
N −lift of the metric structure gij̄ .

A
∗
N −(c.l.c.) D is metrical, that is DG = 0, iff gij̄|k = gij̄ |k= gij̄|k̄ = gij̄ |k̄= 0.

A remarkable example of metrical
∗
N −(c.l.c.) on (T ′M)∗ is given by

Theorem 2.1 ([14]).The following
∗
N −(c.l.c.), denoted by

c

D, is metrical :

c

Hi
jk =

1
2
gh̄i(

δgjh̄

δzk
+

δgkh̄

δzj
) ;

c

Cik
j = −1

2
gjh̄(

∂gh̄i

∂ζk
+

∂gh̄k

∂ζi
)(2.2)

c

H ī
j̄k =

1
2
gīh(

δghj̄

δzk
− δgkj̄

δzh
) ;

c

C īk
j̄ = −1

2
ghj̄(

∂gīh

∂ζk
− ∂gīk

∂ζh
)

and has the following zero torsions hT (hX, hY ) = vT (vX, vY ) = 0.

The notion of Hermitian metric has a special signification if it is derived from a
complex Hamiltonian. A complex Hamiltonian is given by a C∞−differentiable func-
tion H : (T ′M)∗ → R with the property that the following d−complex tensor is
nondegenerate

gj̄i(z, ζ) =
∂2H

∂ζi∂ζ̄j
, rank(gj̄i) = n.(2.3)

The pair (M, H) is said to be a complex Hamilton space.
In [15] we made an extension of the well-known Legendre transformation to the

complexified of (T ′M)∗. As a product, a special result gives a very simple form of a
(c.n.c.)

Theorem 2.2 The following functions

∗c
Nji= −gjh̄

∂2H

∂zi∂ζ̄h
(2.4)

are the coefficients of a (c.n.c.) on (T ′M)∗, depending only on the complex Hamil-
tonian function H.

A straight computation of the bracket [δj , δk] = Ωijk∂̇i yields to Ωijk = δj(
∗c

Nik)

−δk(
∗c

Nij) = 0 and consequently, the
∗c

Nji (c.n.c.) plays a special role.
In respect to the adapted basis of the (c.n.c.) given by (2.4), we consider the

connection
c

D from (2.2). So, the set
c

ΓH= (
∗c

Njk,
c

Hi
jk,

c

H ī
j̄k

,
c

Cik
j ,

c

C īk
j̄

) will be called the
canonical (c.l.c.) of the complex Hamilton space (M,H).

In the next lines we shall describe another method to obtain a
∗
N −(c.l.c.) which

generalizes to the dual case the idea of vertical connections ([1]) from the theory of
complex Finsler spaces.

Let ∇ : χ(T ′M)∗ × V (T ′M)∗ → V (T ′M)∗ be a linear connection on the vertical
bundle, locally given by its coefficients Γj

ik and Cjk
i , where
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∇ ∂

∂zk
∂̇j = −Γj

ik∂̇i ; ∇∂̇k ∂̇j = Cjk
i ∂̇i .

By dk
i is denoted the d−complex tensor dk

i = δk
i − Cjk

i ζj . As in [4] we prove that
Γ0

ik = Γj
ikζj are transformed by the rule:

Γ′0jk =
∂zp

∂z′j
∂zq

∂z′k
Γ0

pq + d′pj ζq
∂2zq

∂z′p∂z′k
(2.5)

Therefore, if there exists the inverse (dk
i )−1 = bk

i then
∗

Nik= bk
i Γ0

jk satisfies the
rule of change of a (c.n.c.) on (T ′M)∗. If there exist bk

i , by analogy with [1], we say
that ∇ is a good vertical connection on (T ′M)∗.

Based on (2.5), it follows

Proposition 2.1 Any good vertical connection determines a (c.n.c.) on (T ′M)∗.

Moreover, a good vertical connection determines a
∗
N −(c.l.c.) of (1,0)-type as

follows. The coefficients Cjk
i of a good vertical connection satisfy the same rule of

transformation as Cjk
i of one

∗
N −(c.l.c.)D and Hj

ik is directly obtained from the

calculation of Dδk
∂̇j = ∇

( ∂

∂zk +
∗

Nhk∂̇h)
∂̇j . So we have that Hj

ik = Γj
ik+

∗
Nhk Cjh

i are

the horizontal coefficients of a
∗
N −(c.l.c.) on (T ′M)∗. The coefficients C j̄k

ī
,H j̄

īk
can be

zero (since they are d−tensors) and then the obtained
∗
N −(c.l.c.)D is of (1, 0)−type.

