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Abstract

We provide invariant formulas for the Euler-Lagrange equation associated
to sub-Riemannian geodesics. They use the concept of curvature and horizontal
connection introduced and studied in the paper.
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1 Introduction
The geodesic is a concept which comes from Riemannian geometry. It is the curve

with the minimum energy E =
∫ 1

0

1
2
|ċ(s)|2 ds between two given points. At least

two kind of constraints can be considered to act on the curve: holonomic and non-
holonomic. A holonomic constraint is when the energy is perturbed by a potential

U(c) and the energy becomes E =
∫ 1

0

(
1
2
|ċ|2 + U(c)) ds. The equation geodesic in this

case is ∇ċċ = −U ′(c).
The other kind of constraints are the nonholonomic ones (see [1], [8], [9]). These

are constraints on the velocity of the curve. The energy to be minimized is E =

=
∫ 1

0

(1
2
|ċ|2+!(ċ)

)
ds. The paper deals with a presentation of the variational calculus

for the case when ! is a 1-form of type (1:1) such that (1:3) does not vanish. It is
said that these kind of sub-Riemannian manifolds are of step 2. They are also called
Heisenberg manifolds (see [2]). In general a sub-Riemannian manifold is said to be
of step k if k − 1 iterations need for the brackets of Xj in order to span the whole
tangent space.

In section 5 we shall deal with examples of sub-Riemannian manifolds of superior
type.

The idea of the paper is to consider the solutions of the Euler-Lagrange system
as geodesics in a certain connection with certain perturbation given by the curvature
tensor defined in section 2. Section 3 shows that the classical Hamilton-Jacobi equation
still holds if the gradient is modified into a horizontal gradient. The relationship
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between the symplectic and sub-Riemannian structures is pointed out in section 4.
Section 5 provides a few examples of sub-Riemannian manifolds and their geodesic
equations. Some of these equations were solved in [3,4,6].

Consider a nonintegrable 2-dimensional distribution x → Hx in R3 = R2
(x1,x2)×Rt

defined as H = ker !, where ! is a 1-form on R3. The distribution H is called the
horizontal distribution. We shall assume the 1-form ! = !1dx1 + !2dx3 + !3dt has
the coefficient !3 6= 0 so that dividing by it we may assume

! = −A1(x)dx1 + A2(x)dx2 + dt(1.1)

with A1 = −!1, and A2 = !2. One may verify that

!(X1) = !(X1) = 0

where
X1 = @x1 + A1(x)@t ; X2 = @x2 −A2(x)@t(1.2)

The vector fields X1, X2 span the horizontal distribution H and they are called
horizontal vector fields.
Suppose the 2-form

Ω := d! =
(@A1

@x1
+

@A2

@x1

)
dx1 ∧ dx2(1.3)

does not vanish. Then

[X1; X2] = −
(@A1

@x1
+

@A2

@x1

)
@t =∈ H(1.4)

and then H is not integrable, by Frobenius theorem.
Consider the positive definite metric g : H × H → F in which the vector fields
{X1; X2} are orthonormal. The metric g is called the sub-Riemannian metric defined
by the vector fields X1 and X2.
A curve s → c(s) = (x1(s); x2(s); t(s)) is called horizontal curve if ċ(s) ∈ Hc(s), for
every s. As

ċ(s) = ẋ1(s)@x1 + ẋ2(s)@x2 + ṫ(s)@t

= ẋ1(s)X1 + ẋ2(s)X2 + !(ċ(s))@t

then c(s) is a horizontal curve iff

!(ċ) = ṫ−A1(c)ẋ1 + A2(c)ẋ2 = 0(1.5)

The length of c with respect to the metric g is

l(c) =
∫ 1

0

√
g(ċ(s); ċ(s) ds =

∫ 1

0

√
ẋ1(s)2 + ẋ2(s)2 ds(1.6)

Given two points O and P there is at lest a horizontal curve connecting them (see
[5]). The Carnot-Carathéodory distance is defined as

dC(O; P ) = inf{l(c); c(0) = O; c(1) = P; c horizontal}(1.7)
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The horizontal curve with minimum length are called sub-Riemannian geodesics and
can be described using the Hamiltonian formalism as in the following (see [7]).
Consider the sub-elliptic operator

