Homogeneous Geodesics in Five-Dimensional Generalized Symmetric Spaces

G. Calvaruso and R.A. Marinosci
Dedicated to the Memory of Grigorios TSAGAS (1935-2003),
President of Balkan Society of Geometers (1997-2003)

Abstract

O.Kowalski and J.Szenthe [7] proved that every homogeneous Riemannian manifold admits a homogeneous geodesic, that is, a geodesic which is an orbit of a one-parameter group of isometries. Then, several authors investigated the set of all homogeneous geodesics of some homogeneous spaces.

In this paper, we study the set of homogeneous geodesics of five-dimen- sional generalized symmetric spaces and we find several interesting behaviours.

Mathematics Subject Classification: 53C20, 53C22, 53C30.
Key words: homogeneous spaces, homogeneous geodesics

1 Introduction

Let (M, g) be a (connected) homogeneous space, that is, a Riemannian manifold admitting a connected group of isometries G, acting transitively and effectively on M. Then, M can be identified with $(G / H, g)$, where H is the isotropy group at a fixed point o of M. The Lie algebra $\underline{\mathbf{g}}$ of G has a reductive decomposition $\mathbf{g}=\mathbf{m} \oplus \underline{\mathbf{h}}$, where $\mathbf{m} \subset \mathbf{g}$ is a subspace of \mathbf{g} isomorphic to the tangent space $T_{o}(M)$ and $\underline{\mathbf{h}}$ is the Lie algebra of H. In general, such decomposition is not unique. A geodesic $\gamma(t)$ through the origin o of $M=G / H$ is called homogeneous if it is an orbit of a one-parameter subgroup of G, that is

$$
\begin{equation*}
\gamma(t)=\exp (t Z)(o), \quad t \in \mathbb{R} \tag{1.1}
\end{equation*}
$$

where Z is a nonzero vector of \mathbf{g}.
A homogeneous Riemannian manifold is called a g.o. space if all geodesics are homogeneous with respect to the largest connected group of isometries. All naturally reductive spaces are g.o.spaces, but the converse does not hold. In fact, A. Kaplan [3] proved the existence of g.o. spaces which are in no way naturally reductive; the examples of A.Kaplan are generalized Heisenberg groups with two-dimensional center. In [8], O.Kowalski and L.Vanhecke gave a classification of all g.o.spaces (which are in no way naturally reductive) up to dimension six.

[^0]
Abstract

About the existence of homogeneous geodesics in a general homogeneous Riemannian manifold, V.V.Kajzer [2] proved that a Lie group endowed with a leftinvariant metric admits at least one homogeneous geodesic. More recently, O.Kowalski and J.Szenthe [7] proved that any homogeneous Riemannian space $M=G / H$ admits at least one homogeneous geodesic through the origin. They also proved that if G is semi-simple, then M admits $n=\operatorname{dim} M$ mutually orthogonal homogeneous geodesics through the origin.

A natural problem is then to study the set of all homogeneous geodesics of a homogeneous Riemannian manifold. Several authors investigated the sets of homogeneous geodesics on some types of homogeneous spaces (see [6], [9], [10]).

In this paper, we consider five-dimensional generalized symmetric spaces. The study of homogeneous geodesics in these homogeneous spaces is of particular interest, because their Lie groups in general are not semi-simple. For the ones of order 6 (type 9, see [4]), the Lie group is solvable. In section 2 we shall recall some basic facts about homogeneous geodesics in homogeneous Riemannian manifolds. In sections $3,4,5,6,7$ and 8 we study the sets of all homogeneous geodesics of five-dimensional generalized symmetric spaces of type $2,3,4,7,8$ and 9 , respectively, which are all the examples of five-dimensional generalized symmetric spaces which are not g.o. spaces. The most interesting results we found concern homogeneous geodesics of fivedimensional generalized symmetric spaces of type $7 a$ and 9 . Some other cases, in particular types 3 and 8, are interesting because they present quite complicated sets of geodesic vectors.

2 Preliminaries on homogeneous geodesics and generalized symmetric spaces

Let $(M=G / H, g)$ be a homogeneous Riemannian manifold with a fixed origin $o, \underline{\mathbf{g}}$ and $\underline{\mathbf{h}}$ the Lie algebras of G and H respectively and

$$
\begin{equation*}
\underline{\mathbf{g}}=\mathbf{m} \oplus \underline{\mathbf{h}} \tag{2.1}
\end{equation*}
$$

a reductive decomposition. The canonical projection $p: G \rightarrow G / H$ induces an isomorphism between the subspace \mathbf{m} and the tangent space $T_{o}(M)$. Consequently, the scalar product g_{o} on $T_{o}(M)$ induces a scalar product $<,>$ on \mathbf{m} which is $\operatorname{Ad}(H)$ invariant. A non-zero vector $Z \in \mathbf{g} \quad$ is called a geodesic vector if the curve $\exp t X(o)$ is a geodesic. We recall the following characterization of geodesic vectors:
Lemma 2.1 [8] A non-zero vector $X \in \mathbf{g}$ is a geodesic vector if and only if

$$
\begin{equation*}
<[X, Y]_{\mathbf{m}}, X_{\mathbf{m}}>=0 \tag{2.2}
\end{equation*}
$$

for all $Y \in \mathbf{m}$ (the subscript \mathbf{m} denotes the projection into \mathbf{m}).
Therefore, looking for all homogeneous geodesics of a homogeneous Riemannian manifold ($M=G / H, g$), we first calculate the connected component G of the full isometry group $\mathrm{I}(\mathrm{M})$, or at least the corresponding Lie algebra $\underline{\mathbf{g}}$. Then, we find a decomposition of the form (2.1) and look for the geodesic vectors in the form

$$
\begin{equation*}
Z=\sum_{i=1}^{r} x_{i} e_{i}+\sum_{j=1}^{s} a_{j} A_{j} \tag{2.3}
\end{equation*}
$$

where $\left\{e_{i}\right\}_{i=1,2, \ldots, r}$ is a convenient basis of \mathbf{m} and $\left\{A_{j}\right\}_{j=1,2, \ldots, s}$ is a basis of $\underline{\mathbf{h}}$. When we take $Y=e_{i}, i=1,2, \ldots, r$, the condition (2.2) produces a system of r quadratic equations for the variables x_{i} and a_{j}. Then, we see for which values of $x_{1}, x_{2}, \ldots, x_{r}$ and $a_{1}, a_{2}, \ldots, a_{s}$ this system is satisfied. To such solutions, for which $x_{1}, x_{2}, \ldots, x_{r}$ are not all equal to zero, correspond geodesic vectors (see also [6]).

A finite family $\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}\right\}$ of homogeneous geodesics through $o \in M$ is said to be orthogonal (respectively, linearly independent) if the corresponding initial tangent vectors at o are orthogonal (resp., linearly independent). The following result holds:
Proposition 2.2 [6] A finite family $\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}\right\}$ of homogeneous geodesics through $o \in M$ is orthogonal (respectively, linearly independent) if the \mathbf{m}-components of the corresponding geodesic vectors are orthogonal (respectively, linearly independent).

We now recall some basic facts about generalized symmetric spaces. A generalized symmetric space is a connected Riemannian manifold (M, g) admitting a regular s structure, that is, a family $\left\{s_{x}: x \in M\right\}$ of symmetries on M, such that

$$
s_{x} \circ s_{y}=s_{z} \circ s_{x}, \quad z=s_{x}(y)
$$

for every points $x, y, \in M[5]$. As it is well-known, every generalized symmetric space is a homogeneous Riemannian space $G / H[4]$. An s-structure $\left\{s_{x}: x \in M\right\}$ is said to be of order $k \geq 2$ if $\left(s_{x}\right)^{k}=i d$ for all $x \in M$ and $\left(s_{x}\right)^{i} \neq i d$ for $i<k$. A Riemannian manifold (M, g) is said to be k-symmetric if it admits a regular s-structure of order k. Each generalized symmetric space is k-symmetric for some $k[4]$. The order of a generalized symmetric space is the least integer k such that (M, g) is k-symmetric.

Low-dimensional generalized symmetric spaces have been classified [4], [5]. Comparing this classification with the classification of low-dimensional g.o. spaces given in [8], we see that the generalized symmetric spaces which are not g.o. spaces are the ones of type $2,3,4,7,8$ (all of order 4) and 9 (of order 6) in the classification given in [5].

For all these spaces, in [4] it is given a basis of \mathbf{g}, containing a basis $\left\{X_{1}, Y_{1}, X_{2}, Y_{2}, W\right\}$ of \mathbf{m}, with respect to which the Lie bracket [,] of \mathbf{g} and the scalar product $<,>$ of \mathbf{m} are explicitly described.