Let us consider the whole vertical complexified bundle V (T ′M)∗ ⊕ V (T ′M)∗ and

let G = }¹|〉dζ〉⊗d¹ζ| be a Hermitian vertical metric. We assume that ∇ is a metric linear
connection of (1.0)−type, i.e. (∇XG)(U ,V) = XG(U ,V)−G(∇XU ,V)−G(U ,∇XV) = ′
and C j̄h

ī
= Γj̄

īh
= 0. Then by choosing U = ∂̇j , V = ∂̇k̄ and X = ∂

∂zh or ∂
∂z̄h it results

that:

Γj
ih = −gik̄

∂gk̄j

∂zh
; Cjh

i = −gik̄

∂gk̄j

∂ζh
(2.6)

∗
Nik = −bj

igjh̄

∂gh̄l

∂zk
ζl ; Hj

ik = −gim̄
δgm̄j

δzk
.

Thus, we have:

Theorem 2.3 A good vertical connection on a complex Hamilton space (M,H) de-

termines a
∗
N −(c.l.c.) of (1, 0)−type,

CH

ΓH= (
∗

Nik, Hj
ik, 0, Cjh

i , 0) given by (2.6), and
called the Chern-Hamilton connection.

3 Complex Cartan spaces

In the geometry of complex Finsler spaces there already exists a large reference ([1, 2,
3, 6, 11, 17]), the geometric support of such geometry being the holomorphic bundle
T ′M.
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Concerning the Lagrangian-Hamiltonian duality from the classical mechanics we
have considered necessary to make a study of complex Hamilton spaces based on the
manifold (T ′M)∗. The correspondent of complex Finsler spaces in (T ′M)∗ are the
complex Cartan spaces, defined as follows:

Definition 3.1 A complex Cartan space is a complex Hamilton space (M, H) for
which the function H : (T ′M)∗ − {0} → R+ satisfies the homogeneity condition:

H(z, λζ) =| λ |2 H(z, ζ) , ∀λ ∈ C.(3.1)

We see that this notion coincides with that of the complex Finsler Hamiltonian
initially introduced by S.Kobayashi ([7]), but here we prefer to use the notion of
complex Cartan space by analogy with the real known terminology ([8, 9, 10]).

Accordingly, the Hamilton metric gj̄i(z, ζ) = ∂2H/∂ζi∂ζ̄j is 0−homogeneous and,
applying the complex version of the Euler Theorem, a Cartan space is characterized
by

Proposition 3.1 In a complex Cartan space the following terms are true:

∂H

∂ζi
ζi = H ;

∂H

∂ζ̄i
ζ̄i = H(3.2)

gj̄iζi =
∂H

∂ζ̄j
; gj̄iζ̄j =

∂H

∂ζi
; gj̄iζiζ̄j = H(3.3)

∂gj̄i

∂ζk
ζi =

∂gj̄k

∂ζi
ζi = 0 ;

∂gj̄i

∂ζ̄k
ζ̄j =

∂gj̄k

∂ζ̄i
ζ̄i = 0(3.4)

∂gj̄i

∂ζk
ζ̄j = gik ;

∂2H

∂zk∂ζi
ζi =

∂H

∂zk
;

∂2H

∂zk∂ζ̄i
ζ̄i =

∂H

∂zk
(3.5)

gijζj = 0 ; gijζiζj = 0 ;
∂gij

∂ζk
ζj = −gik.(3.6)

In view of (3.4) we note that the coefficients Cjh
i from (2.6) obey the condition

Cjk
i ζj = 0 and then bk

i = dk
i = δk

i ; therefore the vertical connection is good. Conse-
quently, in a complex Cartan space, from (2.6) it results the following (c.n.c.)

∗K
Nji= −gjh̄

∂gh̄l

∂zi
ζl(3.7)

and taking into account (3.3), we remark that it coincides with
∗c

Nji .
Now we can consider the following (c.l.c.): the canonical metrical connection

c

ΓH= (
∗c

Njk,
c

Hi
jk,

c

H ī
j̄k

,
c

Cik
j ,

c

C īk
j̄

) from (2.2), and in the same time the Chern-Cartan

metrical connection
K

ΓH= (
∗K
Nji,

K

Hi
jk, 0,

K

Cik
j , 0) with the coefficients given by (2.6).

