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Abstract

We obtain comparison results for the mean curvature of tubular hypersur-
faces, Pt, around a submanifold P of a riemannian manifold M , with bounded
curvature, taking as a model tubular hypersurfaces around totally geodesic, cur-
vature preserving submanifolds in symmetric spaces of arbitrary rank, and we
give an application to get estimates for the relative volume.
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1 Introduction

The first purpose of this paper is to obtain comparison theorems for the mean curva-
ture of tubular hypersurfaces, Pt, around a submanifold P of a Riemannian manifold
M , with bounded curvature, taking as a model tubular hypersurfaces around totally
geodesic, curvature preserving submanifolds in symmetric spaces of arbitrary rank.
Results of this type have been widely studied in the literature considering different
rank-one symmetric spaces as a model. Moreover, these results have been applied to
obtain comparison results for geometric Riemannian invariants such as volume, mean
exit time,.... (see, for instance, [10], [7], [4], [5], [12], [13], [11]).

The bounds imposed to the q−mean curvatures defined in [1, page 253] to obtain
the comparison theorems are given from the restricted roots of the symmetric space.
That is the reason because these bounds are constant for rank-one symmetric spaces,
but they depend, in general, on the vector used to define the q−mean curvatures
in arbitrary rank symmetric spaces. The above situation is closely related with the
fact that the eigenvalues of the Weingarten map, S(t), of a tubular hypersurface in
a symmetric space, are constant for rank-one symmetric spaces but depend on the
vector used to define S(t) for arbitrary rank symmetric spaces ([8], [14]).

The second purpose of the paper is to obtain a comparison result for the relative
volume using, as a model, totally geodesic submanifolds in the symmetric space for
which the first conjugate locus and the cut-focal locus agree ([2]).
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We will consider along the paper compact symmetric spaces, however using the
duality between compact and noncompact symmetric spaces we will extend the results
to noncompact symmetric spaces in the Appendix at the end of the paper.

2 Preliminaries

Let M be a Riemannian manifold of dimension n. Let P be a submanifold of M of
dimension s. We shall denote by NP the normal bundle of P in M and by NpP the
fibre of NP over p ∈ P . Given a unitary vector u ∈ NpP , we consider an orthogonal
decomposition

TpM =




l1⊕

j=1

Hj


⊕

(
l2⊕

i=1

Vi

)
,(2.1)

where

TpP =
l1⊕

j=1

Hj and (TpP )⊥ =
l2⊕

i=1

Vi

and such that u ∈ V1, dimV1 = r, dim Vi = mi (i = 2, . . . , l2), dim H1 = q − r and
dim Hj = nj (j = 2, . . . , l1).

The mi-Ricci curvature K(u, Vi) of u at Vi (called the mi-mean curvature in [1,
page 253]) is defined as

K(u, Vi) =
mi∑

k2=1

R(u, X⊥
ik2

, u, X⊥
ik2

);(2.2)

where {X⊥
ik2

, k2 = 1, . . . , mi} is an orthonormal basis of Vi. This definition can be
extended to any subspace of TpM and, in particular, to Hj (j = 1, . . . , l1).

Let γu(t) be the geodesic such that γu(0) = p ∈ P and γ′u(0) = u ∈ N√P, and τt

the parallel transport along γu(t) from 0 to t. Then, if V t
i = τtVi and Ht

j = τtHj , we
have

Tγu(t)M =




l1⊕

j=1

Ht
j


⊕

(
l2⊕

i=1

V t
i

)
.

Let Pt be the tubular hypersurface around P of radius t. We denote by S(t) the
Weingarten map of Pt and we consider in Pt the operator R(t)X = R(γ′u(t), X)γ′u(t).

Lemma 1.1. [6]. Let AP (t) denote the volume of Pt; then,

S′(t) = S2(t) + R(t),(2.3)
θ′u(t)
θu(t)

= −
(

n− s− 1
t

+ tr(S(t))
)

,(2.4)

Ap(t) = tn−s−1

∫

P

∫

Sn−s−1(1)

θu(t) dudP,(2.5)
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where θu(t) is the infinitesimal change of volume function in the direction of u and
Sn−s−1(1) denotes the unit sphere in NpP .