According to Lemma 2.1, a non-zero vector $X \in \underline{\mathbf{g}}$ is geodesic if and only if

$$
<[X, Y]_{\mathbf{m}}, X_{\mathbf{m}}>=0
$$

for all $Y \in \mathbf{m}$ or, equivalently, if and only if

$$
\left\{\begin{align*}
&<\left[X, X_{1}\right]_{\mathbf{m}}, X_{\mathbf{m}}>=0 \tag{2.4}\\
&<\left[X, X_{2}\right]_{\mathbf{m}}, X_{\mathbf{m}}>=0 \\
&<\left[X, Y_{1}\right]_{\mathbf{m}}, X_{\mathbf{m}}>=0 \\
&<\left[X, Y_{2}\right]_{\mathbf{m}}, X_{\mathbf{m}}>=0 \\
&<[X, W]_{\mathbf{m}}, X_{\mathbf{m}}>=0
\end{align*}\right.
$$

3 Homogeneous geodesics of generalized symmetric spaces of type 2

A five-dimensional generalized symmetric space M of type 2 is $\mathbb{R}^{5}(x, y, z, w, t)$, equipped with the Riemannian metric

$$
\begin{aligned}
g= & e^{-2 \lambda_{1} t} d x^{2}+e^{2 \lambda_{1} t} d y^{2}+e^{-2 \lambda_{2} t} d z^{2}+e^{2 \lambda_{2} t} d w^{2}+d t^{2}+ \\
& 2 \alpha\left[e^{-\left(\lambda_{1}+\lambda_{2}\right) t} d x d z+e^{\left(\lambda_{1}+\lambda_{2}\right) t} d y d w\right]+ \\
& +2 \beta\left[e^{\left(\lambda_{1}-\lambda_{2}\right) t} d y d z-e^{\left(\lambda_{2}-\lambda_{1}\right) t} d x d w\right]
\end{aligned}
$$

where either $\lambda_{1}>\lambda_{2}>0, \alpha^{2}+\beta^{2}<1$, or $\lambda_{1}=\lambda_{2}>0, \alpha=0$ and $0 \leq \beta<1$, or $\lambda_{1}<0, \lambda_{2}=0, \alpha=0$ and $0<\beta<1$. As homogeneous space, $M=G / H$, where G is the group of all matrices of the form

$$
\left(\begin{array}{ccccc}
e^{\lambda_{1} t} & 0 & 0 & 0 & x \\
0 & e^{-\lambda_{1} t} & 0 & 0 & y \\
0 & 0 & e^{\lambda_{2} t} & 0 & z \\
0 & 0 & 0 & e^{-\lambda_{2} t} & w \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

The linear subspace \mathbf{m} of $\underline{\mathbf{g}}$ admits a basis $\left\{X_{1}, Y_{1}, X_{2}, Y_{2}, W\right\}$ such that

$$
\left[X_{j}, W\right]=-\lambda_{j} X_{j}, \quad\left[Y_{j}, W\right]=\lambda_{j} Y_{j}, \quad[\cdot, \cdot]=0 \text { otherwise }
$$

2a): $\lambda_{1}>\lambda_{2}>0$ and $\alpha^{2}+\beta^{2}<1$.
In this case, $\underline{\mathbf{h}}=0[4]$. The Lie bracket [,] and the Riemannian metric $<,>$ are respectively determined by

$[]$,	X_{1}	X_{2}	Y_{1}	Y_{2}	W
X_{1}	0	0	0	0	$-\lambda_{1} X_{1}$
X_{2}	0	0	0	0	$-\lambda_{2} X_{2}$
Y_{1}	0	0	0	0	$\lambda_{1} Y_{1}$
Y_{2}	0	0	0	0	$\lambda_{2} Y_{2}$
W	$\lambda_{1} X_{1}$	$\lambda_{2} X_{2}$	$-\lambda_{1} Y_{1}$	$-\lambda_{2} Y_{2}$	0

and

$$
<,>\quad \begin{array}{lllll}
& X_{1} & X_{2} & Y_{1} & Y_{2}
\end{array} \quad W
$$

X_{1}	1	α	0	$-\beta$	0
X_{2}	α	1	β	0	0
Y_{1}	0	β	1	α	0
Y_{2}	$-\beta$	0	α	1	0
W	0	0	0	0	1

(see [4]). Using (3.1) and (3.2) to compute (2.4), we obtain that $X \in \mathbf{g}=\mathbf{m}$ is geodesic if and only if its components $\left(x_{1}, x_{2}, y_{1}, y_{2}, w\right)$ with respect to $\left\{\bar{X}_{1}, X_{2}, Y_{1}, Y_{2}, W\right\}$ satisfy

$$
\left\{\begin{array}{l}
w\left(x_{1}+\alpha x_{2}-\beta y_{2}\right)=0 \tag{3.3}\\
w\left(\alpha x_{1}+x_{2}+\beta y_{1}\right)=0 \\
w\left(\beta x_{2}+y_{1}+\alpha y_{2}\right)=0 \\
w\left(-\beta x_{1}+\alpha y_{1}+y_{2}\right)=0 \\
-\lambda_{1} x_{1}\left(x_{1}+\alpha x_{2}-\beta y_{2}\right)-\lambda_{2} x_{2}\left(\alpha x_{1}+x_{2}+\beta y_{1}\right)+ \\
+\lambda_{1} y_{1}\left(\beta x_{2}+y_{1}+\alpha y_{2}\right)+\lambda_{2} y_{2}\left(-\beta x_{1}+\alpha y_{1}+y_{2}\right)=0
\end{array}\right.
$$

where we took into account that $\lambda_{1}>\lambda_{2}>0$.
If $w \neq 0,(3.4)$ gives easily $x_{1}=x_{2}=y_{1}=y_{2}=0$. If $w=0$, the solutions of (3.4) are given by $\left(x_{1}, x_{2}, y_{1}, y_{2}, 0\right)$, satisfying

$$
\begin{align*}
& -\lambda_{1} x_{1}\left(x_{1}+\alpha x_{2}-\beta y_{2}\right)-\lambda_{2} x_{2}\left(\alpha x_{1}+x_{2}+\beta y_{1}\right)+ \tag{3.4}\\
& +\lambda_{1} y_{1}\left(\beta x_{2}+y_{1}+\alpha y_{2}\right)+\lambda_{2} y_{2}\left(-\beta x_{1}+\alpha y_{1}+y_{2}\right)=0
\end{align*}
$$

Hence, we proved that X is a geodesic vector of a generalized symmetric space of type $2 a$ if and only if
(i) $X=w W$, or
(ii) $X=x_{1} X_{1}+x_{2} X_{2}+y_{1} Y_{1}+y_{2} Y_{2}$ and (3.4) holds.

Geometrically speaking, geodesic vectors of a generalized symmetric space of type $2 a$ form a straight line (i) and a hypercone (of equation (3.4)) in the orthogonal complement of such line (ii).

Note that W is a geodesic vector of type (i), while $X_{1}+Y_{1}, X_{1}-Y_{1},-(\alpha-\beta) X_{1}+$ $X_{2}-(\alpha+\beta) Y_{1}+Y_{2}$ and $-(\alpha+\beta) X_{1}+X_{2}+(\alpha-\beta) Y_{1}-Y_{2}$ are geodesic vectors of type (ii) and all together they form an orthogonal basis of geodesic vectors.
2b): $\lambda_{1}=\lambda_{2}>0, \alpha=0$ and $\beta>0$.
In this case, $\underline{\mathbf{h}}=\operatorname{so}(2)=\operatorname{span}(A)$, where A is determined by $A X_{1}=X_{2}, A X_{2}=$ $-X_{1}, A Y_{1}=Y_{2}, A Y_{2}=-Y_{1}, A W=0$ (see [4]). Since $[A, X]=A X$ for all $X \in \underline{\mathbf{g}}$, we get

$[]$,	X_{1}	X_{2}	Y_{1}	Y_{2}	W	A
X_{1}	0	0	0	0	$-\lambda_{1} X_{1}$	$-X_{2}$
X_{2}	0	0	0	0	$-\lambda_{2} X_{2}$	X_{1}
Y_{1}	0	0	0	0	$\lambda_{1} Y_{1}$	$-Y_{2}$
Y_{2}	0	0	0	0	$\lambda_{2} Y_{2}$	Y_{1}
W	$\lambda_{1} X_{1}$	$\lambda_{2} X_{2}$	$-\lambda_{1} Y_{1}$	$-\lambda_{2} Y_{2}$	0	0
A	X_{2}	$-X_{1}$	Y_{2}	$-Y_{1}$	0	0

and
$<,>\quad \begin{array}{llllll}X_{1} & X_{2} & Y_{1} & Y_{2} & W\end{array}$

X_{1}	1	0	0	$-\beta$	0
X_{2}	0	1	β	0	0
Y_{1}	0	β	1	0	0
Y_{2}	$-\beta$	0	0	1	0
W	0	0	0	0	1

