Homogeneous Lorentzian Structures on Some Gödel-Levichev's Spacetimes, and Associated Reductive Decompositions

P.M. Gadea and Ana Primo Ramos

Dedicated to the Memory of Grigorios TSAGAS (1935-2003), President of Balkan Society of Geometers (1997-2003)

Abstract

For the Levichev homogeneous spacetimes of type $2 a$ on the Gödel group, the homogeneous Lorentzian structures and the associated reductive decompositions are determined.

Mathematics Subject Classification: 53C30, 14M17
Key words: homogeneous space, reductive decomposition, Lorentzian structure, Godel-Levichev spacetime, Ambrose-Singer equation

1 Introduction and preliminaries

É. Cartan gave in [2] the classical characterization of Riemannian symmetric spaces as the spaces of parallel curvature. This was extended by Ambrose and Singer, who gave in [1] a characterization for a connected, simply connected and complete Riemannian manifold to be homogeneous, in terms of a $(1,2)$ tensor field S, called by Tricerri and Vanhecke in [7] a homogeneous Riemannian structure, which satisfies certain equations (see (1.1) below). In [3] it is defined a homogeneous pseudo-Riemannian structure on a pseudo-Riemannian manifold (M, g) as a tensor field S of type $(1,2)$ such that ∇ being the Levi-Civita connection and R its curvature tensor, the connection $\widetilde{\nabla}=\nabla-S$ satisfies the Ambrose-Singer equations

$$
\begin{equation*}
\widetilde{\nabla} g=0, \quad \widetilde{\nabla} R=0, \quad \widetilde{\nabla} S=0 \tag{1.1}
\end{equation*}
$$

In [3] it is proved that if the pseudo-Riemannian manifold (M, g) is connected, simply connected and geodesically complete then it admits a homogeneous pseudoRiemannian structure if and only if it is a reductive homogeneous pseudo-Riemannian manifold. This means that $M=G / H$, where G is a connected Lie group acting transitively and effectively on M as a group of isometries, H is the isotropy group at a point $o \in M$, and the Lie algebra \mathbf{g} of G may be decomposed into a vector space

[^0]direct sum of the Lie algebra \mathbf{h} oh H and an $\operatorname{Ad}(H)$-invariant subspace \mathbf{m}, that is $\mathbf{g}=\mathbf{h} \oplus \mathbf{m}, \operatorname{Ad}(\mathrm{H}) \mathbf{m} \subset \mathbf{m}$. (If G is connected and M is simply connected then H is connected, and the latter condition is equivalent to $[\mathbf{h}, \mathbf{m}] \subset \mathbf{m}$.)

Let (M, g) be a connected, simply connected, and geodesically complete pseudoRiemannian manifold, and suppose that S is a homogeneous pseudo-Riemannian structure on (M, g). We fix a point $o \in M$ and put $\mathbf{m}=T_{o}(M)$. If \widetilde{R} is the curvature tensor of the connection $\widetilde{\nabla}=\nabla-S$, we can consider the holonomy algebra $\tilde{\mathbf{h}}$ of $\widetilde{\nabla}$ as the Lie subalgebra of "skew-symmetric" endomorphisms of (\mathbf{m}, g_{o}) generated by the operators $\widetilde{R}_{Z W}$, where $Z, W \in \mathbf{m}$. Then, according to the Ambrose-Singer construction $[1,7]$, a Lie bracket is defined in the vector space direct sum $\tilde{\mathbf{g}}=\tilde{\mathbf{h}} \oplus \mathbf{m}$ by

$$
\begin{array}{ll}
{[U, V]=U V-V U,} & U, V \in \tilde{\mathbf{h}} \\
{[U, Z]=U(Z),} & U \in \tilde{\mathbf{h}}, Z \in \mathbf{m} \tag{1.2}\\
{[Z, W]=\widetilde{R}_{Z W}+S_{Z} W-S_{W} Z,} & Z, W \in \mathbf{m}
\end{array}
$$

and we say that $(\tilde{\mathbf{g}}, \tilde{\mathbf{h}})$ is the reductive pair associated to the homogeneous pseudoRiemannian structure S.

Tricerri and Vanhecke [7] have classified the homogeneous Riemannian structures into eight classes, which are defined by the invariant subspaces of certain space $\mathcal{S}_{1} \oplus$ $\mathcal{S}_{2} \oplus \mathcal{S}_{3}$. In [4] a similar classification for the pseudo-Riemannian case is given. For more details see below.

