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Abstract

For the Levichev homogeneous spacetimes of type 2a on the Gödel group, the
homogeneous Lorentzian structures and the associated reductive decompositions
are determined.
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1 Introduction and preliminaries

É. Cartan gave in [2] the classical characterization of Riemannian symmetric spaces as
the spaces of parallel curvature. This was extended by Ambrose and Singer, who gave
in [1] a characterization for a connected, simply connected and complete Riemannian
manifold to be homogeneous, in terms of a (1, 2) tensor field S, called by Tricerri and
Vanhecke in [7] a homogeneous Riemannian structure, which satisfies certain equations
(see (1.1) below). In [3] it is defined a homogeneous pseudo-Riemannian structure on a
pseudo-Riemannian manifold (M, g) as a tensor field S of type (1, 2) such that∇ being
the Levi-Civita connection and R its curvature tensor, the connection ∇̃ = ∇ − S
satisfies the Ambrose-Singer equations

∇̃g = 0, ∇̃R = 0, ∇̃S = 0.(1.1)

In [3] it is proved that if the pseudo-Riemannian manifold (M, g) is connected,
simply connected and geodesically complete then it admits a homogeneous pseudo-
Riemannian structure if and only if it is a reductive homogeneous pseudo-Riemannian
manifold. This means that M = G/H, where G is a connected Lie group acting
transitively and effectively on M as a group of isometries, H is the isotropy group at
a point o ∈ M , and the Lie algebra g of G may be decomposed into a vector space
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direct sum of the Lie algebra h oh H and an Ad (H)-invariant subspace m, that is
g = h⊕m, Ad (H)m ⊂ m. (If G is connected and M is simply connected then H is
connected, and the latter condition is equivalent to [h,m] ⊂ m.)

Let (M, g) be a connected, simply connected, and geodesically complete pseudo-
Riemannian manifold, and suppose that S is a homogeneous pseudo-Riemannian
structure on (M, g). We fix a point o ∈ M and put m = To(M). If R̃ is the cur-
vature tensor of the connection ∇̃ = ∇− S, we can consider the holonomy algebra h̃
of ∇̃ as the Lie subalgebra of “skew-symmetric” endomorphisms of (m, go) generated
by the operators R̃ZW , where Z,W ∈ m. Then, according to the Ambrose-Singer
construction [1, 7], a Lie bracket is defined in the vector space direct sum g̃ = h̃⊕m
by

[U, V ] = UV − V U, U, V ∈ h̃,

[U,Z] = U(Z), U ∈ h̃, Z ∈ m,

[Z,W ] = R̃ZW + SZW − SW Z, Z, W ∈ m ,

(1.2)

and we say that (g̃, h̃) is the reductive pair associated to the homogeneous pseudo-
Riemannian structure S.

Tricerri and Vanhecke [7] have classified the homogeneous Riemannian structures
into eight classes, which are defined by the invariant subspaces of certain space S1 ⊕
S2 ⊕ S3. In [4] a similar classification for the pseudo-Riemannian case is given. For
more details see below.

On the other hand, Levichev consider in [5] the usual Gödel metric

g = −e−2x4

2
dx2

1 − 2 e−2x4 dx1 dx2 − dx2
2 + dx2

3 + dx2
4,

as a left-invariant metric on the Gödel group G, and defines several families of metrics
on G, thus obtaining several types of homogeneous Lorentz spaces. The ones of type
2a are connected, simply connected, and geodesically complete. In the present note
we determine the homogeneous Lorentzian structures on these homogeneous space-
times and their type in Tricerri-Vanhecke’s classification, and the associated reductive
decompositions.

2 Homogeneous Lorentzian structures

The Gödel group is the simply connected Lie group G whose Lie algebra g has four
generators e1, e2, e3, e4, with the only nonvanishing bracket

[e4, e1] = e1.