We computed $<,>$ as in case $2 a$), taking into account $\alpha=0 . X \in \mathbf{g}$ is geodesic if and only if its components $\left(x_{1}, x_{2}, y_{1}, y_{2}, w, a\right)$ with respect to the basis $\left\{X_{1}, Y_{1}, X_{2}, Y_{2}, W, A\right\}$ of \underline{g} satisfy

$$
\left\{\begin{array}{l}
\lambda_{1} w\left(x_{1}-\beta y_{2}\right)+a\left(x_{2}+\beta y_{1}\right)=0 \tag{3.7}\\
\lambda_{2} w\left(x_{2}+\beta y_{1}\right)-a\left(x_{1}-\beta y_{2}\right)=0 \\
-\lambda_{1} w\left(\beta x_{2}+y_{1}\right)+a\left(-\beta x_{1}+y_{2}\right)=0 \\
-\lambda_{2} w\left(-\beta x_{1}+y_{2}\right)-a\left(\beta x_{2}+y_{1}\right)=0 \\
-\lambda_{1} x_{1}\left(x_{1}-\beta y_{2}\right)-\lambda_{2} x_{2}\left(x_{2}+\beta y_{1}\right)+ \\
+\lambda_{1} y_{1}\left(\beta x_{2}+y_{1}\right)+\lambda_{2} y_{2}\left(-\beta x_{1}+y_{2}\right)=0
\end{array}\right.
$$

If $a \neq 0$, then the solutions of (3.7) are given by $x_{1}=x_{2}=y_{1}=y_{2}=0$. For $a=0$, we put $a_{1}=x_{1}-\beta y_{2}, a_{2}=x_{2}+\beta y_{1}, a_{3}=\beta x_{2}+y_{1}$ and $a_{4}=-\beta x_{1}+y_{2}$. The system (3.7) reduces to

$$
\left\{\begin{array}{l}
w a_{i}=0, \quad i=1,2,3,4 \tag{3.8}\\
-\lambda_{1} x_{1} a_{1}-\lambda_{2} a_{2} \lambda_{1} y_{1} a_{3}+\lambda_{2} y_{2} a_{4}=0
\end{array}\right.
$$

If $w \neq 0,(3.8)$ gives $a_{i}=0, i=1, . ., 4$, from which it follows easily $x_{1}=x_{2}=y_{1}=$ $y_{2}=0$. If $w=0$, then (3.8) reduces to the last equation, which gives $x_{1}^{2}+x_{2}^{2}=y_{1}^{2}+y_{2}^{2}$. Hence, X is a geodesic vector of a generalized symmetric space of type $2 b$ if and only if its \mathbf{m}-component is
(i) $\quad X_{\mathbf{m}}=w W$, or
(ii) $X_{\mathbf{m}}=x_{1} X_{1}+x_{2} X_{2}+y_{1} Y_{1}+y_{2} Y_{2}$ and $x_{1}^{2}+x_{2}^{2}=y_{1}^{2}+y_{2}^{2}$.

We can check easily that $\left\{W, X_{1}+Y_{2}, X_{1}-Y_{2}, X_{2}+Y_{1}, X_{2}-Y_{1}\right\}$ is an orthogonal basis of geodesic vectors of \mathbf{m}.
2c): $\lambda_{1}>0, \lambda_{2}=0, \alpha=0$ and $0<\beta<1$.
In this case, $\underline{\mathbf{h}}=\operatorname{so}(2) \bigoplus \operatorname{so}(2)=\operatorname{span}\left(A_{1}, A_{2}\right)$, where $A_{1}=A$ of case $2 b$), while A_{2} is determined by $A_{2} X_{1}=X_{2}, A_{2} X_{2}=-X_{1}, A_{2} Y_{1}=-Y_{2}, A_{2} Y_{2}=Y_{1}, A_{2} W=0$ (see [4]). Similarly to case $2 b$), we get

$[]$,	X_{1}	X_{2}	Y_{1}	Y_{2}	W	A_{1}	A_{2}
X_{1}	0	0	0	0	$-\lambda_{1} X_{1}$	$-X_{2}$	$-X_{2}$
X_{2}	0	0	0	0	0	X_{1}	X_{1}
Y_{1}	0	0	0	0	$\lambda_{1} Y_{1}$	$-Y_{2}$	Y_{2}
Y_{2}	0	0	0	0	0	Y_{1}	$-Y_{1}$
W	$\lambda_{1} X_{1}$	0	$-\lambda_{1} Y_{1}$	0	0	0	0
A_{1}	X_{2}	$-X_{1}$	Y_{2}	$-Y_{1}$	0	-	-
A_{2}	X_{2}	$-X_{1}$	$-Y_{2}$	Y_{1}	0	-	-

and

$<,>\quad$| | X_{1} | X_{2} | Y_{1} | Y_{2} | W |
| :--- | :--- | :--- | :--- | :--- | :--- |

X_{1}	1	0	0	$-\beta$	0
X_{2}	0	1	β	0	0
Y_{1}	0	β	1	0	0
Y_{2}	$-\beta$	0	0	1	0
W	0	0	0	0	1

$X \in \mathbf{g}$ is geodesic if and only if its components $\left(x_{1}, x_{2}, y_{1}, y_{2}, w, a, b\right)$ with respect to $\left\{X_{1}, \bar{Y}_{1}, X_{2}, Y_{2}, W, A_{1}, A_{2}\right\}$ satisfy

$$
\left\{\begin{array}{l}
\lambda_{1} w\left(x_{1}-\beta y_{2}\right)+(a+b)\left(x_{2}+\beta y_{1}\right)=0 \tag{3.11}\\
-(a+b)\left(x_{1}-\beta y_{2}\right)=0 \\
-\lambda_{1} w\left(\beta x_{2}+y_{1}\right)+(a-b)\left(-\beta x_{1}+y_{2}\right)=0 \\
-(a-b)\left(\beta x_{2}+y_{1}\right)=0 \\
-\lambda_{1} x_{1}\left(x_{1}-\beta y_{2}\right)+\lambda_{1} y_{1}\left(\beta x_{2}+y_{1}\right)=0
\end{array}\right.
$$

If $a \neq \pm b$, then $x_{1}=x_{2}=y_{1}=y_{2}=0$. If $a=b=0$, then either $w=0$ and $x_{1}\left(x_{1}-\beta y_{2}\right)+y_{1}\left(\beta x_{2}+y_{1}\right)=0$, or $w \neq 0$ and $x_{1}=\beta y_{2}, y_{1}=-\beta x_{2}$. If $a=b \neq-b$, then $x_{1}=\beta y_{2}$ and $x_{2}=y_{1}=0$, while for $a=-b \neq b$, we obtain $x_{1}=y_{2}=0$ and $y_{1}=-\beta x_{2}$. Hence, if X is a geodesic vector of a generalized symmetric space of type $2 c$, then its \mathbf{m}-component is
(i) $\quad X_{\mathbf{m}}=x_{1} X_{1}+x_{2} X_{2}+y_{1} Y_{1}+y_{2} Y_{2}$ with $x_{1}\left(x_{1}-\beta y_{2}\right)+y_{1}\left(\beta x_{2}+y_{1}\right)=0$, or
(ii) $\quad X_{\mathbf{m}}=\beta y_{2} X_{1}+x_{2} X_{2}-\beta x_{2} Y_{1}+y_{2} Y_{2}+w W$.

We can check easily that $X_{1}+Y_{1}, X_{1}-Y_{1}($ type $(i))$, together with $X_{2}-\beta Y_{1}+$ $W, X_{2}-\beta Y_{1}-\left(1-\beta^{2}\right) W$ and $\beta X_{1}+Y_{2}$ (type (ii)), form an orthogonal basis of \mathbf{m}.

From the study of cases $2 a$), 2b) and $2 c$) and taking into account Proposition 2.2, we can conclude that all five-dimensional generalized symmetric spaces of type 2 admit five mutually orthogonal homogeneous geodesics through the origin.