On the other hand, Levichev consider in [5] the usual Gödel metric

$$
g=-\frac{e^{-2 x_{4}}}{2} d x_{1}^{2}-2 e^{-2 x_{4}} d x_{1} d x_{2}-d x_{2}^{2}+d x_{3}^{2}+d x_{4}^{2}
$$

as a left-invariant metric on the Gödel group G, and defines several families of metrics on G, thus obtaining several types of homogeneous Lorentz spaces. The ones of type $2 a$ are connected, simply connected, and geodesically complete. In the present note we determine the homogeneous Lorentzian structures on these homogeneous spacetimes and their type in Tricerri-Vanhecke's classification, and the associated reductive decompositions.

2 Homogeneous Lorentzian structures

The Gödel group is the simply connected Lie group G whose Lie algebra \mathbf{g} has four generators $e_{1}, e_{2}, e_{3}, e_{4}$, with the only nonvanishing bracket

$$
\left[e_{4}, e_{1}\right]=e_{1}
$$

The group G admits a realization as $\mathbf{R}^{4}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right\}$ with multiplication $z=$ $x \cdot y$ obtained from the matrix expression

$$
x \equiv\left(\begin{array}{cccc}
e^{x_{4}} & 0 & 0 & x_{1} \\
0 & 1 & 0 & x_{2} \\
0 & 0 & 1 & x_{3} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

The commutation relations of its Lie algebra in the system of coordinates chosen on G coincide with the brackets above.

Consider the subspaces L_{1}, L_{2}, L_{3} of \mathbf{g} generated respectively by $e_{1} ; e_{2}, e_{3}$; and e_{1}, e_{2}, e_{3}. Then the homogeneous Lorentz group of type $2 a$ is defined by the conditions: L_{2}, L_{3} are timelike, and L_{1} is spacelike (for more details see [5]). Then, for each couple of real numbers p, q with $0 \leq p<1, q>0$, the left-invariant Lorentzian metric $g_{p, q}$ on G obtained by left translations from the scalar product at the origin with matrix given, with respect to the above basis of \mathbf{g}, by

$$
\langle,\rangle_{p, q}=\left(\begin{array}{cccc}
1 & p & 0 & 0 \tag{2.1}\\
p & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & q
\end{array}\right)
$$

is given by

$$
g_{p, q}=\left(\begin{array}{cccc}
e^{-2 x_{4}} & e^{-2 x_{4}} p & 0 & 0 \\
e^{-2 x_{4}} p & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & q
\end{array}\right)
$$

As causal spacetimes, the Lorentz Lie groups corresponding to the Gödel group with the metric of type $2 a$ are homogeneously globally hyperbolic, which is a strong causality condition. We recall that: A causal curve in a Lorentz manifold M is a curve whose velocity vectors are all nonspacelike; if M is globally hyperbolic then any pair of points that can be joined by a causal curve can be joined by a (longest) causal geodesic; a solvable Lorentz Lie group G is said to be homogeneously globally hyperbolic if it is globally hyperbolic and has a Cauchy surface S passing through the identity element $e \in G$ and containing the center of G (for more details see $[5,6])$; a Cauchy surface of a spacetime is a subset that is met exactly once by every inextendible timelike curve in the spacetime.

On account of Koszul's formula for the Levi-Civita connection for a left-invariant metric g on a Lie group,

$$
2 g\left(\nabla_{e_{i}} e_{j}, e_{k}\right)=g\left(\left[e_{i}, e_{j}\right], e_{k}\right)-g\left(\left[e_{j}, e_{k}\right], e_{i}\right)+g\left(\left[e_{k}, e_{i}\right], e_{j}\right)
$$

we obtain that the non-null covariant derivatives between generators are

$$
\begin{gathered}
\nabla_{e_{1}} e_{1}=\frac{1}{q} e_{4}, \quad \nabla_{e_{1}} e_{2}=\nabla_{e_{2}} e_{1}=\frac{p}{2 q} e_{4}, \\
\nabla_{e_{1}} e_{4}=\frac{p^{2}-2}{2\left(1-p^{2}\right)} e_{1}+\frac{p}{2\left(1-p^{2}\right)} e_{2}, \\
\nabla_{e_{2}} e_{4}=\nabla_{e_{4}} e_{2}=-\frac{p}{2\left(1-p^{2}\right)} e_{1}+\frac{p^{2}}{2\left(1-p^{2}\right)} e_{2}, \\
\nabla_{e_{4}} e_{1}=-\frac{p^{2}}{2\left(1-p^{2}\right)} e_{1}+\frac{p}{2\left(1-p^{2}\right)} e_{2} .
\end{gathered}
$$