The group G admits a realization as R4 = {(x1, x2, x3, x4)} with multiplication z =
x · y obtained from the matrix expression

x ≡




ex4 0 0 x1

0 1 0 x2

0 0 1 x3

0 0 0 1


 .
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The commutation relations of its Lie algebra in the system of coordinates chosen on
G coincide with the brackets above.

Consider the subspaces L1, L2, L3 of g generated respectively by e1; e2, e3; and
e1, e2, e3. Then the homogeneous Lorentz group of type 2a is defined by the conditions:
L2, L3 are timelike, and L1 is spacelike (for more details see [5]). Then, for each couple
of real numbers p, q with 0 ≤ p < 1, q > 0, the left-invariant Lorentzian metric gp,q

on G obtained by left translations from the scalar product at the origin with matrix
given, with respect to the above basis of g, by

〈 , 〉p,q =




1 p 0 0
p 1 0 0
0 0 −1 0
0 0 0 q


 ,(2.1)

is given by

gp,q =




e−2x4 e−2x4p 0 0

e−2x4p 1 0 0

0 0 −1 0

0 0 0 q




.

As causal spacetimes, the Lorentz Lie groups corresponding to the Gödel group
with the metric of type 2a are homogeneously globally hyperbolic, which is a strong
causality condition. We recall that: A causal curve in a Lorentz manifold M is a
curve whose velocity vectors are all nonspacelike; if M is globally hyperbolic then
any pair of points that can be joined by a causal curve can be joined by a (longest)
causal geodesic; a solvable Lorentz Lie group G is said to be homogeneously globally
hyperbolic if it is globally hyperbolic and has a Cauchy surface S passing through
the identity element e ∈ G and containing the center of G (for more details see
[5, 6]); a Cauchy surface of a spacetime is a subset that is met exactly once by every
inextendible timelike curve in the spacetime.

On account of Koszul’s formula for the Levi-Civita connection for a left-invariant
metric g on a Lie group,

2g(∇eiej , ek) = g([ei, ej ], ek)− g([ej , ek], ei) + g([ek, ei], ej),

we obtain that the non-null covariant derivatives between generators are

∇e1e1 =
1
q
e4, ∇e1e2 = ∇e2e1 =

p

2q
e4,

∇e1e4 =
p2 − 2

2(1− p2)
e1 +

p

2(1− p2)
e2,

∇e2e4 = ∇e4e2 = − p

2(1− p2)
e1 +

p2

2(1− p2)
e2,

∇e4e1 = − p2

2(1− p2)
e1 +

p

2(1− p2)
e2.
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So, the nonvanishing components of the curvature tensor, with the convention
R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, are, putting Reiej

ek for R(ei, ej)ek,

Re1e2e1 =
p3

4q(1− p2)
e1 − p2

4q(1− p2)
e2,

Re1e2e2 =
p2

4q(1− p2)
e1 − p3

4q(1− p2)
e2,

Re1e4e1 =
p(2− p)

4q(1− p2)
e4, Re1e4e2 = − p3

4q(1− p2)
e4,

Re1e4e4 =
p2 − 4

4(1− p2)
e1 +

p

1− p2
e2, Re2e4e1 = − p3

4q(1− p2)
e4,

Re2e4e2 = − p2

4q(1− p2)
e4, Re2e4e4 =

p2

4(1− p2)
e2,

and the nonvanishing components of the Riemann-Christoffel curvature tensor, with
the convention R(X, Y, Z, W ) = g(R(Z, W )Y,X), putting Reiejekel

for g(R(ek, el)ej , ei),
are

Re1e2e1e2 =
p2

4q
, Re1e4e1e4 =

5p2 − 4
4(1− p2)

,

Re1e4e2e4 =
p3

4(1− p2)
, Re2e4e2e4 =

p2

4(1− p2)
.