4 Homogeneous geodesics of generalized symmetric spaces of type 3

A five-dimensional generalized symmetric space M of type 3 is the homogeneous space $M=S O(3, \mathbf{C}) / S O(2)$, where $S O(3, \mathbf{C})$ is the special complex orthogonal group and the Riemannian metric of M is induced by a real invariant positive semidefinite form of $G L(3, C)$ (see [4]). The subalgebra is $\underline{\mathbf{h}}=\operatorname{so}(2)=\operatorname{span}(A)$, where $A X_{1}=X_{2}, A X_{2}=-X_{1}, A Y_{1}=Y_{2}, A Y_{2}=-Y_{1}, A W=0$, with respect to a basis $\left\{X_{1}, X_{2}, Y_{1}, Y_{2}, W\right\}$ of \mathbf{m}. The Lie bracket [,] and the Riemannian metric $<,>$ are respectively given by

$[]$,	X_{1}	X_{2}	Y_{1}	Y_{2}	W	A
X_{1}	0	0	0	$-W$	$-X_{1}$	$-X_{2}$
X_{2}	0	0	W	0	$-X_{2}$	X_{1}
Y_{1}	0	$-W$	0	0	Y_{1}	$-Y_{2}$
Y_{2}	W	0	0	0	Y_{2}	Y_{1}
W	X_{1}	X_{2}	$-Y_{1}$	$-Y_{2}$	0	0
A	X_{2}	$-X_{1}$	Y_{2}	$-Y_{1}$	0	0

and

$$
\begin{array}{llllll}
<,> & X_{1} & X_{2} & Y_{1} & Y_{2} & W \\
& & & & & \tag{4.2}\\
X_{1} & a^{2} & 0 & 0 & -\gamma & 0 \\
X_{2} & 0 & a^{2} & \gamma & 0 & 0 \\
Y_{1} & 0 & \gamma & a^{2} & 0 & 0 \\
Y_{2} & & -\gamma & 0 & 0 & a^{2} \\
W & 0 & 0 & 0 & 0 & b^{2}
\end{array}
$$

where $a, b>0, \gamma$ are real numbers, $a^{2}>|\gamma|$ (see [4]).
Using (4.1) and (4.2) to compute (2.4), we obtain that $X \in \mathrm{~g}$ is geodesic if and only if its components $\left(x_{1}, x_{2}, y_{1}, y_{2}, w, r\right)$ with respect to $\left\{X_{1}, \bar{X}_{2}, Y_{1}, Y_{2}, W, A\right\}$ satisfy

$$
\left\{\begin{array}{l}
w\left(a^{2} x_{1}+\left(b^{2}-\gamma\right) y_{2}\right)+r\left(a^{2} x_{2}+\gamma y_{1}\right)=0 \tag{4.3}\\
w\left(a^{2} x_{2}-\left(b^{2}-\gamma\right) y_{1}\right)-r\left(a^{2} x_{1}-\gamma y_{2}\right)=0 \\
w\left(-a^{2} y_{1}+\left(b^{2}-\gamma\right) x_{2}\right)+r\left(a^{2} y_{2}-\gamma x_{1}\right)=0 \\
w\left(-a^{2} y_{2}-\left(b^{2}-\gamma\right) x_{1}\right)-r\left(a^{2} y_{1}+\gamma x_{2}\right)=0 \\
x_{1}^{2}+x_{2}^{2}=y_{1}^{2}+y_{2}^{2}
\end{array}\right.
$$

taking into account that $a^{2} \neq 0$.
We can now find all the solutions of (4.3). If $r=w=0$, then (4.3) reduces to $x_{1}^{2}+x_{2}^{2}=y_{1}^{2}+y_{2}^{2}$. If $r=0 \neq w$, the solutions of (4.3) are $x_{1}=x_{2}=y_{1}=y_{2}=0$ if $a^{2}-b^{2}+\gamma \neq 0$, and $x_{1}+y_{2}=x_{2}-y_{1}=0$ if $a^{2}-b^{2}+\gamma=0$.

The case $r \neq 0$ is much more complicated. After some standard but quite long calculations, we eventually find that, when $r \neq 0$, the solutions of (4.3) are given by

$$
\left\{\begin{array}{l}
x_{1}=-\frac{b^{2} w\left(r y_{1}+w y_{2}\right)}{a^{2}\left(r^{2}+w^{2}\right)}+\frac{\gamma}{a^{2}} y_{2}, \\
x_{2}=\frac{b^{2} w\left(w y_{1}-r y_{2}\right)}{a^{2}\left(r^{2}+w^{2}\right)}-\frac{\gamma}{a^{2}} y_{1}, \quad \text { with } r^{2}=\frac{b^{2} w^{2}\left(b^{2}-2 \gamma\right)}{a^{4}-\gamma^{2}}-w^{2}
\end{array}\right.
$$

Thus, if X is a geodesic vector of a generalized symmetric space of type 3 , then its \mathbf{m}-component is
(i) $\quad X_{\mathbf{m}}=x_{1} X_{1}+x_{2} X_{2}+y_{1} Y_{1}+y_{2} Y_{2}$ and $x_{1}^{2}+x_{2}^{2}=y_{1}^{2}+y_{2}^{2}$, or
(ii) $\quad X_{\mathbf{m}}=w W$ if $a^{2}-b^{2}+\gamma \neq 0$, while

$$
X_{\mathbf{m}}=x_{2} X_{2}+x_{2} Y_{1}+w W \text { if } \mathrm{a}^{2}-\mathrm{b}^{2}+\gamma=0, \text { or }
$$

(iii) $\quad X_{\mathbf{m}}=\left(-\frac{b^{2} w\left(r y_{1}+w y_{2}\right)}{a^{2}\left(r^{2}+1\right)}+\frac{\gamma}{a^{2}} y_{2}\right) X_{1}+\left(\frac{b^{2} w\left(w y_{1}-r y_{2}\right)}{a^{2}\left(r^{2}+1\right)}-\frac{\gamma}{a^{2}} y_{1}\right) X_{2}+y_{1} Y_{1}+$ $+y_{2} Y_{2}+w W$, where $r^{2}=\frac{b^{2} w^{2}\left(b^{2}-2 \gamma\right)}{a^{4}-\gamma^{2}}-w^{2} \neq 0$.

One can check that W is a vector of type (ii), while $V_{1}=X_{1}+Y_{1}, V_{2}=X_{1}-Y_{1}$, $V_{3}=\gamma X_{1}+a^{2} X_{2}-\gamma Y_{1}+a^{2} Y_{2}$ and $V_{4}=\gamma X_{1}-a^{2} X_{2}+\gamma Y_{1}+a^{2} Y_{2}$ are of type (i), and $\left\{V_{1}, V_{2}, V_{3}, V_{4}, W\right\}$ is an orthogonal basis of \mathbf{m}. Therefore, Proposition 2.2 implies that five-dimensional generalized symmetric spaces of type 3 admit five mutually orthogonal homogeneous geodesics through the origin o.

5 Homogeneous geodesics of generalized symmetric spaces of type 4

Five-dimensional generalized symmetric spaces M of type 4 are complex matrix groups

$$
\left(\begin{array}{ccc}
e^{\lambda t} & 0 & z \\
0 & e^{-\lambda t} & w \\
0 & 0 & 1
\end{array}\right)
$$

where $z, w \in \mathbf{C}$ and $t \in \mathbb{R} . M$ is also the space $\mathbf{C}^{2}(z, w) \times \mathbb{R}(t)$, equipped with a Riemannian metric

$$
\begin{aligned}
g= & e^{-(\lambda+\bar{\lambda}) t} d z d \bar{z}+e^{(\lambda+\bar{\lambda}) t} d w d \bar{w}+d t^{2}+2 c\left[e^{(\bar{\lambda}-\lambda) t} d z d \bar{w}+e^{(\lambda-\bar{\lambda}) t} d \bar{z} d w\right]+ \\
& +\gamma e^{-2 \lambda t} d z^{2}+\bar{\gamma} e^{-2 \bar{\lambda} t} d \bar{z}^{2}-\gamma e^{2 \lambda t} d w^{2}-\bar{\gamma} e^{2 \bar{\lambda} t} d \bar{w}^{2},
\end{aligned}
$$

with $\lambda, \gamma \in \mathbf{C}, c \in \mathbb{R}, \gamma \bar{\gamma}+c^{2}<1 / 4$ [4]. Put $\nu=\left(1+b^{2}\right) \gamma$, where $c=\frac{1-b^{2}}{2\left(1+b^{2}\right)}$.
Then, $\gamma \bar{\gamma}+c^{2}<1 / 4$ is equivalent to $\nu \bar{\nu}<b^{2}$.
2a): $\lambda+\bar{\lambda} \neq 0$ and $\nu \neq 0$.
In this case, $\underline{\mathbf{h}}=0[4]$. With respect to a suitable basis $\left\{X_{1}, X_{2}, Y_{1}, Y_{2}, W\right\}$ of $\underline{\mathbf{g}}$, the Lie bracket [,] and the Riemannian metric $<,>$ are given by (see [4])