So, the nonvanishing components of the curvature tensor, with the convention $R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z$, are, putting $R_{e_{i} e_{j}} e_{k}$ for $R\left(e_{i}, e_{j}\right) e_{k}$,

$$
\begin{array}{rlrl}
R_{e_{1} e_{2}} e_{1} & =\frac{p^{3}}{4 q\left(1-p^{2}\right)} e_{1}-\frac{p^{2}}{4 q\left(1-p^{2}\right)} e_{2}, \\
R_{e_{1} e_{2}} e_{2} & =\frac{p^{2}}{4 q\left(1-p^{2}\right)} e_{1}-\frac{p^{3}}{4 q\left(1-p^{2}\right)} e_{2}, & R_{e_{1} e_{4}} e_{2}=-\frac{p^{3}}{4 q\left(1-p^{2}\right)} e_{4}, \\
R_{e_{1} e_{4}} e_{1} & =\frac{p(2-p)}{4 q\left(1-p^{2}\right)} e_{4}, & R_{e_{2} e_{4}} e_{1}=-\frac{p^{3}}{4 q\left(1-p^{2}\right)} e_{4}, \\
R_{e_{1} e_{4}} e_{4} & =\frac{p^{2}-4}{4\left(1-p^{2}\right)} e_{1}+\frac{p}{1-p^{2}} e_{2}, & R_{e_{2} e_{4}} e_{4}=\frac{p^{2}}{4\left(1-p^{2}\right)} e_{2} \\
R_{e_{2} e_{4}} e_{2} & =-\frac{p^{2}}{4 q\left(1-p^{2}\right)} e_{4}, &
\end{array}
$$

and the nonvanishing components of the Riemann-Christoffel curvature tensor, with the convention $R(X, Y, Z, W)=g(R(Z, W) Y, X)$, putting $R_{e_{i} e_{j} e_{k} e_{l}}$ for $g\left(R\left(e_{k}, e_{l}\right) e_{j}, e_{i}\right)$, are

$$
\begin{array}{ll}
R_{e_{1} e_{2} e_{1} e_{2}}=\frac{p^{2}}{4 q}, & R_{e_{1} e_{4} e_{1} e_{4}}=\frac{5 p^{2}-4}{4\left(1-p^{2}\right)}, \\
R_{e_{1} e_{4} e_{2} e_{4}}=\frac{p^{3}}{4\left(1-p^{2}\right)}, & R_{e_{2} e_{4} e_{2} e_{4}}=\frac{p^{2}}{4\left(1-p^{2}\right)} .
\end{array}
$$

We shall now determine the homogeneous Lorentzian structures on these spaces. For this, we must solve the Ambrose-Singer equations 1.1. The first Ambrose-Singer equation amounts to $S_{X Y Z}=-S_{X Z Y}$ for any homogeneous pseudo-Riemannian structure S. One can write the second Ambrose-Singer equation $\nabla R=0$ as

$$
\begin{gathered}
R_{\nabla_{U} X Y Z W}+R_{X \nabla_{U} Y Z W}+R_{X Y \nabla_{U} Z W}+R_{X Y Z \nabla_{U} W} \\
=S_{U X R(Z, W) Y}-S_{U Y R(Z, W) X}+S_{U Z R(X, Y) W}-S_{U W R(X, Y) Z} .
\end{gathered}
$$