∆X =
1
2

(
X2

1 + X2
1

)
(1.8)

and define the Hamiltonian as the principal symbol of ∆X

H(x; t; »; µ) =
1
2

(
»1 + A1(x)µ

)2

+
1
2

(
»2 −A2(x)µ

)2

(1.9)

The projections on the (x; t)-space of the solution of the Hamilton’s system

ẋ = Hξ ; ṫ = Hθ(1.10)

»̇ = −Hx ; µ̇ = −Ht(1.11)

with the boundary conditions

x(0) = t(0) = 0 ; x(1) = x; t(1) = t(1.12)

are called sub-Riemannian geodesics between the origin and (x; t).
From ṫ = Hθ we get

ṫ = A1ẋ1 −A2ẋ2(1.13)

i.e. the sub-Riemannian geodesics are horizontal curves.

2 Connection and curvature
The horizontal connection

The horizontal connection is defined as

D : H×H → H(2.14)

D(V; W ) = DV W =
∑

k=1,2

V g(W; Xk)Xk(2.15)

Proposition 2.1 D is a linear metric connection.

Proof. One needs to verify the Leibnitz rule

DV (fW ) = V (f)W + f DV W(2.16)

and the condition
Ug(V; W ) = g(DUV; W ) + g(V; DUW )(2.17)

For the first part,
DV (fW ) =

∑
V g(fW; Xk) Xk =

=
∑

V (f) g(W; Xk)Xk + f
∑

V g(W; Xk)Xk = V (f)W + fDV W
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To show the second part,

g(DUV; W ) + g(V; DUW ) =
= g

(∑
U g(V; Xi)Xi; W

)
+ g

(
V;

∑
U g(W; Xi)Xi

)
=

= g
(∑

U(V i)Xi; W
)

+ g
(

V;
∑

U(W i)Xi

)
=

=
∑

U(V i) W i +
∑

U(W i) V i = U
( ∑

V iW i
)

= U g(V; W )

where V =
∑

V iXi and W =
∑

W iXi.

Let Z = Z1X1 + Z2X2 be a horizontal vector field. The horizontal divergence is
defined as

divHZ = traceg(V → DV Z) =(2.18)
∑

k

g(Xk; DXk
Z) =

∑

k

(
Xk(Zj)Xj

)k

=
∑

k

Xk(Zk) =
∑

k

Xk g(Z; Xk):

Define also the X-gradient of a function f as

∇Xf =
∑

k

Xk(f) Xk:(2.19)

Then
1
2

divH∇X = ∆Xf(2.20)

The curvature tensor. Let K : H → H be given by

K(U) =
∑

k

Ω(U; Xk)Xk:(2.21)

K is F(R3)-linear and can be considered as a (1,1)-tensor of curvature.
The following result shows that K is skew-selfadjoint.

Proposition 2.2 For every U; W ∈ H

g
(
K(U); W

)
+ g

(
U;K(W )

)
= 0:(2.22)

Proof. We show first that

g
(
K(U); W

)
= Ω(U; W );(2.23)

and using the skew-symmetry of Ω we get (2.22).

Indeed,

g
(
K(U); W

)
= g

( ∑

k

Ω(U; Xk)Xk; W
)

=

=
∑

k

g(Xk; W )Ω(U; Xk) = Ω(U; W ):
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Corollary 2.3 For any U ∈ H,

g
(
K(U); U

)
= 0:(2.24)

The last result suggests that in the case of a 2-dimensional distribution, the curvature
K is proportional with a rotation of angle …=2.
Define the rotation J : H → H as

J (X1) = X2 ; J (X2) = −X1(2.25)

Then
K(X1) = Ω(X1; X2)X2 = Ω(X1; X2)J (X1)

K(X2) = Ω(X2; X1)X1 = Ω(X1; X2)J (X2)

We arrived at the following formula for the curvature

K(U) = Ω(X1; X2)J (U); ∀U ∈ H(2.26)

If the matrix Ωij is non-degenerate i.e.
(@A1

@x1
+

@A2

@x1

)
6= 0, then K(U) 6= 0 for U 6= 0.