$[]$,	X_{1}	X_{2}	Y_{1}	Y_{2}	W
X_{1}	0	0	0	0	$-\eta X_{2}-\mu Y_{2}$
X_{2}	0	0	0	0	$\eta X_{1}-\mu Y_{1}$
Y_{1}	0	0	0	0	$-\mu X_{2}+\eta Y_{2}$
Y_{2}	0	0	0	0	$-\mu X_{1}-\eta Y_{1}$
W	$\eta X_{2}+\mu Y_{2}$	$-\eta X_{1}+\mu Y_{1}$	$\mu X_{2}-\eta Y_{2}$	$\mu X_{1}+\eta Y_{1}$	0

and

$$
<,>\quad \begin{array}{llllll}
& X_{1} & X_{2} & Y_{1} & Y_{2} & W
\end{array}
$$

X_{1}	1	α	0	$-\beta$	0
X_{2}	α	b^{2}	β	0	0
Y_{1}	0	β	1	α	0
Y_{2}	$-\beta$	0	α	b^{2}	0
W	0	0	0	0	1

where $\lambda=\eta+i \mu$ and $\nu=\alpha+i \beta$. Using (5.1) and (5.2) in (2.4), we obtain that $X \in \underline{\mathbf{g}}$ is geodesic if and only if its components satisfy

$$
\left\{\begin{array}{l}
w \eta\left(\alpha x_{1}+b^{2} x_{2}+\beta y_{1}\right)+w \mu\left(-\beta x_{1}+\alpha y_{1}+b^{2} y_{2}\right)=0 \tag{5.3}\\
-w \eta\left(x_{1}+\alpha x_{2}-\beta y_{2}\right)+w \mu\left(\beta x_{2}+y_{1}+\alpha y_{2}\right)=0 \\
w \mu\left(\alpha x_{1}+b^{2} x_{2}+\beta y_{1}\right)-w \eta\left(-\beta x_{1}+\alpha y_{1}+b^{2} y_{2}\right)=0 \\
w \mu\left(x_{1}+\alpha x_{2}-\beta y_{2}\right)+w \eta\left(\beta x_{2}+y_{1}+\alpha y_{2}\right)=0 \\
\left(\eta x_{1}+\mu y_{1}\right)\left(\alpha x_{1}+b^{2} x_{2}+\beta y_{1}\right)+\left(\mu x_{1}-\eta y_{1}\right)\left(-\beta x_{1}+\alpha y_{1}+b^{2} y_{2}\right)+ \\
+\left(-\eta x_{2}+\mu y_{2}\right)\left(x_{1}+\alpha x_{2}-\beta y_{2}\right)+\left(\mu x_{2}+\eta y_{2}\right)\left(\beta x_{2}+y_{1}+\alpha y_{2}\right)=0
\end{array}\right.
$$

It is not difficult to show that if $w \neq 0$, the solutions of (5.3) are given by $(0,0,0,0, w)$, while if $w=0,(5.3)$ reduces to the fifth equation. So, in this case the solutions are $\left(x_{1}, x_{2}, y_{1}, y_{2}, 0\right)$ such that

$$
\begin{align*}
& \left(\eta x_{1}+\mu y_{1}\right)\left(\alpha x_{1}+b^{2} x_{2}+\beta y_{1}\right)+\left(\mu x_{1}-\eta y_{1}\right)\left(-\beta x_{1}+\alpha y_{1}+b^{2} y_{2}\right)+ \tag{5.4}\\
& +\left(-\eta x_{2}+\mu y_{2}\right)\left(x_{1}+\alpha x_{2}-\beta y_{2}\right)+\left(\mu x_{2}+\eta y_{2}\right)\left(\beta x_{2}+y_{1}+\alpha y_{2}\right)=0
\end{align*}
$$

We then proved that X is a geodesic vector of a generalized symmetric space of type $4 a$ if and only if
(i) $X=w W$, or
(ii) $X=x_{1} X_{1}+x_{2} X_{2}+y_{1} Y_{1}+y_{2} Y_{2}$ and (5.4) holds.

Then, for generalized symmetric spaces of type $4 a$, geodesic vectors form a straight line (i) and a hypercone (of equation (5.4)) in the orthogonal complement of such line (ii).

About the existence of an orthogonal basis of geodesic vectors, we found that such basis always exists, but it strongly varies with the different values of α, β, η and μ. Taking into account that $\eta \neq 0$ and $\alpha+i \beta \neq 0$, an orthogonal basis of geodesic vectors is given by:
a) $\left\{X_{1}, Y_{1}, X_{2}-\beta Y_{1}, \beta X_{1}+Y_{2}, W\right\}$ when $\alpha=\mu=0$;
b) $\left\{X_{1}+\frac{\alpha \mu+\beta \eta+\sqrt{\Delta}}{\alpha \eta-\beta \mu} Y_{1}, X_{1}+\frac{\alpha \mu+\beta \eta-\sqrt{\Delta}}{\alpha \eta-\beta \mu} Y_{1},(\beta k-\alpha) X_{1}+X_{2}-(\alpha k+\right.$ $\left.\beta) Y_{1}+k Y_{2},(\beta+\alpha k) X_{1}-k X_{2}+(\beta k-\alpha) Y_{1}+Y_{2}, W\right\}$, with $\Delta=\left(\alpha^{2}+\beta^{2}\right)\left(\eta^{2}+\mu^{2}\right)$ and $k=\frac{\alpha \mu-\beta \eta+\sqrt{\Delta}}{\alpha \eta+\beta \mu}$, when $\alpha \neq \pm \frac{\mu}{\eta} \beta$;
c) $\left\{X_{1}, Y_{1}, X_{2}-\left(1+\frac{\mu^{2}}{\eta^{2}}\right) \beta Y_{1}+\frac{\mu}{\eta} Y_{2},-\frac{\eta^{2}+\mu^{2}}{\eta \mu} X_{1}+X_{2}-\frac{\eta}{\mu} Y_{2}, W\right\}$ when $\alpha=\frac{\mu}{\eta} \beta \neq 0$;
d) $\left\{X_{1}+\frac{\mu}{\eta} Y_{1}, X_{1}-\frac{\eta}{\mu} Y_{1}, \frac{\mu}{\eta} \beta X_{1}+X_{2}-\beta Y_{1}, \beta X_{1}+\frac{\mu}{\eta} \beta Y_{1}+Y_{2}, W\right\}$ if $\alpha=-\frac{\mu}{\eta} \beta \neq 0$.

Therefore, five-dimensional generalized symmetric spaces of type 4 a admit five mutually orthogonal homogeneous geodesics through the origin.
$\mathbf{2 b}): \lambda+\bar{\lambda}=0, \nu=0$ and $b^{2} \neq 1$.

Since $\lambda+\bar{\lambda}=0$, we have $\lambda=i \mu, \mu \in \mathbb{R}$. In this case, $\underline{\mathbf{h}}=\operatorname{so}(2)=\operatorname{span}(A)$, where A is determined by $A X_{1}=-Y_{1}, A X_{2}=Y_{2}, A Y_{1}=X_{1}, A Y_{2}=-X_{2}, A W=0$ (see [4]). Computing [,] and $<,>$, taking into account that now $\nu=0$ and $\lambda=i \mu$, we get

$[]$,	X_{1}	X_{2}	Y_{1}	Y_{2}	W	A
X_{1}	0	0	0	0	$-\mu Y_{2}$	Y_{1}
X_{2}	0	0	0	0	$-\mu Y_{1}$	$-Y_{2}$
Y_{1}	0	0	0	0	$-\mu X_{2}$	$-X_{1}$
Y_{2}	0	0	0	0	$-\mu X_{1}$	X_{2}
W	μY_{2}	μY_{1}	μX_{2}	μX_{1}	0	0
A	$-Y_{1}$	Y_{2}	X_{1}	$-X_{2}$	0	0

and $\left\{X_{1}, X_{2}, Y_{1}, Y_{2}, W\right\}$ is an orthogonal basis, with $<X_{1}, X_{1}>=<Y_{1}, Y_{1}>=<$ $W, W>=1$ and $<X_{2}, X_{2}>=<Y_{2}, Y_{2}>=b^{2} \neq 1$.

Therefore, $X \in \underline{\mathbf{g}}$ is geodesic if and only if its components $\left(x_{1}, x_{2}, y_{1}, y_{2}, w, a\right)$ with respect to the basis $\left\{X_{1}, Y_{1}, X_{2}, Y_{2}, W, A\right\}$ satisfy

$$
\left\{\begin{array}{l}
\mu w b^{2} y_{2}-a y_{1}=0 \tag{5.6}\\
\mu w y_{1}+a b^{2} y_{2}=0 \\
\mu w b^{2} x_{2}+a x_{1}=0 \\
\mu w x_{1}-a b^{2} x_{2}=0 \\
2 \mu\left(x_{1} y_{2}+x_{2} y_{1}\right)=0
\end{array}\right.
$$

It is easy to show that if $\mu=0$, then any vector of \mathbf{m} is the component of a geodesic vector. Hence, we now focus on the case $\mu \neq 0$. When $w \neq 0$, from (5.6) we get $x_{1}=x_{2}=y_{1}=y_{2}=0$, while if $w=0$, then (5.6) reduces to $x_{1} y_{2}+x_{2} y_{1}=0$. Therefore, if $\mu \neq 0, X$ is a geodesic vector of a generalized symmetric space of type $4 b$ if and only if
(i) $X_{\mathbf{m}}=w W$, or
(ii) $\quad X_{\mathbf{m}}=x_{1} X_{1}+x_{2} X_{2}+y_{1} Y_{1}+y_{2} Y_{2}$ and $x_{1} y_{2}+x_{2} y_{1}=0$.