Solving, we obtain that the nonvanishing components of S are

$$
S_{e_{1} e_{2} e_{4}}=1-p^{2}, \quad S_{e_{4} e_{1} e_{2}}=\frac{p}{2}
$$

except for $S_{e_{i} e_{1} e_{4}}, i=1, \ldots, 4$, for which we must use the third Ambrose-Singer equation. In our case, since we are considering left-invariant differential forms, the forms involved in this equation are linear combinations with constant coefficients of the basis $\left\{\theta^{1}, \theta^{2}, \theta^{3}, \theta^{4}\right\}$ of left-invariant forms on G dual to the basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$. Moreover, since for a constant function f, one has $\nabla_{X} f=0$ and $\widetilde{\nabla}_{X} f=0$, we also have $S_{X} f=0$. Thus, the third Ambrose-Singer equation $\widetilde{S}=0$ can be written as

$$
S_{\nabla_{X} Y Z W}+S_{Y \nabla_{X} Z W}+S_{Y Z \nabla_{X} W}=S_{S_{X} Y Z W}+S_{Y S_{X} Z W}+S_{Y Z S_{X} W}
$$

for $X, Y, Z, W \in \mathbf{g}$.
Solving, we obtain the nonzero components

$$
S_{e_{1} e_{1} e_{4}}=1, \quad S_{e_{2} e_{1} e_{4}}=\frac{p}{2}
$$

Consequently, the non-null components $S_{e_{i}} e_{j}$ are

$$
\begin{gathered}
S_{e_{1}} e_{1}=\frac{1}{q} e_{4}, \quad S_{e_{1}} e_{2}=\frac{1-p^{2}}{q} e_{4} \\
S_{e_{1}} e_{4}=\frac{-p^{3}+p-1}{1-p^{2}} e_{1}+\frac{p^{2}+p-1}{1-p^{2}} e_{2}, \quad S_{e_{2}} e_{1}=\frac{p}{2 q} e_{4} \\
S_{e_{4}} e_{1}=-\frac{p^{2}}{2\left(1-p^{2}\right)} e_{1}+\frac{p}{2\left(1-p^{2}\right)} e_{2}, \quad S_{e_{4}} e_{2}=-\frac{p}{2\left(1-p^{2}\right)} e_{1}+\frac{p^{2}}{2\left(1-p^{2}\right)} e_{2},
\end{gathered}
$$

Then, with the convention $v \wedge w=v \otimes w-w \otimes v$ for the exterior product, we have proved the following

Theorem 1 The homogeneous Lorentzian structures on the Gödel-Levichev space $\left(G, g_{p, q}\right)$ of type $2 a$ are given by

$$
\theta^{1} \otimes \theta^{1} \wedge \theta^{4}+\left(1-p^{2}\right) \theta^{1} \otimes \theta^{2} \wedge \theta^{4}+\frac{p}{2}\left(\theta^{2} \otimes \theta^{1} \wedge \theta^{4}+\theta^{4} \otimes \theta^{1} \wedge \theta^{2}\right)
$$

We recall some definitions and a result from Tricerri and Vanhecke [7] (see also [4]). Let E be a real vector space of dimension n endowed with an inner product \langle,$\rangle of$ signature $(k, n-k)$. The space $(E,\langle\rangle$,$) will be the model for each tangent space T_{x} M$, $x \in M$, of a reductive homogeneous pseudo-Riemannian manifold of signature ($k, n-$ $k)$. Consider the vector space $\mathcal{S}(E)$ of tensors of type $(0,3)$ on $(E,\langle\rangle$,$) satisfying the$ same symmetries as those of a homogeneous pseudo-Riemannian structure S, that is, $\mathcal{S}(E)=\left\{S \in \otimes^{3} E^{*}: S_{X Y Z}=-S_{X Z Y}, X, Y, Z \in E\right\}$, where $S_{X Y Z}=\left\langle S_{X} Y, Z\right\rangle$. Let $c_{12}: \mathcal{S}(E) \rightarrow V^{*}$ be the map defined by $c_{12}(S)(Z)=\sum_{i=1}^{n} \varepsilon_{i} S_{e_{i} e_{i} Z}, Z \in E$, where $\left\{e_{i}\right\}$ is an orthonormal basis of $E,\left\langle e_{i}, e_{i}\right\rangle=\varepsilon_{i}= \pm 1$. Then we have that if $\operatorname{dim} E \geq 3$, then $\mathcal{S}(E)$ decomposes into the orthogonal direct sum of subspaces which are invariant and irreducible under the action of the pseudo-orthogonal group $O(k, n-k): \mathcal{S}(E)=$ $\mathcal{S}_{1}(E) \oplus \mathcal{S}_{2}(E) \oplus \mathcal{S}_{3}(E)$, where