Like in the complex Finsler case ([13]), we can consider the transformations group
of metrical connections and then express the d− tensors which ties this pair of con-
nections (possible with others that may be considered: Rund, Berwald type complex
connections).
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We emphasize only the fact that, although the Chern-Cartan connection being
of (1, 0)−type is simpler, the canonical connection is h− and v− symmetrical and
therefore easy to use in calculations. For the complex Finsler space this aspect was
clearly proved by us in a paper that will appear.

Now let us summarize some direct properties of the canonical metrical connection.

Proposition 3.2 The following assertions are true:

1.
c

ΓH depends only on the Hamilton function H(z, ζ)

2. We have:
K

Hi
jk= ∂̇i(

∗c
Njk)

3.
c

Cjk
i =

K

Cjk
i ;

c

C j̄k
ī

=
K

C j̄k
ī

= 0

4.
c

C0k
i =

c

Cjk
i ζj = 0 ;

c

C ījk= −∂gīj

∂ζk
;

c

C 0̄jk=
c

C ī0k=
c

C īj0= 0

5.
c

ΓH has only the following nonzero torsions

vT (∂̇k, δj) = [
c

Hi
jk −∂̇k(

∗c
Nij)]∂̇i ; hT (∂̇k, δj) =

c

Cik
j δi

vT (∂̇k̄, δj) = −∂̇k̄(
∗c

Nij)∂̇i ; hT (δk̄, δj) =
c

Hi
jk̄ δi

vT (δk̄, δj) = −δk̄(
∗c

Nij)∂̇i ; h̄T (δk̄, δj) =
c

−H ī
k̄j δi

v̄T (δk̄, δj) = −δj(
∗c

N̄ik)∂̇ ī ; h̄T (δk̄, ∂̇j) = −∂̇j(
∗c

N̄ik)∂̇ ī

6. θ = dzk ∧ δζk + dz̄k ∧ δζ̄k is a symplectic form on (T ′M)∗.

It seems that the class of complex Cartan spaces is poor enough (as well as that
of complex Finsler spaces). For the moment we have two classical examples: one
provided from a Hermitian metric on the base manifold M and, the Kobayashi Finsler
Hamiltonian metric ([7, 5]). The homogeneity condition (3.1) with λ ∈ C is more
restrictive. If we consider (3.1) only for all λ ∈ R (which is not an uninteresting
case for geometry, taking in account that the parameter on a curve is real, unlike for
the complex function theory) the class of examples is wider. If α2 = aj̄i(z)ζiζ̄j and
β = 2Re{Ai(z)ζi}, where aj̄i(z) is a Hermitian metric on M and Ai(z) is a vector field,
then in analogy to the real case we can discuss on R−complex Randers-Cartan spaces,
Kropina-Cartan spaces or, more general, on R−complex (α, β)−Cartan spaces.

A complex Hamilton space (M, H) is said to be an almost Cartan-Hamilton (a.C−
H) space if the metric tensor gj̄i(z, ζ) = ∂2H/∂ζi∂ζj̄ is 0−

Let us note that in an (a.C −H) space we have
c

C0k
i = 0. Hence bk

i = dk
i = δk

i , and

then in an (a.C −H) a (c.n.c) is
∗c

Nji too.

Theorem 3.1 A complex Hamilton space (M,H) is an (a.C −H) space if and only
if the Hamilton function has the form:

H(z, ζ) = gj̄i(z, ζ)ζiζ̄j + 2Re{Ai(z)ζi}+ B(z)

where Ai(z) is a vector and B(z) is a real valued function.
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The proof is based on the fact that ∂̇i∂̇ j̄(H − E) = 0 and by H(z, ζ) = H(z, ζ),
where E = gj̄i(z, ζ)ζiζ̄j is the complex energy.

A complex Hamilton space is said to be of local Minkowski type if at any point u∗

there exists a local chart where gj̄i depend only on the variable ζ.
Particularly, the complex Cartan space of local Minkowski type is obtained.
In a complex local Minkowski space there exists a local chart in which the coeffi-

cients of one (c.n.c.) obtained from a good vertical connection are zero, and therefore
δi = ∂/∂zi. For such a choice of local atlas one obtains simplified forms of torsions
and curvatures of (c.l.c.).
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