We can check easily that $X_{1}, X_{2}, Y_{1}, Y_{2}$ and W are mutually orthogonal geodesic vectors. Thus, five-dimensional generalized symmetric spaces of type $4 b$ admit five linearly independent homogeneous geodesics through the origin o.
2c): $\lambda+\bar{\lambda} \neq 0, \nu=0$ and $b^{2}=1$.
In this case, $\underline{\mathbf{h}}=\operatorname{so}(2) \bigoplus \operatorname{so}(2)=\operatorname{span}\left(A_{1}, A_{2}\right)$, where $A_{1}=A$ of type $4 b$, while A_{2} is determined by $A_{2} X_{1}=X_{2}, A_{2} X_{2}=-X_{1}, A_{2} Y_{1}=-Y_{2}, A Y_{2}=Y_{1}, A W=0$ (see [4]). Hence, computing the Lie bracket, we get

$[]$,	X_{1}	X_{2}	Y_{1}	Y_{2}	W	A_{1}	A_{2}
X_{1}	0	0	0	0	$-\eta X_{2}-\mu Y_{2}$	Y_{1}	$-X_{2}$
X_{2}	0	0	0	0	$\eta X_{1}-\mu Y_{1}$	$-Y_{2}$	X_{1}
Y_{1}	0	0	0	0	$-\mu X_{2}+\eta Y_{2}$	$-X_{1}$	Y_{2}
Y_{2}	0	0	0	0	$-\mu X_{1}-\eta Y_{1}$	X_{2}	$-Y_{1}$
W	$\eta X_{2}+\mu Y_{2}$	$-\eta X_{1}+\mu Y_{1}$	$\mu X_{2}-\eta Y_{2}$	$\mu X_{1}+\eta Y_{1}$	0	0	0
A_{1}	$-Y_{1}$	Y_{2}	X_{1}	$-X_{2}$	0	-	-
A_{2}	X_{2}	$-X_{1}$	$-Y_{2}$	Y_{1}	0	-	-

Note that in this case $\left\{X_{1}, X_{2}, Y_{1}, Y_{2}, W\right\}$ is an orthonormal basis of \mathbf{m}.
$X \in \mathbf{g}$ is geodesic if and only if its components $\left(x_{1}, x_{2}, y_{1}, y_{2}, w, a, b\right)$ with respect to $\left\{X_{1}, \bar{Y}_{1}, X_{2}, Y_{2}, W, A_{1}, A_{2}\right\}$ satisfy

$$
\left\{\begin{array}{l}
w\left(\eta x_{2}+\mu y_{2}\right)-a y_{1}+b x_{2}=0 \tag{5.7}\\
w\left(\eta x_{1}-\mu y_{1}\right)-a y_{2}+b x_{1}=0 \\
w\left(\mu x_{2}-\eta y_{2}\right)+a x_{1}-b y_{2}=0 \\
w\left(\mu x_{1}+\eta y_{1}\right)-a x_{2}+b y_{1}=0 \\
2 \mu\left(x_{1} y_{2}+y_{1} x_{2}\right)=0
\end{array}\right.
$$

When $w \neq 0,(5.7)$ gives $x_{1}=x_{2}=y_{1}=y_{2}=0$. For $w=0,(5.7)$ reduces to its last equation $x_{1} y_{2}+y_{1} x_{2}=0$. Thus, if X is a geodesic vector of a generalized symmetric space of type $4 c$, then its \mathbf{m}-component is
(i) $X_{\mathbf{m}}=w W$, or
(ii) $\quad X_{\mathbf{m}}=x_{1} X_{1}+x_{2} X_{2}+y_{1} Y_{1}+y_{2} Y_{2}$ and $x_{1} y_{2}+x_{2} y_{1}=0$.

Note that $\left\{X_{1}, X_{2}, Y_{1}, Y_{2}, W\right\}$ is an orthonormal basis of \mathbf{m}, where X_{1}, X_{2}, Y_{1}, Y_{2} are of type (i) while W is of type (ii). Therefore, from Proposition 2.2 it follows that five-dimensional generalized symmetric spaces of type $4 c$ admit five mutually orthogonal homogeneous geodesics through the origin.

6 Homogeneous geodesics of generalized symmetric spaces of type 7

As homogeneous spaces, five-dimensional generalized symmetric spaces M of type 7 are real matrix groups

$$
\left(\begin{array}{ccccc}
e^{\lambda t} & 0 & 0 & 0 & x \\
0 & e^{-\lambda t} & 0 & 0 & y \\
t e^{\lambda t} & 0 & e^{\lambda t} & 0 & u \\
0 & -t e^{-\lambda t} & 0 & e^{-\lambda t} & v \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

M is also $\mathbb{R}^{5}(x, y, u, v, t)$, equipped with a Riemannian metric

$$
\begin{aligned}
g= & d t^{2}+e^{-2 \lambda t}(t d x-d u)^{2}+e^{2 \lambda t}(t d y+d v)^{2}+a^{2}\left(e^{-2 \lambda t} d x^{2}+e^{2 \lambda t} d y^{2}\right)+ \\
& +2 \gamma(d y d u-d x d v)
\end{aligned}
$$

where $\lambda, a, \gamma \in \mathbb{R}, \lambda \geq 0, a>0$ and $\gamma^{2}<a^{2}$.
2a): $\lambda \neq 0$.
In this case, $\underline{\mathbf{h}}=0$ [4]. Following [4], there exists a basis $\left\{X_{1}, X_{2}, Y_{1}, Y_{2}, W\right\}$ of $\underline{\mathbf{g}}$ such that

$[]$,	X_{1}	X_{2}	Y_{1}	Y_{2}	W
X_{1}	0	0	0	0	$-\lambda X_{1}-X_{2}$
X_{2}	0	0	0	0	$-\lambda X_{2}$
Y_{1}	0	0	0	0	$\lambda Y_{1}+Y_{2}$
Y_{2}	0	0	0	0	λY_{2}
W	$\lambda X_{1}+X_{2}$	λX_{2}	$-\lambda Y_{1}-Y_{2}$	$-\lambda Y_{2}$	0

and

$<,>$	X_{1}	X_{2}	Y_{1}	Y_{2}	W
X_{1}	a^{2}	0	0	$-\gamma$	0
X_{2}	0	1	γ	0	0
Y_{1}	0	γ	a^{2}	0	0
Y_{2}	$-\gamma$	0	0	1	0
W	0	0	0	0	1

We now use (6.1) and (6.2) to compute (2.4). Taking into account that $\lambda \neq 0$, we get

$$
\left\{\begin{array}{l}
a^{2} x_{1}-\gamma y_{2}=0 \tag{6.3}\\
x_{2}+\gamma y_{1}=0 \\
\gamma x_{2}+a^{2} y_{1}=0 \\
y_{2}-\gamma x_{1}=0
\end{array}\right.
$$

which only admits the solutions $(0,0,0,0, w)$. So, X is a geodesic vector of a generalized symmetric space of type $7 a$ if and only if X is parallel to W. In other words, geodesic vectors of a five-dimensional generalized symmetric space of type 7 a form a straight line. As a consequence, we clearly have the following
Theorem 6.1 Five-dimensional generalized symmetric spaces of type 7 a only admit one homogeneous geodesic through the origin.
2b): $\lambda=0$.
In this case, $\underline{\mathbf{h}}=\operatorname{so}(2)=\operatorname{span}(A)$, where A is determined by $A X_{1}=-Y_{1}$, $A X_{2}=Y_{2}, A Y_{1}=X_{1}, A Y_{2}=-X_{2}, A W=0$ (see [4]). Computing [,] and $<,>$, taking into account that now $\lambda=0$ and $\gamma=0$ [4], we get

$[]$,	X_{1}	X_{2}	Y_{1}	Y_{2}	W	A
X_{1}	0	0	0	0	$-X_{2}$	Y_{1}
X_{2}	0	0	0	0	0	$-Y_{2}$
Y_{1}	0	0	0	0	Y_{2}	$-X_{1}$
Y_{2}	0	0	0	0	0	X_{2}
W	X_{2}	0	$-Y_{2}$	0	0	0
A	$-Y_{1}$	Y_{2}	X_{1}	$-X_{2}$	0	0

and $\left\{X_{1}, X_{2}, Y_{1}, Y_{2}, W\right\}$ is an orthogonal basis of $\underline{\mathbf{g}}$, with $<X_{1}, X_{1}>=<Y_{1}, Y_{1}>=a^{2}$ and $<X_{2}, X_{2}>=<Y_{2}, Y_{2}>=<W, W>=1$.

