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Abstract

We provide invariant formulas for the Euler-Lagrange equation associated
to sub-Riemannian geodesics. They use the concept of curvature and horizontal
connection introduced and studied in the paper.
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1 Introduction

The geodesic is a concept which comes from Riemannian geometry. It is the curve
1

with the minimum energy E = |c(s)| ds between two given points. At least

two kind of constraints can be conS|dered to act on the curve: holonomic and non-
holonomic. A holonomic constraint is when the energy is perturbed by a potential

1
1. . - .
U (c) and the energy becomes E = / (E\c|2 + U (c)) ds. The equation geodesic in this
0

case is V:¢ = —U’(c).
The other kind of constraints are the nonholonomic ones (see [1], [8], [9]). These
are constraints on the velocity of the curve. The energy to be minimized is E =

1
1. . . . .
= / (§|c|2+ 1 (c)) ds. The paper deals with a presentation of the variational calculus
0

for the case when ! is a 1-form of type (1:1) such that (1:3) does not vanish. It is
said that these kind of sub-Riemannian manifolds are of step 2. They are also called
Heisenberg manifolds (see [2]). In general a sub-Riemannian manifold is said to be
of step k if k — 1 iterations need for the brackets of X; in order to span the whole
tangent space.

In section 5 we shall deal with examples of sub-Riemannian manifolds of superior
type.

The idea of the paper is to consider the solutions of the Euler-Lagrange system
as geodesics in a certain connection with certain perturbation given by the curvature
tensor defined in section 2. Section 3 shows that the classical Hamilton-Jacobi equation
still holds if the gradient is modified into a horizontal gradient. The relationship
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between the symplectic and sub-Riemannian structures is pointed out in section 4.
Section 5 provides a few examples of sub-Riemannian manifolds and their geodesic
equations. Some of these equations were solved in [3,4,6].

Consider a nonintegrable 2-dimensional distribution x — M, in R* = R{,, , /xR,
defined as H = ker I, where ! is a 1-form on R3. The distribution # is called the
horizontal distribution. We shall assume the 1-form ! = 1ldx; + 12dxs + 13dt has

the coe [cight 13 # 0 so that dividing by it we may assume

(1.1 I = _A;(X)dx; + Ax(X)dx, + dt
with A; = —11 and A, = 12, One may verify that
X)) =1(Xy)=0
where
1.2) X1 =0z, + A1(X)0; ; Xo = 0z, — A2(X)0

The vector fields X;, X5 span the horizontal distribution H and they are called
horizontal vector fields.
Suppose the 2-form

e (0A  0A
(1.3) Q:=d1 = (M+M)dx1/\dx2
does not vanish. Then
_ _ (0AL | 0A;
(1.4) [X1; Xa] = *(@7)(1 + @7)(1)@% eH

and then H is not integrable, by Frobenius theorem.

Consider the positive definite metric g : H x H — F in which the vector fields
{X1; Xz} are orthonormal. The metric g is called the sub-Riemannian metric defined
by the vector fields X; and Xo.

A curve s — c(s) = (X1(8); X2(8): t(s)) is called horizontal curve if ¢(S) € H(s), for
every s. As

¢(S) = X1(5)@s, + X2(5)@., + ()0
= X1(8)X1 + X2(8) X2 + 1(¢(s))0;

then c(s) is a horizontal curve i [
(1.5) 1) =t— A (C)% + Ax(C)%2 =0

The length of ¢ with respect to the metric g is

1 1
(1.6) |(C)=/0 V9(E(s); ¢(s) dS=/O VX1(8)? + Xz(s)* ds

Given two points O and P there is at lest a horizontal curve connecting them (see
[5]). The Carnot-Carathéodory distance is defined as

.7 dc(O; P) = inf{l(c); c(0) = O; c(1) = P;c horizontal}
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The horizontal curve with minimum length are called sub-Riemannian geodesics and
can be described using the Hamiltonian formalism as in the following (see [7]).
Consider the sub-elliptic operator

(1.8) Ay = %(X%’ + X%’)

and define the Hamiltonian as the principal symbol of Ax

(1.9) H(xt» )= %(»1 + A (%) )2 + %(»2 — As(X) )2

The projections on the (X;t)-space of the solution of the Hamilton’s system
(1.10) X=H¢; t=Hy

(1.11) »=-H,; =-H,

with the boundary conditions

(1.12) xX0)=t(0)=0; x(1)=x;t(1)=t

are called sub-Riemannian geodesics between the origin and (X;t).

From t = Hy we get .
(113) t= A1X1 — A2X2

i.e. the sub-Riemannian geodesics are horizontal curves.