If V is not a horizontal vector field then the curvature can still be defined using

K(V ) =
∑

k

Ω(V; Xk)Xk(2.27)

This is because the right hand side depends only on the horizontal part of V . Indeed,
consider the vector field

V = V 1@x1 + V 2@x2 + V 3@t

A computation shows
V = V 1X1 + V 2X2︸ ︷︷ ︸

=VH

+!(V )@t

Then
Ω(V; Xk) = Ω(VH ; Xk) + !(V ) Ω(@t; Xk)︸ ︷︷ ︸

=0

Hence K(V ) = K(VH).

3 The Euler-Lagrange equation
The Legendre transform of the Hamiltonian (1.9) leads to the following Lagrangian

L(x; t; ẋ; ṫ) =
1
2

(ẋ2
1 + ẋ2

2) + µ(ṫ−A1(x)ẋ1 + A2(x)ẋ2);(3.28)

where µ is constant because
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µ̇ = −@H
@t

= −dH
dt

= 0:(3.29)

We deal now with a minimization problem with constraints given by

L(c; ċ) =
1
2

g(ċ; ċ) + µ !(ċ)(3.30)

A computation shows the Euler-Lagrange system of equations

d
ds

@L
@ċ

=
@L
@c

; c = (x1; x2; t)(3.31)

becomes
ẍ1 = µ

(@A1

@x2
+

@A2

@x1

)
ẋ2(3.32)

ẍ2 = −µ
(@A1

@x2
+

@A2

@x1

)
ẋ1(3.33)

If the velocity of the geodesic is given by ċ(s) = ẋ1(s)X1 + ẋ2(s)X2, the system
(3:32)− (3:33) can be written as

ẍ1X1 + ẍ2X2 = µ
(@A1

@x2
+

@A2

@x1

)
(ẋ2X1 − ẋ1X2)(3.34)

The right hand side has the meaning of curvature. Indeed, using (2.25) and (2.26) the
right hand side of (3.34) yields

−µ Ω(X1; X2)J (ċ) = −µK(ċ):(3.35)

For the left hand side of (3.34) consider the acceleration defined by the horizontal
connection along ċ(s)

Dċċ =
∑

k

ċ g(ċ; Xk)Xk = ċ(ẋ1)X1 + ċ(ẋ2)X2 = ẍ1X1 + ẍ2X2:

Hence the Euler-Lagrange system of equations can be written globally as

Dċċ = −µK(ċ)(3.36)

In sub-Riemannian geometry the acceleration of the geodesics is equal to the curva-
ture. This keeps the geodesics into the horizontal distribution. Like in Riemannian
geometry, we have

Corollary 3.1 The length of velocity ċ in the sub-Riemannian metric g is constant.

Proof. Since D is a metric connection,

ċ g(ċ; ċ) = 2g(Dċċ; ċ) = −2µg(K(ċ); ċ) = 0;

by Corollary 2.3.
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The Hamilton-Jacobi equation.

Lemma 3.2 Let c(s) = (x1(s); x2(s); t(s)) be a horizontal curve and a smooth func-
tion f ∈ F(R3). Then

df
ds

=
@f
@s

+ g(ċ;∇Xf):(3.37)

Proof.

df
ds

=
@f
@s

+
@f
@x1

ẋ1 +
@f
@x2

ẋ2 +
@f
@t

ṫ =

=
@f
@s

+
(

X1f −A1(x)
@f
@t

)
ẋ1 +

(
X2f + A2(x)

@f
@t

)
ẋ2 +

@f
@t

ṫ =

=
@f
@s

+ (X1f) ẋ1 + (X2f) ẋ2 +
@f
@t

!(ċ) =
@f
@s

+ g(ċ;∇Xf):

In the following we need to find the minimum of

I =
∫ τ

0

1
2

(ẋ1(s)2 + ẋ2(s)2) ds =
∫ τ

0

1
2
|ċ(s)|2g ds

over the horizontal curves c(s) with fixed ends.