Using (6.4) to compute (2.4), it is easy to show that $X \in \underline{\mathrm{~g}}$ is geodesic if and only if its components $\left(x_{1}, x_{2}, y_{1}, y_{2}, w, a\right)$ with respect to the basis $\left\{X_{1}, Y_{1}, X_{2}, Y_{2}\right.$, $W, A\}$ satisfy

$$
\left\{\begin{array}{l}
a y_{1}-w x_{2}=0 \tag{6.5}\\
a y_{2}=0 \\
a x_{1}-w y_{2}=0 \\
a x_{2}=0 \\
x_{1} x_{2}-y_{1} y_{2}=0
\end{array}\right.
$$

For $a \neq 0$, (6.5) gives $x_{1}=x_{2}=y_{1}=y_{2}=0$. For $a=0$, we have either $w=0$ and $x_{1} x_{2}-y_{1} y_{2}=0$, or $w \neq 0$ and $x_{2}=y_{2}=0$. Therefore, if X is a geodesic vector of a generalized symmetric space of type $7 b$, then its \mathbf{m}-component is given by
(i) $\quad X_{\mathbf{m}}=x_{1} X_{1}+x_{2} X_{2}+y_{1} Y_{1}+y_{2} Y_{2}$ and $x_{1} x_{2}-y_{1} y_{2}=0$, or
(ii) $\quad X_{\mathbf{m}}=x_{1} X_{1}+y_{1} Y_{1}+w W$.

Finally, since all the vectors of the orthogonal basis $\left\{X_{1}, X_{2}, Y_{1}, Y_{2}, W\right\}$ are of type (i) or (ii), we can conclude that five-dimensional generalized symmetric spaces of type $7 b$ admit five mutually orthogonal homogeneous geodesics through the origin.

7 Homogeneous geodesics of generalized symmetric spaces of type 8

As homogeneous spaces, five-dimensional generalized symmetric spaces M of type 8 are $I^{e}\left(\mathbb{R}^{3}\right) / S O(2)$ or $I^{h}\left(\mathbb{R}^{3}\right) / S O(2)$, where I^{e} (respectively, I^{h}) denotes the group of all positive affine transformations of \mathbb{R}^{3} that preserve $d x^{2}+d y^{2}+d z^{2}$ (respectively, $\left.d x^{2}+d y^{2}-d z^{2}\right) . M$ is also described as submanifold of $\mathbb{R}^{6}(x, y, z, \alpha, \beta, \gamma)$, such that $\alpha^{2}+\beta^{2} \pm \gamma^{2}= \pm 1$. The Riemannian metric of M is induced by the regular invariant quadratic form

$$
\bar{g}=d x^{2}+d y^{2} \pm d z^{2}+\lambda^{2}\left(d \alpha^{2}+d \beta^{2} \pm d \gamma^{2}\right)+[\mu \pm(-1)](\alpha d x+\beta d y \pm \gamma d z)^{2}
$$

where $\lambda, \mu>0$ [4]. The five-dimensional generalized symmetric spaces of type $8 a$ (respectively, $8 b$) are obtained when we have the sign " + (respectively, " - ") in the previous formulas. Here we analyze the case $8 a$, the case $8 b$ can be treated similarly and it leads to the same conclusions. In both cases, $\underline{\mathbf{h}}=\operatorname{so}(2)=\operatorname{span}(A)$, where A is determined by $A X_{1}=-Y_{1}, A X_{2}=Y_{2}, A Y_{1}=X_{1}, A Y_{2}=-X_{2}, A W=0$, with $\left\{X_{1}, X_{2}, Y_{1}, Y_{2}, W\right\}$ a basis of \mathbf{m}. The Lie bracket on M is determined by

$[]$,	X_{1}	X_{2}	Y_{1}	Y_{2}	W	A
X_{1}	0	W	0	0	$-X_{2}$	Y_{1}
X_{2}	$-W$	0	0	0	0	$-Y_{2}$
Y_{1}	0	0	0	$-W$	Y_{2}	$-X_{1}$
Y_{2}	0	0	W	0	0	X_{2}
W	X_{2}	0	$-Y_{2}$	0	0	0
A	$-Y_{1}$	Y_{2}	X_{1}	$-X_{2}$	0	0

Moreover, $\left\{X_{1}, X_{2}, Y_{1}, Y_{2}, W\right\}$ is an orthogonal basis of \mathbf{m}, with $<X_{1}, X_{1}>=$ $<Y_{1}, Y_{1}>=b^{2},<X_{2}, X_{2}>=<Y_{2}, Y_{2}>=1$ and $<W, W>=c^{2}$, where $b, c>0$
[4]. Using (7.1) to compute (2.4), we obtain that $X \in \underline{\mathbf{g}}$ is geodesic if and only if its components $\left(x_{1}, x_{2}, y_{1}, y_{2}, w, a\right)$ with respect to the basis $\left\{X_{1}, Y_{1}, X_{2}, Y_{2}, W, A\right\}$ satisfy

$$
\left\{\begin{array}{l}
x_{2} w\left(1-c^{2}\right)-y_{1} a b^{2}=0 \tag{7.2}\\
x_{1} w c^{2}+a y_{2}=0 \\
-y_{2} w\left(1-c^{2}\right)+x_{1} a b^{2}=0 \\
y_{1} w c^{2}+a x_{2}=0 \\
x_{1} x_{2}-b^{2} y_{1} y_{2}=0
\end{array}\right.
$$

For $a=w=0,(7.2)$ reduces to $x_{1} x_{2}-b^{2} y_{1} y_{2}=0$. If $a=0 \neq w$, we get $x_{1}=x_{2}=$ $y_{1}=y_{2}=0$ when $c^{2} \neq 1$, while if $c^{2}=1$ we only have $x_{1}=y_{1}=0$. If $a \neq 0$, we must distinguish different cases. We eventually obtain:

1) If $c^{2}-1<0$, then $x_{1}=x_{2}=y_{1}=y_{2}=0$.
2) If $c^{2}-1>0$ and $b^{2}=1$, then, in addition to $x_{1}=x_{2}=y_{1}=y_{2}=0$, we also have the solutions $x_{2}=-\frac{w c^{2}}{a} y_{1}, y_{2}=-\frac{w c^{2}}{a} x_{1}$ and $w= \pm \frac{a b}{c \sqrt{c^{2}-1}}$.
3) If $c^{2}-1>0$ and $b^{2} \neq 1$, the solutions are either $x_{1}=x_{2}=y_{1}=y_{2}=0$, or $x_{2}=y_{1}=0, y_{2}=-\frac{w c^{2}}{a} x_{1}$ and $w= \pm \frac{a b}{c \sqrt{c^{2}-1}}$, or $x_{1}=y_{2}=0, x_{2}=-\frac{w c^{2}}{a} y_{1}$ and $w= \pm \frac{a b}{c \sqrt{c^{2}-1}}$.

In this way, we proved that the if X is a geodesic vectors of a five-dimensional generalized symmetric space of type $8 a$, then its \mathbf{m}-component is:
(i) $X_{\mathbf{m}}=w W$, or
(ii) $\quad X_{\mathrm{m}}=x_{1} X_{1}+x_{2} X_{2}+y_{1} Y_{1}+y_{2} Y_{2}$ and $x_{1} x_{2}-b^{2} y_{1} y_{2}=0$, or
(iii) $\quad X_{\mathbf{m}}=x_{2} X_{2}+y_{2} Y_{2}+w W$ (only when $c^{2}=1$), or
(iv) $\quad X_{\mathbf{m}}=x_{1} X_{1}-\frac{w c^{2}}{a} y_{1} X_{2}+y_{1} Y_{1}-\frac{w c^{2}}{a} x_{1} Y_{2} \pm \frac{a b}{c \sqrt{c^{2}-1}} W$ (only when $c^{2}>1$ and $b^{2}=1$), or
(v) $\quad X_{\mathbf{m}}=x_{1} X_{1}-\frac{w c^{2}}{a} x_{1} Y_{2} \pm \frac{a b}{c \sqrt{c^{2}-1}} W$ and

$$
X_{\mathbf{m}}=-\frac{w c^{2}}{a} y_{1} X_{2}+y_{1} Y_{1} \pm \frac{a b}{c \sqrt{c^{2}-1}} W\left(\text { only when } c^{2}>1 \text { and } b^{2} \neq 1\right)
$$

The calculations for spaces of type $8 b$ are similar. Since all the vectors of the orthogonal basis $\left\{X_{1}, X_{2}, Y_{1}, Y_{2}, W\right\}$ are geodesic vectors of type (i) or (ii), which exist for all values of b and c, we can conclude that five-dimensional generalized symmetric spaces of type 8 admit five mutually orthogonal homogeneous geodesics through the origin.