$$
\begin{array}{ll}
\mathcal{S}_{1}(E) & =\left\{S \in \mathcal{S}(E): S_{X Y Z}=\langle X, Y\rangle \omega(Z)-\langle X, Z\rangle \omega(Y), \omega \in E^{*}\right\} \\
\mathcal{S}_{2}(E) & =\left\{S \in \mathcal{S}(E): \widehat{S}_{X Y Z} S_{X Y Z}=0, c_{12}(S)=0\right\} \\
\mathcal{S}_{3}(E) & =\left\{S \in \mathcal{S}(E): S_{X Y Z}+S_{Y X Z}=0\right\} \\
\mathcal{S}_{1}(E) \oplus \mathcal{S}_{2}(E) & =\left\{S \in \mathcal{S}(E): \mathcal{S}_{X Y Z} S_{X Y Z}=0\right\} \\
\mathcal{S}_{2}(E) \oplus \mathcal{S}_{3}(E) & =\left\{S \in \mathcal{S}(E): c_{12}(S)=0\right\} \\
\mathcal{S}_{1}(E) \oplus \mathcal{S}_{3}(E) & =\left\{S \in \mathcal{S}(E): S_{X Y Z}+S_{Y X Z}=2\langle X, Y\rangle \omega(Z)\right. \\
& \left.-\langle X, Z\rangle \omega(Y)-\langle Y, Z\rangle \omega(X), \omega \in E^{*}\right\}
\end{array}
$$

In the present case we deduce
Corollary 1 The homogeneous Lorentzian structures on $\left(G, g_{p, q}\right)$ belong to

$$
\mathcal{S}_{1} \oplus \mathcal{S}_{2} \oplus \mathcal{S}_{3}-\left\{\left(\mathcal{S}_{1} \oplus \mathcal{S}_{2}\right) \cup\left(\mathcal{S}_{1} \oplus \mathcal{S}_{3}\right) \cup\left(\mathcal{S}_{2} \oplus \mathcal{S}_{3}\right)\right\}
$$

In particular none of the associated reductive homogeneous spaces is either Lorentzian symmetric, or naturally reductive or cotorsionless.

Proof. Take the orthonormal basis

$$
\tilde{e}_{1}=\frac{1}{\sqrt{2(1+p)}}\left(e_{1}+e_{2}\right), \quad \tilde{e}_{2}=\frac{1}{\sqrt{2(1-p)}}\left(e_{1}-e_{2}\right), \quad \tilde{e}_{3}=e_{3}, \quad \tilde{e}_{1}=\frac{1}{\sqrt{q}} e_{4}
$$

As a calculation with respect to this basis shows, the condition $c_{12}(S)=0$ is not satisfied. On the other hand, since for instance $S_{e_{1} e_{2} e_{4}}+S_{e_{2} e_{4} e_{1}}+S_{e_{4} e_{1} e_{2}} \neq 0$, no structure belong to $\mathcal{S}_{1} \oplus \mathcal{S}_{2}$. Moreover, since for instance $S_{e_{1} e_{2} e_{4}} \neq-S_{e_{2} e_{1} e_{4}}$, no structure belong to \mathcal{S}_{3}; not even to $\mathcal{S}_{2} \oplus \mathcal{S}_{3}$, as the sum $S_{e_{1} e_{2} e_{4}}+S_{e_{2} e_{1} e_{4}}$ shows. The Lorentzian symmetric spaces correspond to the class $\{0\}$, and in [4] it has been proved the equivalence of the third class with the naturally reductive spaces, and of the class $\mathcal{S}_{1} \oplus \mathcal{S}_{2}$ with the cotorsionless spaces. For more details see [4].

3 Associated reductive decompositions

Consider now the Ambrose-Singer connection $\widetilde{\nabla}=\nabla-S$. Then, the non-null covariant derivatives between generators are

$$
\widetilde{\nabla}_{e_{1}} e_{2}=\frac{2 p^{2}+p-2}{2 q}, \quad \widetilde{\nabla}_{e_{1}} e_{4}=\frac{p\left(2 p^{2}+p-2\right)}{2\left(1-p^{2}\right)} e_{1}-\frac{2 p^{2}+p-2}{2\left(1-p^{2}\right)} e_{2}
$$

and, as a calculation shows, the only nonvanishing curvature operator is

$$
\widetilde{R}_{e_{1} e_{4}} \equiv\left(\begin{array}{ccccc}
& 0 & 0 & 0 & \frac{p}{2\left(1-p^{2}\right)} \\
& & & & \frac{1}{\left.2 p^{2}+p-2\right)} \\
0 & 0 & 0 & -\frac{1}{2\left(1-p^{2}\right)} \\
0 & 0 & 0 & 0 \\
& 0 & \frac{1}{2 q} & 0 & 0
\end{array}\right)
$$