2 Connection and curvature

The horizontal connection

The horizontal connection is defined as

(2.14) D:HxH—-H
(2.15) D(V;W) =DyW = Y Vg(W; X;)X;
k=1,2

Proposition 2.1 D is a linear metric connection.
Proof. One needs to verify the Leibnitz rule
(2.16) Dy (fW) =V ()W + f Dy W

and the condition
(2.17) Ug(V;W) =g(DyV;W) +g(V; DyW)
For the first part,

Dy (FW) = >V g(FW; X;) X, =

=D VE)GW; X)X +F Y VgW; X)X =V (F)W + FDyW
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To show the second part,
g(DyV; W) +g(V;DyW) =
=g(>U g(V;Xz‘)Xi;W) + g(V; > Ug(w, Xi)xi) =
=g(ZUEHXEW) +g(ViUuWHX;) =
= UMW+ S UWHVi=U (Zviwi) = Ug(V:W)
where V.= ViX; and W = Y WiX;.

Let Z = Z'X; + Z2X, be a horizontal vector field. The horizontal divergence is
defined as
(2.18) divyZ = trace,(V — Dy Z) =
X k
> 9XkiDx,2) = Y (Xk@)X;) = D0 Xe(ZH) = D7 X 9(Z5 X0):
k k k k

Define also the X-gradient of a function f as

(2.19) Vxf = Xu(F) Xs:
k

Then 1

(220) EdiVH Vx = Axf

The curvature tensor. Let K : H — H be given by

(2.21) KU) = QU; X)Xy
k

K is F(R®)-linear and can be considered as a (1,1)-tensor of curvature.
The following result shows that X is skew-selfadjoint.

Proposition 2.2 For every U;W € H
(2.22) g(IC(U);W) + g(u; IC(W)) =0
Proof. We show first that
(223) g(KKU)W) = au;w);
and using the skew-symmetry of Q we get (2.22).

Indeed,

g(/c(u);w) = g(ZQ(U;Xk)Xk;W) -
k

= gk W)Q(U; Xi) = Q(U; W):
k
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Corollary 2.3 For any U € H,
(2.24) g(lC(U); u) =0:

The last result suggests that in the case of a 2-dimensional distribution, the curvature
KC is proportional with a rotation of angle ..=2.

Define the rotation 7 : H — H as

(2.25) TJX) =Xz TX) ==X

Then
K(X1) = Q(Xq; X2)Xe = Q(Xy; X2) T (X1)

K(X2) = Q(X2; X1)X;1 = Q(X1; X2) T (X2)
We arrived at the following formula for the curvature
(2.26) KU) = Q(X1; X2)J(U); YU e H

0A, , 07,
@x; @x;

If V is not a horizontal vector field then the curvature can still be defined using

If the matrix Q;; is non-degenerate i.e. ( ) Z 0, then £(U) Z 0 for U # 0.

(2.27) K(V) =D Q(V; X)Xy,
k

This is because the right hand side depends only on the horizontal part of V. Indeed,
consider the vector field

vV =V1ig,, +V?2%,, +V3e

A computation shows
V =VIX + VX, +1(V)0,
N—————
=V

Then
QV; Xi) = Q(Ve,; Xi) + 1(V) Q@:; X&)
——

=0
Hence (V) = K(V).

3  The Euler-Lagrange equation

The Legendre transform of the Hamiltonian (1.9) leads to the following Lagrangian

(3.28) LGt D = 206 +50) + (E— A1k + As(x)%o);

where is constant because
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__@H _ dH _
et dt
We deal now with a minimization problem with constraints given by

(3.29)

(3:30) L@e) = 3060+ 1
A computation shows the Euler-Lagrange system of equations
d @L _ @L — (v

(3.31) &sec @ °F (X1; X2, 1)
becomes 0A 0A

oo WAL BA21
(3.32) %, = (@X2 + @XI)X2

G 0A;  @A2\.
(3.33) Xy = — (@7)(2 + @7)(1))(1

If the velocity of the geodesic is given by ¢(s) = X1(S)X; + X2(s)Xs, the system
(3:32) — (3:33) can be written as

BA: , A

(3.34) X + Ko Xo = (@ Bx

)(X2X1 — X1 X3)

The right hand side has the meaning of curvature. Indeed, using (2.25) and (2.26) the
right hand side of (3.34) yields

(3.35) — Q(Xy; X2) J(€) = — K(¢):

For the left hand side of (3.34) consider the acceleration defined by the horizontal
connection along ¢(s)

k

Hence the Euler-Lagrange system of equations can be written globally as
(3.36) D:.t = — K(¢)

In sub-Riemannian geometry the acceleration of the geodesics is equal to the curva-
ture. This keeps the geodesics into the horizontal distribution. Like in Riemannian
geometry, we have

Corollary 3.1 The length of velocity € in the sub-Riemannian metric g is constant.
Proof. Since D is a metric connection,

€g(¢;¢) = 29(Dec; €) = —2 g(K(€);€) = 0;
by Corollary 2.3.
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The Hamilton-Jacobi equation.