Now, if f(u) = inf{t > 0 / γu(t) is a conjugate point of p}, c(u) = sup{t >
0 / d(p, γu(t)) = t} (d being the distance function in M) and z(θu(t)) is the first
positive zero of the function θu(t), we have

Lemma 1.2.

c(u) ≤ f(u) = z(θu(t)),(2.6)

Vol(M) =
∫

P

∫

Sn−s−1(1)

∫ c(u)

0

tn−s−1θu(t) dtdudP.(2.7)

To compare, in the next section, the trace of S(t), we will use a pair (M̃, P̃ ) as
a model, where M̃ = G/K is a compact symmetric space of dimension n and P̃

is a totally geodesic submanifold of M̃ of dimension s, which satisfies the following
properties.

Let g = k + m be the canonical decomposition of M̃ (m is indetified with the
tangent space of M̃ at any point), and h a maximal abelian subspace of m. Since P̃ is
totally geodesic, it is also a symmetric space P̃ = U/L. Let u = l + p be the canoni-
cal decomposition of P̃ , where p is identified with the tangent space of P̃ at any point.

We assume that the orthogonal complement of p in m, p⊥, is a Lie triple system,
i.e.

[p⊥, [p⊥,p⊥]] ⊂ p⊥,(2.8)

then, [9], P̃⊥ = Exp(p⊥) is a totally geodesic submanifold of M̃ , and P̃⊥ = U ′/L′ is
also a Riemannian globally symmetric space.

A list of pairs (P̃ , P̃⊥) for all compact symmetric spaces can be found in [3].
We say that P̃ is a totally geodesic curvature preserving submanifold of M̃ , be-

cause, for each vector u ∈ p⊥, the curvature operator Ru satisfies, from (2.8), the
following condition of preserving the curvature,

Ru(p) ⊂ p and Ru(p⊥) ⊂ p⊥.(2.9)

Let a be a maximal abelian subspace of p⊥ with u ∈ a ⊂ h, then, if rank(P̃⊥) = r

and rank(M̃) = q, we have that r ≤ q. Let b = h ∩ p.
Let αi (1 ≤ i ≤ l2) be the positive restricted root system of p⊥ and βj (1 ≤ j ≤ l1)

that of p. From (2.9), m can be decomposed as

m =

(
a⊕

l2∑

i=2

mi

)
⊕


b⊕

l1∑

j=2

nj


 ,(2.10)

where mi is the root subspace of dimension mi corresponding to αi, (α1(u) = 0, m1 =
r), and nj is the root subspace of dimension nj corresponding to βj , (β1(u) = 0, n1 =
q − r).

Let {X⊥
ik

, k = 1, . . . , l2} be an orthonormal basis of p⊥ such that X⊥
11

=
u, {X⊥

1k
, k = 1, . . . , r} ⊂ a and {X⊥

ik
, k = 1, . . . ,mi} ⊂ mi. Let {X>

jk
, k = 1, . . . , l1}
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be an orthonormal basis of p such that {X>
1k

, k = 1, . . . , q − r} ⊂ b and {X>
jk

, k =
1, . . . , nj} ⊂ nj .

In this way we get a basis {X>
jk1

, X⊥
ik2
}, (k1 = 1, . . . , nj , j = 1, . . . , l1), (k2 =

1, . . . , mi, i = 1, . . . , l2), of m which diagonalizes Ru, with eigenvalues given by

{β2
j (u), α2

i (u)}, (j = 1, . . . , l1), (i = 1, . . . , l2).

The mi-Ricci curvature of u at mi and the nj-Ricci curvature of u at nj are,
respectively,

K(u,mi) = miα
2
i (u) and K(u,nj) = njβ

2
j (u).(2.11)

The Ricci curvature of M̃ with respect to u is

ρ(u, u) =
l2∑

i=2

miα
2
i (u) +

l1∑

j=2

njβ
2
j (u).(2.12)

Let {E>
jk1

(t), E⊥
ik2

(t)}, (k1 = 1, . . . , nj , j = 1, . . . , l1), (k2 = 1, . . . , mi, i =
1, . . . , l2), be the parallel transport of {X>

jk1
, X⊥

ik2
} along the geodesic γu(t). The

operators S(t) and R(t) corresponding to M̃ satisfy:

R̃(t)E>
1k1

(t) = 0, k1 = 2, . . . , q − r,

R̃(t)E>
jk1

(t) = β2
j (u)E>

jk1
(t), k1 = 1, . . . , nj , j = 2, . . . , l1,

R̃(t)E⊥
1k2

(t) = 0, k2 = 1, . . . , r,

R̃(t)E⊥
ik2

(t) = α2
i (u)E⊥

ik2
(t), k2 = 1, . . . ,mi, i = 2, . . . , l2,

(2.13)

and

S̃(t)E>
1k1

(t) = 0, k1 = 2, . . . , q − r,

S̃(t)E>
jk1

(t) = βj(u) tan(tβj(u))E>
jk1

(t), k1 = 1, . . . , nj , j = 2, . . . , l1,

S̃(t)E⊥
1k2

(t) = −1/tE⊥
1k2

(t), k2 = 1, . . . , r,

S̃(t)E⊥
ik2

(t) = −αi(u) cot(tαi(u))E⊥
ik2

(t), k2 = 1, . . . ,mi, i = 2, . . . , l2,

(2.14)

Moreover, when the first conjugate locus of P̃ and the cut-focal locus of P̃ agree
(see examples in [2]), from (2.6), the minimal focal distance of P̃ in M̃ , c(P̃ ) =
min{c(u) / u ∈ NpP̃}, is given by

c(P̃ ) = inf
{

π

2βj(u)
,

π

αi(u)
/ u ∈ a and ‖u‖ = 1

}
.(2.15)

In the following we will identify TpM with Tp′M̃ and TpP with Tp′ P̃ , and, given a
unitary vector u ∈ V1 ⊂ NpP , having in mind that p⊥ = ∪kAd(k)a, we can suppose
that u ∈ a with restricted roots {αi(u), βj(u)}.
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3 Mean curvature comparison

Now, we will obtain two comparison theorems when the pair (M̃, P̃ ) is considered as
a model.

Without lost of generality we will suppose an arrangement of the roots {αi(u), βj(u)}
with u ∈ a ⊂ h, such that

0 = α1(u) < α2(u) ≤ α3(u) ≤ . . . ≤ αl2(u),(3.1)

0 = β1(u) < β2(u) ≤ β3(u) ≤ . . . ≤ βl1(u).(3.2)

Theorem 2.1. Let P and M be as in the preceding section and let P be a totally
geodesic submanifold of M . Suppose that given a unitary vector u ∈ NpP , the following
conditions are satisfied for each t ∈ [0, t0] with t0 < c(P ),

1. K(γ′u(t), Ht
1) ≥ 0.

2. K(γ′u(t), V t
1 ) ≥ 0.

3. K(γ′u(t), Ht
j) ≥ njβ

2
j (u), j = 3, . . . , l1.

4. K(γ′u(t), V t
i ) ≥ miα

2
i (u), i = 3, . . . , l2.

5.
l1∑

j=2

K(γ′u(t),Ht
j) ≥

l1∑

j=2

njβ
2
j (u).

6.
l2∑

i=2

K(γ′u(t), V t
i ) ≥

l2∑

i=2

miα
2
i (u).

Then, trS(t) ≥ tr S̃(t) for all t ∈ [0, t0] with t0 < inf
{

π

2βj(u)
,

π

αi(u)

}
.

Proof. Fix t ∈ [0, t0] and let {E>
jk1

(s), E⊥
ik2

(s)} defined, for s ∈ [0, t], as in the
preceding section. Let {Y >

jk1
(s), Y ⊥

ik2
(s)} be the P -Jacobi fields along γu(s) satisfying

Y >
jk1

(t) = E>
jk1

(t) and Y ⊥
ik2

(t) = E⊥
ik2

(t). We define vector fields along γu(s)|[0,t] by

Z⊥1k2
(s) =

s

t
E⊥

1k2
(s), k2 = 2, . . . , r.

Z>1k1
(s) = E>

1k1
(s), k1 = 2, . . . , q − r.

Z⊥ik2
(s) = sαiE

⊥
ik2

(s), k2 = 1, . . . , mi, i = 2, . . . , l2.