Let S(x; t) ∈ F be the solution for the Hamilton-Jacobi equation

@S
@¿

+
1
2
|∇XS|2 = 0; S(O) = 0:(3.38)

Consider the integral

J =
∫ 1

0

1
2
|ċ(s)|2g ds− dS(3.39)

Using Lemma 3.2

J =
∫ τ

0

(1
2
|ċ(s)|2g −

@S
@s

− g(∇XS; ċ)
)

ds =

=
∫ τ

0

(
1
2
|ċ−∇XS|2g −

(@S
@s

+
1
2
|∇XS|2

))
ds =

∫ τ

0

1
2
|ċ−∇XS|2g ds

(3.40)

The integrals I and J reach the minimum for the same horizontal curve and this
occurs for a curve with the velocity

ċ = ∇XS(3.41)

Theorem 3.3 A horizontal curve c(s) is energy-minimizing iff (3:41) holds.

Using (2.20) we get

Corollary 3.4 The horizontal divergence of the geodesic flow is

divH ċ = 2∆XS(3.42)
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The Hamiltonian. The Hamiltonian H : T ∗M → R is defined as

H(x; p) =
1
2

∑

k

p(Xk)2

If p = df ,

H(x; df) =
1
2

∑
df(Xk)2 =

1
2

∑
Xk(f)2 =

1
2
|∇Xf |2:

For f = S,

H(x; dS) =
1
2
|∇XS|2 =

1
2
|ċ|2 =

1
2

:

We also have
H(x; !) =

1
2

∑
!(Xi)2 = 0:

The eiconal equation. Consider the energy associated to a function f ∈ F(R3)
defined as

H(∇f) = H(x; df) =
1
2
|∇Xf |2 =

1
2

(
(X1f)2 + (X2f)2

)
(3.43)

The front wave is given by the level curves of the energy and it is described by the
eiconal equation

H(∇f) = k; positive constant(3.44)

with the initial condition

f(O) = 0(3.45)

If k = 0, then f is the constant function equal to zero. Indeed, suppose that f is
not constant. There is a point p such that (gradf)p 6= 0. Then Σc = f−1(c) will
be a surface through p, where c = f(p). As Xi(f) = 0, then Xi are tangent to Σc

on a neighborhood of p and hence Σc becomes integral surface for the horizontal
distribution H around p, which is nonintegrable, contradiction.

If k 6= 0, consider the geodesics starting at origin c(0) = O, parametrized such
that |ċ(s)|2g = 2k. If S is the action along c(s), by (3.41) we have

H(∇S) =
1
2
|∇XS|2g =

1
2
|ċ|2g = k:

Jacobi vector fields and curvature. Let c(s) be a subRiemannian geodesic
which starts at origin and let P be the first conjugate point with 0 along c(s). Denote
by V (s) a Jacobi vector field along c(s) and by S(s) the action between 0 and c(s).

Proposition 3.5 ∫ 1

0

K(V (s))(S(s)) ds = 0;(3.46)

where P = c(1) and K is the curvature.
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Proof. Let c² = F² (c) be a smooth variation of c, such that for every ², c² is a
sub-Riemannian geodesic. Asc² is a horizontal curve, then

0 =
Z 1

0
! ( _c² (s)) ds =

Z

c²

! =
Z

F ² (c)
! =

Z

c
F ¤

² !

Then
d
d²

Z

c
F ¤

² ! = 0

or, Z

c
L V ! = 0 ;

where V is the Jacobi vector ¯eld associat to the variation (c² )² . As V is zero at the
end points of c,

Z

c
d(i V ! ) =

Z

@c
i V ! = ! (V )(0) ¡ ! (V )(1) = 0 :

Cartan decomposition yields

L V ! = d(i V ! ) + i V (d! );

and then Z

c
i V ­ = 0 ;

which can also be written as
Z 1

0
­( V (s); _c(s)) ds = 0 :

Using _c =
P

_cj X j and _cj (s) = X j (S