We shall now determine the homogeneous Lorentzian structures on these spaces. For
this, we must solve the Ambrose-Singer equations 1.1. The first Ambrose-Singer equa-
tion amounts to SXY Z = −SXZY for any homogeneous pseudo-Riemannian structure
S. One can write the second Ambrose-Singer equation ∇̃R = 0 as

R∇U XY ZW + RX∇U Y ZW + RXY∇U ZW + RXY Z∇U W

= SUXR(Z,W )Y − SUY R(Z,W )X + SUZR(X,Y )W − SUWR(X,Y )Z .

Solving, we obtain that the nonvanishing components of S are

Se1e2e4 = 1− p2, Se4e1e2 =
p

2
,

except for Seie1e4 , i = 1, . . . , 4, for which we must use the third Ambrose-Singer
equation. In our case, since we are considering left-invariant differential forms, the
forms involved in this equation are linear combinations with constant coefficients of
the basis {θ1, θ2, θ3, θ4} of left-invariant forms on G dual to the basis {e1, e2, e3, e4}.
Moreover, since for a constant function f , one has ∇Xf = 0 and ∇̃Xf = 0, we also
have SXf = 0. Thus, the third Ambrose-Singer equation S̃ = 0 can be written as

S∇XY ZW + SY∇XZW + SY Z∇XW = SSXY ZW + SY SXZW + SY ZSXW ,

for X,Y, Z, W ∈ g.
Solving, we obtain the nonzero components

Se1e1e4 = 1, Se2e1e4 =
p

2
.
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Consequently, the non-null components Sei
ej are

Se1e1 =
1
q
e4, Se1e2 =

1− p2

q
e4,

Se1e4 =
−p3 + p− 1

1− p2
e1 +

p2 + p− 1
1− p2

e2, Se2e1 =
p

2q
e4,

Se4e1 = − p2

2(1− p2)
e1 +

p

2(1− p2)
e2, Se4e2 = − p

2(1− p2)
e1 +

p2

2(1− p2)
e2,

Then, with the convention v∧w = v⊗w−w⊗v for the exterior product, we have
proved the following

Theorem 1 The homogeneous Lorentzian structures on the Gödel-Levichev space
(G, gp,q) of type 2a are given by

θ1 ⊗ θ1 ∧ θ4 + (1− p2) θ1 ⊗ θ2 ∧ θ4 +
p

2
(θ2 ⊗ θ1 ∧ θ4 + θ4 ⊗ θ1 ∧ θ2).

We recall some definitions and a result from Tricerri and Vanhecke [7] (see also
[4]). Let E be a real vector space of dimension n endowed with an inner product 〈 , 〉 of
signature (k, n−k). The space (E, 〈 , 〉) will be the model for each tangent space TxM ,
x ∈ M , of a reductive homogeneous pseudo-Riemannian manifold of signature (k, n−
k). Consider the vector space S(E) of tensors of type (0, 3) on (E, 〈 , 〉) satisfying the
same symmetries as those of a homogeneous pseudo-Riemannian structure S, that is,
S(E) = {S ∈ ⊗3E∗ : SXY Z = −SXZY , X, Y, Z ∈ E}, where SXY Z = 〈SXY,Z〉. Let

c12:S(E) → V ∗ be the map defined by c12(S)(Z) =
n∑

i=1

εiSeieiZ , Z ∈ E, where {ei}

is an orthonormal basis of E, 〈ei, ei〉 = εi = ±1. Then we have that if dim E ≥ 3,
then S(E) decomposes into the orthogonal direct sum of subspaces which are invariant
and irreducible under the action of the pseudo-orthogonal group O(k, n− k) : S(E) =
S1(E)⊕ S2(E)⊕ S3(E), where