Z>jk1
(s) = cβj E

>
jk1

(s), k1 = 1, . . . , nj , j = 2, . . . , l1.

where

sαi =
sin(sαi(u))
sin(tαi(u))

, cβj =
cos(sβj(u))
cos(tβj(u))

.(3.3)

From the Index Lemma for submanifolds ([1, page 228]) we have
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It
0(Y

>
jk1

) ≤ It
0(Z

>
jk1

),
It
0(Y

⊥
ik2

) ≤ It
0(Z

⊥
ik2

),(3.4)

where It
0 denotes the index form. Moreover,

tr S(t) = −
r∑

1k2

It
0(Y

⊥
1k2

)−
q−r∑
1k1

It
0(Y

>
1k1

)

−
l2∑

i=2

mi∑

k2=1

It
0(Y

⊥
ik2

)−
l1∑

j=2

nj∑

k1=1

It
0(Y

>
jk1

).

(3.5)

Therefore, from (3.4) and (3.5),

tr S(t) ≥ −
r∑

1k2

It
0(Z

⊥
1k2

)−
q−r∑
1k1

It
0(Z

>
1k1

)

−
l2∑

i=2

mi∑

k2=1

It
0(Z

⊥
ik2

)−
l1∑

j=2

nj∑

k1=1

It
0(Z

>
jk1

).

Since P is totally geodesic,

q−r∑
1k1

< Z>1k1
, LuZ>1k1

> (0) +
l1∑

j=2

nj∑

k1=1

< Z>jk1
, LuZ>jk1

> (0) = 0,(3.6)

where Lu denotes the Weingarten map of P along the normal vector u; in fact, the
Theorem is also true if each of the sums in (3.6) is zero. Therefore,

tr S(t) ≥ −
∫ t

0



(r − 1)

1
t2

+
l2∑

i=2

mis
′2
αi

+
l1∑

j=2

njc
′2
βj



 ds

+
∫ t

0

{s

t
K(γ′u, V t

1 ) + K(γ′u, Ht
1)

}
ds

+
∫ t

0





l2∑

i=2

s2
αi

K(γ′u, V t
i ) +

l1∑

j=2

c2
βj

K(γ′u,Ht
j)



ds

= −
∫ t

0



(r − 1)

1
t2

+
l2∑

i=2

mis
′2
αi

+
l1∑

j=2

njc
′2
βj



 ds

+
∫ t

0

{s

t
K(γ′u, V t

1 ) + K(γ′u, Ht
1)

}
ds

+
∫ t

0



s2

α2

l2∑

i=2

K(γ′u, V t
i ) + c2

β2

l1∑

j=2

K(γ′u,Ht
j)



ds

+
∫ t

0





l2∑

i=3

(s2
αi
− s2

α2
)K(γ′u, V t

i ) +
l1∑

j=3

(c2
βj
− c2

β2
)K(γ′u,Ht

j)



 ds.
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Finally, from conditions 1.-6. and having in mind that s2
αi
≥ s2

α2
and c2

βj
≥ c2

β2
for

0 < s ≤ t < inf
{

π

2βj
,

π

αi

}
, we have

tr S(t) ≥ −
∫ t

0



(r − 1)

1
t2

+
l2∑

i=2

mis
′2
αi

+
l1∑

j=2

njc
′2
βj



ds

+
∫ t

0



s2

α2

l2∑

i=2

miα
2
i + c2

β2

l1∑

j=2

njβ
2
j



 ds

+
∫ t

0





l2∑

i=3

(s2
αi
− s2

α2
)miα

2
i +

l1∑

j=3

(c2
βj
− c2

β2
)njβ

2
j



ds = tr S̃(t).

2

Corollary 2.1. Under the hypotheses of Theorem 2.1, replacing conditions 3.-4. by
one of the following group of conditions:
Group 1.