Lemma 3.2 Let ¢(S) = (X1(8); X2(8); t(S)) be a horizontal curve and a smooth func-
tion € F(R®). Then

df f
(3.37) P % +9(¢; VxT):
Proof.
o of of of .
& *+@71X1+@ e+ gt =
8 of . of .
= 8? (le — Al(X)@>X1 (ng + AQ(X) )X2 @t =
= LoDk + DR+ SO = @w(c VA f):

@s

In the following we need to find the minimum of

1= [ 360 +3a@Pds = [ e ks
0 2 0 2 g
over the horizontal curves c(s) with fixed ends.

Let S(x;t) € F be the solution for the Hamilton-Jacobi equation

(3.38) %S+f|v S2=0; S(0O)=0:
¢

Consider the integral
1
1,
(3.39) J= /O §|c(s)|§ ds —ds

Using Lemma 3.2

J = /(|c(s)\2———g(vxs c))ds—

T . es . 1.
- 2 . 2
/O <2|c VxS|? (@ \VXS| )) ds—/0 2|c VxS|7ds

The integrals 1 and J reach the minimum for the same horizontal curve and this
occurs for a curve with the velocity

(3.40)

(3.41) ¢=VxS

Theorem 3.3 A horizontal curve ¢(S) is energy-minimizing iff (3:41) holds.
Using (2.20) we get

Corollary 3.4 The horizontal divergence of the geodesic flow is

(3.42) divy ¢ = 2AxS
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The Hamiltonian. The Hamiltonian H : T*M — R is defined as

HOGD) = 5 3 p0)?
k

If p=df,
H(x; df) = Ede(x ) = }ZX (F)? =3|v 2
’ 2 k 2 k 2 X .
For f =S,
ey — 1 o _1.0_1
H(x;dS) = 2|VXS| = 2|c| =5
We also have

H(x; 1) = %Z 1(X,)?=0:

The eiconal equation. Consider the energy associated to a function f € F(R?)
defined as

1 1
(3.43) H(VF) = HOGdf) = 2| Va2 = 2 (06 + (1)?)
The front wave is given by the level curves of the energy and it is described by the
eiconal equation
(3.44) H(VT) =k; positive constant

with the initial condition

(3.45) f(0) =0

If k = 0, then f is the constant function equal to zero. Indeed, suppose that f is
not constant. There is a point p such that (gradf), # 0. Then =. = f~!(c) will
be a surface through p, where ¢ = f(p). As X;(f) = 0, then X; are tangent to %,
on a neighborhood of p and hence Z. becomes integral surface for the horizontal
distribution H around p, which is nonintegrable, contradiction.

If k # 0, consider the geodesics starting at origin ¢(0) = O, parametrized such
that |¢(s)|2 = 2k. If S is the action along c(s), by (3.41) we have

1 1,
H(VS) = Z|VxS|2 = Z[¢[2 =k
2 2
Jacobi vector fields and curvature. Let c(s) be a subRiemannian geodesic
which starts at origin and let P be the first conjugate point with 0 along c(s). Denote

by V (s) a Jacobi vector field along c(s) and by S(s) the action between 0 and c(s).

Proposition 3.5
1
(3.46) /0 KV (s))(S(s))ds =0;

where P = ¢(1) and K is the curvature.
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Proof. Let ¢ = F:(c) be a smooth variation of ¢, such that for every 2, ¢ is a
sub-Riemannian geodesic. A%: is a horizontal curve, then

Z, Z Z Z
0= I (c(s)) ds= I = I = F
0 Cc: F:(c) c
Then Z
E FR1 =0
dz c 2 - -
or, Z
Lv! =0;

whereV is the Jacobi vector "eld associat to the variation (c:).. As V is zero at the
end points of c,
z z

div!)=  iv! = L(V)0)i ! (V)Q)=0:

c @c

Cartan decomposition yields
Ly! =d(iy!)+ iy(d);

and then Z
iv-=0;
Cc
which can also be written as
z 1
-( V(s);¢(s)) ds=0:
0

P :
Usingc= dX; andd(s)= X;(S