S1(E) = {S ∈ S(E) : SXY Z = 〈X,Y 〉ω(Z)− 〈X, Z〉ω(Y ), ω ∈ E∗ },
S2(E) = {S ∈ S(E) : S

XYZ
SXY Z = 0, c12(S) = 0 },

S3(E) = {S ∈ S(E) : SXY Z + SY XZ = 0 }.
S1(E)⊕ S2(E) = {S ∈ S(E) : S

XYZ
SXY Z = 0 },

S2(E)⊕ S3(E) = {S ∈ S(E) : c12(S) = 0 },
S1(E)⊕ S3(E) = {S ∈ S(E) : SXY Z + SY XZ = 2〈X, Y 〉ω(Z)

− 〈X, Z〉ω(Y )− 〈Y, Z〉ω(X), ω ∈ E∗ }.
In the present case we deduce

Corollary 1 The homogeneous Lorentzian structures on (G, gp,q) belong to

S1 ⊕ S2 ⊕ S3 − {(S1 ⊕ S2) ∪ (S1 ⊕ S3) ∪ (S2 ⊕ S3)}.
In particular none of the associated reductive homogeneous spaces is either Lorentzian
symmetric, or naturally reductive or cotorsionless.
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Proof. Take the orthonormal basis

ẽ1 =
1√

2(1 + p)
(e1 + e2), ẽ2 =

1√
2(1− p)

(e1 − e2), ẽ3 = e3, ẽ1 =
1√
q
e4.

As a calculation with respect to this basis shows, the condition c12(S) = 0 is not
satisfied. On the other hand, since for instance Se1e2e4 + Se2e4e1 + Se4e1e2 6= 0, no
structure belong to S1 ⊕ S2. Moreover, since for instance Se1e2e4 6= −Se2e1e4 , no
structure belong to S3; not even to S2 ⊕ S3, as the sum Se1e2e4 + Se2e1e4 shows. The
Lorentzian symmetric spaces correspond to the class {0}, and in [4] it has been proved
the equivalence of the third class with the naturally reductive spaces, and of the class
S1 ⊕ S2 with the cotorsionless spaces. For more details see [4].

3 Associated reductive decompositions

Consider now the Ambrose-Singer connection ∇̃ = ∇−S. Then, the non-null covariant
derivatives between generators are

∇̃e1e2 =
2p2 + p− 2

2q
, ∇̃e1e4 =

p(2p2 + p− 2)
2(1− p2)

e1 − 2p2 + p− 2
2(1− p2)

e2,

and, as a calculation shows, the only nonvanishing curvature operator is

R̃e1e4 ≡




(2p2 + p− 2)

0 0 0
p

2(1− p2)

0 0 0 − 1
2(1− p2)

0 0 0 0

0
1
2q

0 0




,

According to Ambrose-Singer’s Theorem on holonomy, the algebra of holonomy of a
connection is generated by the curvature operators. In the present case, the holonomy
algebra h̃ has the only generator V = R̃e1e4 . Putting m for g, and taking T = V + e1

we have

Theorem 2 The reductive pairs (g̃, h̃) associated to the reductive decompositions g̃ =
h̃ ⊕m corresponding to the homogeneous Lorentzian structures on (G, gp,q) given in
Theorem 1, are given in terms of the basis {e1, e2, e3, e4, T} by the (nonvanishing) Lie
brackets

[T, e4] = 2e1 − T, [e1, e2] = −2p2 + p− 2
2q

e4,

[e1, e4] = T − 2p3 − 3p2 − 2p + 4
2(1− p2)

e1 +
2p2 + p− 2
2(1− p2)

e2.

Proof. On account of the expressions (1.2), we obtain that
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[V, e2] =
2p2 + p− 2

2q
e4, [V, e4] =

p(2p2 + p− 2)
2(1− p2)

e1 − 2p2 + p− 2
2(1− p2)

e2,

[e1, e2] = −2p2 + p− 2
2q

e4, [e1, e4] = V − 2p3 − p2 − 2p + 2
2(1− p2)

e1 +
2p2 + p− 2
2(1− p2)

e2.

Then, making the change T = V + e1 we conclude.
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