3. K(γ′u(t),Ht
j) ≤ njβ

2
j (u), j = 2, . . . , l1 − 1,

4. K(γ′u(t), V t
i ) ≥ miα

2
i (u), i = 3, . . . , l2,

Group 2.
3. K(γ′u(t),Ht

j) ≥ njβ
2
j (u), j = 3, . . . , l1,

4. K(γ′u(t), V t
i ) ≤ miα

2
i (u), i = 2, . . . , l2 − 1,

Group 3.
3. K(γ′u(t),Ht

j) ≤ njβ
2
j (u), j = 2, . . . , l1 − 1,

4. K(γ′u(t), V t
i ) ≤ miα

2
i (u), i = 2, . . . , l2 − 1,

we obtain the same comparison result for tr S(t).
Theorem 2.2. Let P and M be as in Theorem 2.1. Suppose that given a unitary vector
u ∈ NpP , the following conditions are satisfied for each t ∈ [0, t0] with t0 < c(P ),

1. K(γ′u(t), Ht
1) ≥ 0.

2. K(γ′u(t), V t
1 ) ≥ 0.

3. K(γ′u(t), Ht
j) ≥ njβ

2
j (u), j = 2, . . . , l1.

4. K(γ′u(t), V t
i ) ≥ miα

2
i (u), i = 3, . . . , l2.

5.
l1∑

j=2

K(γ′u(t),Ht
j) +

l2∑

i=2

K(γ′u(t), V t
i ) ≥

l1∑

j=2

njβ
2
j (u) +

l2∑

i=2

miα
2
i (u).

Then, trS(t) ≥ tr S̃(t) forall t ∈ [0, t0] with t0 < inf
{

π

2βj(u)
,

π

αi(u)

}
.
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Proof. As in Theorem 2.1, having into account that c2
βj

≥ s2
α2

and, from (3.1),

s2
αi
≥ s2

α2
for 0 < s ≤ t < inf

{
π

2βj(u)
,

π

αi(u)

}
.

2

Corollary 2.2. Under the hypotheses of Theorem 2.2, replacing conditions 3.-4. by
one of the following group of conditions:
Group 1.

3. K(γ′u(t),Ht
j) ≥ njβ

2
j (u), j = 3, . . . , l1.

4. K(γ′u(t), V t
i ) ≤ miα

2
i (u), i = 2, . . . , l2.

Group 2.
3. K(γ′u(t),Ht

j) ≥ njβ
2
j (u), j = 2, . . . , l1.

4. K(γ′u(t), V t
i ) ≤ miα

2
i (u), i = 2, . . . , l2 − 1.

Group 3.
3. K(γ′u(t),Ht

j) ≤ njβ
2
j (u), j = 2, . . . , l1 − 1.

4. K(γ′u(t), V t
i ) ≤ miα

2
i (u), i = 2, . . . , l2.

we obtain the same comparison result for tr S(t).

Remark 2.1. When the pair (M̃, P̃ ) is (CPn(λ),CP s(λ)), Theorem 2.2 and the
group of conditions 1 and 2 of Corollary 2.2 give the cases b), a) and c) of Theorem
2.1 in [12], respectively.

Finally, from Theorem 2.1 or Theorem 2.2 we obtain the following result.
Corollary 2.3. Let P and M be as in Theorem 2.1. Suppose that given a unitary
vector u ∈ NpP , the following conditions are satisfied for each t ∈ [0, t0] with t0 <
c(P ),

1. K(γ′u(t),Ht
1) ≥ 0.

2. K(γ′u(t), V t
1 ) ≥ 0.

3. K(γ′u(t),Ht
j) ≥ njβ

2
j (u), j = 2, . . . , l1.

4. K(γ′u(t), V t
i ) ≥ miα

2
i (u), i = 2, . . . , l2.

Then, tr S(t) ≥ tr S̃(t) forall t ∈ [0, t0] with t0 < inf
{

π

2βj(u)
,

π

αi(u)

}
.

4 Application: Relative volume

Let (M, P ) and (M̃, P̃ ) be as in the preceding sections and suppose that the first
conjugate locus of P̃ and the cut-focal locus of P̃ agree (see examples in [2]). Then,
if θu(t) and θ̃u(t) denote the infinitesimal change of volume functions of M and M̃ ,
respectively, from the hypotheses of Theorems 2.1 and 2.2 and Eq. (2.4), having in
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mind that θu(0) = θ̃u(0) = 1, we have θu(t) ≤ θ̃u(t) and, from (2.6) and (2.7), we
have

c(u) ≤ z(θu(t)) ≤ z(θ̃u(t)) = c̃(u),(4.1)

and therefore,

Vol(M) =
∫

P

∫

Sn−s−1(1)

∫ c(u)

0

tn−s−1θu(t)dt dudP

≤
∫

P

∫

Sn−s−1(1)

∫ c̃(u)

0

tn−s−1θ̃u(t)dt dudP.