According to Ambrose-Singer's Theorem on holonomy, the algebra of holonomy of a connection is generated by the curvature operators. In the present case, the holonomy algebra $\tilde{\mathbf{h}}$ has the only generator $V=\widetilde{R}_{e_{1} e_{4}}$. Putting \mathbf{m} for \mathbf{g}, and taking $T=V+e_{1}$ we have

Theorem 2 The reductive pairs ($\tilde{\mathbf{g}}, \tilde{\mathbf{h}})$ associated to the reductive decompositions $\tilde{\mathbf{g}}=$ $\tilde{\mathbf{h}} \oplus \mathbf{m}$ corresponding to the homogeneous Lorentzian structures on $\left(G, g_{p, q}\right)$ given in Theorem 1, are given in terms of the basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}, T\right\}$ by the (nonvanishing) Lie brackets

$$
\begin{gathered}
{\left[T, e_{4}\right]=2 e_{1}-T, \quad\left[e_{1}, e_{2}\right]=-\frac{2 p^{2}+p-2}{2 q} e_{4}} \\
{\left[e_{1}, e_{4}\right]=T-\frac{2 p^{3}-3 p^{2}-2 p+4}{2\left(1-p^{2}\right)} e_{1}+\frac{2 p^{2}+p-2}{2\left(1-p^{2}\right)} e_{2}}
\end{gathered}
$$

Proof. On account of the expressions (1.2), we obtain that

$$
\begin{gathered}
{\left[V, e_{2}\right]=\frac{2 p^{2}+p-2}{2 q} e_{4}, \quad\left[V, e_{4}\right]=\frac{p\left(2 p^{2}+p-2\right)}{2\left(1-p^{2}\right)} e_{1}-\frac{2 p^{2}+p-2}{2\left(1-p^{2}\right)} e_{2}} \\
{\left[e_{1}, e_{2}\right]=-\frac{2 p^{2}+p-2}{2 q} e_{4},\left[e_{1}, e_{4}\right]=V-\frac{2 p^{3}-p^{2}-2 p+2}{2\left(1-p^{2}\right)} e_{1}+\frac{2 p^{2}+p-2}{2\left(1-p^{2}\right)} e_{2} .}
\end{gathered}
$$

Then, making the change $T=V+e_{1}$ we conclude.
Acknowledgements. Partially supported by DGI, Spain, under grant no. BFM200200141.

References

[1] W. Ambrose and I.M. Singer, On homogeneous Riemannian manifolds, Duke Math. J. 25 (1958) 647-669.
[2] É. Cartan, Sur une classe remarquable d'espaces de Riemann, Bull. Soc. Math. France 54 (1926) 214-264.
[3] P.M. Gadea and J.A. Oubiña, Homogeneous pseudo-Riemannian structures and homogeneous almost para-Hermitian structures, Houston J. Math. 18 (1992) 449465.
[4] P.M. Gadea and J.A. Oubiña, Reductive homogeneous pseudo-Riemannian manifolds, Monatsh. Math. 124 (1997) 17-34.
[5] A.V. Levichev, Causal structure of left-invariant Lorentz metrics on the group $M_{2} \otimes \mathbf{R}^{2}$, Siberian Math. J. 31 (1990) 607-614.
[6] A.V. Levichev, Methods of investigation of the causal structure of homogeneous Lorentz manifolds, Siberian Math. J. 31 (1990) 395-408.
[7] F. Tricerri and L. Vanhecke, Homogeneous Structures on Riemannian Manifolds, London Math. Soc. Lect. Notes Ser. 83, Cambridge Univ. Press, Cambridge, U.K., 1983.

IMAFF, CSIC, Serrano 144, 28006 Madrid, email: pmgadea@iec.csic.es

Department of Mathematics, University of Salamanca, Pl. Merced 1-4, 37008 Salamanca, Spain, email:ana_primo@hotmail.com

[^0]: Balkan Journal of Geometry and Its Applications, Vol.8, No.1, 2003, pp. 45-51.
 (c) Balkan Society of Geometers, Geometry Balkan Press 2003.