≤ (Vol(P )/Vol(P̃ ))
∫

P̃

∫

Sn−s−1(1)

∫ c̃(u)

0

tn−s−1θ̃u(t)dt dudP̃

= (Vol(P )/Vol(P̃ ))Vol(M̃).

(4.2)

So, we conclude the following inequality between the relative volumes:

Theorem 3.1. Let (M, P ) and (M̃, P̃ ) as before; then,

Vol(P̃ )

Vol(M̃)
≤ Vol(P )

Vol(M)
.(4.3)

Appendix. Suppose now that M̃ is a noncompact symmetric space; then, having
into account the duality between compact and noncompact symmetric spaces, the
main differences with the compact case are that the Ricci curvatures defined in (2.11)
and (2.12) are negative and all the trigonometric functions which appear for the
compact case have to be changed to hyperbolic functions. Therefore, the comparison
results in Section 2 remain valid for noncompact symmetric spaces but some of the
inequalities imposed in the different conditions change. For instance, in Theorem 2.1,
Corollary 2.1 and Corollary 2.3, having in mind that s2

αi
≤ s2

α2
and c2

βj
≤ c2

β2
for

0 < s ≤ t < inf
{

π

2βj
,

π

αi

}
, when hyperbolic functions are considered, we have to

change all the inequalities ≤ by ≥ and vice versa, to obtain the comparison results
for tr S(t). But, in Theorem 2.2 and Corollary 2.2, some of the inequalities change

but other remain valid because c2
βj
≤ s2

αi
when 0 < s ≤ t < inf

{
π

2βj
,

π

αi

}
, also for

hyperbolic functions.
However, concerning the application in Section 4, when M̃ is noncompact, the

totally geodesic submanifold P̃ of M̃ is also a noncompact symmetric space, therefore,
Theorem 3.1 has no sense because we can not obtain finite values for the different
volumes, [8].
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[5] F. Giménez and V. Miquel, Volume estimates for real hypersurfaces of a Kähler
manifold with stricly positive holomorphic sectional and antiholomorphic Ricci
curvatures, Pacific J. Math. 142 (1990), 23-39.

[6] A. Gray, Tubes, Addison-Wesley, New York, 1990.

[7] A. Gray, Volumes of tubes about complex submanifolds in complex projective
space, Trans. Amer. Math. Soc 291 (1985), 437-449.

[8] X. Gual-Arnau and A. M. Naveira, Volume of tubes in noncompact symmetric
spaces, Publ. Math. Debrecen. 54 (1999), 313-320.

[9] S. Helgason, Differential Geometry, Lie Groups, and Symmetric spaces, Academic
Press (1978).

[10] E. Heintze and H. Karcher, A general comparison theorem with applications to
volume estimates for submanifolds, Ann. Sci. Ec. Nor. Sup. 11 (1978), 451-470.

[11] A. Lluch and V. Miquel, Bounds for the first Dirichlet eigenvalue attained at an
infinite family of riemannian manifolds, Geometriae Dedicata 61 (1996), 51-69.

[12] V. Miquel and V. Palmer, Mean curvature comparison for tubular hypersurfaces
in Kähler manifolds and some applications, Compositio Mathematica 86 (1993),
371-335.

[13] V. Miquel and V. Palmer, Lower bounds for the mean curvature of hollow tubes
around complex hypersurfaces and totally real submanifolds, Illinois J. Math. 39
(1995), 508-530.

[14] A. M. Naveira and X. Gual, The volume of geodesic balls and tubes about to-
tally geodesic submanifolds in compact symmetric spaces, Diff. Geom. Appl. 7
(2) (1997), 101-113.

[15] T. Sakai, Riemannian Geometry, A. M. S. Providence (Rhode Island, 1996).

Departament de Matemàtiques,
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