8 Homogeneous geodesics of generalized symmetric spaces of order 6 (type 9)

Five-dimensional generalized symmetric spaces of order 6 can be described in the following way. The underlying manifold is $\mathbb{R}^{5}(x, y, z, u, v)$, equipped with the Riemannian metric

$$
\begin{align*}
g= & \frac{2}{3} a^{2}\left(d u^{2}+d u d v+d v^{2}\right)+\left(2 b^{2}+1\right)\left(e^{2(u+v)} d x^{2}+e^{-2 u} d y^{2}+\right. \tag{8.1}\\
& \left.+e^{-2 v} d z^{2}\right)+2\left(b^{2}-1\right)\left(e^{v} d x d y+e^{u} d x d z-e^{-(u+v)} d y d z\right)
\end{align*}
$$

where $a>0$ and $b>0$ are real numbers. The space $\left(\mathbb{R}^{5}, g\right)$ can be identified with the homogeneous space G / H, where G is the group of all matrices of the form

$$
\left(\begin{array}{cccc}
e^{-(u+v)} & 0 & 0 & x \\
0 & e^{u} & 0 & y \\
0 & 0 & e^{v} & y \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Generalized symmetric spaces of type 9 have a special interest because they are of solvable type, that is, G is a solvable Lie group. In a forthcoming paper [1], the authors and O. Kowalski will study homogeneous geodesics in some examples of generalized symmetric spaces of solvable type of arbitrary odd dimension.

Following [4], the Lie algebra \mathbf{g} of G admits a basis $\left\{X_{1}, X_{2}, Y_{1}, Y_{2}, W\right\}$ such that

$[]$,	X_{1}	X_{2}	Y_{1}	Y_{2}	W
X_{1}	0	$-X_{2}$	0	0	W
X_{2}	X_{2}	0	X_{2}	0	0
Y_{1}	0	$-X_{2}$	0	Y_{2}	0
Y_{2}	0	0	$-Y_{2}$	0	0
W	$-W$	0	0	0	0

and

$<,>$	X_{1}	X_{2}	Y_{1}	Y_{2}	W
X_{1}	$\frac{2}{3} a^{2}$	0	$\frac{1}{3} a^{2}$	0	0
X_{2}	0	$2 b^{2}+1$	0	$b^{2}-1$	$b^{2}-1$
Y_{1}	$\frac{1}{3} a^{2}$	0	$\frac{2}{3} a^{2}$	0	0
Y_{2}	0	$b^{2}-1$	0	$2 b^{2}+1$	$-\left(b^{2}-1\right)$
W	0	$b^{2}-1$	0	$-\left(b^{2}-1\right)$	$2 b^{2}+1$

Since $\underline{\mathbf{h}}=0$ [4], each geodesic vector must be an element of $\underline{\mathbf{g}}$. We use (8.2) and (8.3) to compute (2.4). Putting

$$
h=\frac{b^{2}-1}{2 b^{2}+1}
$$

we get easily that $X \in \underline{\mathbf{g}}$ is geodesic if and only if its components satisfy

$$
\left\{\begin{array}{l}
\left(x_{2}+w\right)\left(x_{2}+h y_{2}-w\right)=0 \tag{8.4}\\
\left(x_{1}+y_{1}\right)\left(x_{2}+h y_{2}+h w\right)=0 \\
\left(x_{2}+y_{2}\right)\left(x_{2}-y_{2}+h w\right)=0 \\
y_{1}\left(h x_{2}+y_{2}-h w\right)=0 \\
x_{1}\left(h x_{2}-h y_{2}+w\right)=0
\end{array}\right.
$$

By the definition of h, it follows easily that $h-1 \neq 0, h+1 \neq 0$ and $2 h-1 \neq 0$, for all $b>0$. We now find all the solutions of (8.4).
a) If $x_{1}=0,(8.4)$ reduces to

$$
\left\{\begin{array}{l}
\left(x_{2}+w\right)\left(x_{2}+h y_{2}-w\right)=0 \tag{8.5}\\
y_{1}\left(x_{2}+h y_{2}+h w\right)=0 \\
\left(x_{2}+y_{2}\right)\left(x_{2}-y_{2}+h w\right)=0 \\
y_{1}\left(h x_{2}+y_{2}-h w\right)=0
\end{array}\right.
$$

Adding the second and the fourth equation of (8.5) and taking into account that $h+1 \neq 0$, we get that either $y_{1}=0$ or $x_{2}+y_{2}=0$.

If also $y_{1}=0$, then (8.5) reduces to

$$
\left\{\begin{array}{l}
\left(x_{2}+w\right)\left(x_{2}+h y_{2}-w\right)=0 \\
\left(x_{2}+y_{2}\right)\left(x_{2}-y_{2}+h w\right)=0
\end{array}\right.
$$

whose solutions are $(0,-w, 0, w, w),(0,-w, 0,(h-1) w, w),\left(0,-y_{2}, 0, y_{2},(h-1) y_{2}\right)$, $(0,(1-h) w, 0, w, w)$.

When $y_{1} \neq 0$, the only solutions are $\left(0,0, y_{1}, 0,0\right)$.
b) If $x_{1} \neq 0$, from the last equation of (8.4) we get $h x_{2}-h y_{2}+w=0$.

If $y_{1}=0$, the case is similar to the case $x_{1}=0, y_{1} \neq 0$. Proceeding in the same way, we get the solutions $\left(x_{1}, 0,0,0,0\right)$.

If $y_{1} \neq 0,(8.4)$ gives

$$
\left\{\begin{array}{l}
h x_{2}-h y_{2}+w=0 \tag{8.6}\\
\left.h x_{2}+y_{2}-h w\right)=0 \\
\left(x_{2}+w\right)\left(x_{2}+h y_{2}-w\right)=0 \\
\left(x_{1}+y_{1}\right)\left(x_{2}+h y_{2}+h w\right)=0 \\
\left(x_{2}+y_{2}\right)\left(x_{2}-y_{2}+h w\right)=0
\end{array}\right.
$$

whose solutions are $\left(x_{1}, 0, y_{1}, 0,0\right)$.
So, we proved the following
Proposition 8.1 X is a geodesic vector of a five-dimensional generalized symmetric space of type 9 if and only if
(i) $X=-w X_{2}+w Y_{2}+w W$, or
(ii) $X=-w X_{2}+(h-1) w Y_{2}+w W$, or
(iii) $X=-y_{2} X_{2}+y_{2} Y_{2}+(h-1) y_{2} W$, or
(iv) $X=(1-h) w X_{2}+w Y_{2}+w W$, or
(v) $\quad X=x_{1} X_{1}+y_{1} Y_{1}$.

Note that two geodesic vectors of two distinct types among (i), (ii), (iii) and (iv) are always distinct, since $h-1 \neq 1$.

If we add to $\left\{X_{1}, Y_{1}\right\}$ a triplet of vectors chosen in $\left\{V_{1}=-X_{2}+Y_{2}+W, V_{2}=\right.$ $\left.-X_{2}+(h-1) Y_{2}+W, V_{3}=-X_{2}+Y_{2}+(h-1) W, V_{4}=-(h-1) X_{2}+Y_{2}+W\right\}$, we then always get five linearly independent geodesic vectors, taking into account that $h-2 \neq 0$. Hence, there exist five linearly independent geodesic vectors in M.

About the orthogonality, it is easy to prove that a geodesic vector of type (v) is orthogonal to all geodesic vectors of type $(i),(i i),(i i i)$ or $(i v)$. Moreover, for example X_{1} and $V=X_{1}-2 Y_{1}$ are two orthogonal geodesic vectors of type (v). Finally, two geodesic vectors chosen in two different types among $(i),(i i),(i i i)$ and (iv) are never mutually orthogonal. In fact, $<V_{1}, V_{2}>=<V_{1}, V_{3}>=<V_{1}, V_{4}>=3(h+1) \neq 0$, while $<V_{2}, V_{3}>=<V_{2}, V_{4}>=<V_{3}, V_{4}>=\left(2 b^{2}+1\right)(2 h-1)-\left(b^{2}-1\right)\left(h^{2}+2\right) \neq 0$. So, we can conclude that there are at most three geodesic vectors mutually orthogonal, for example taking $X_{1}, V=X_{1}-2 Y_{1}$ and V_{1}. So, from Proposition 8.1 it follows
Corollary 8.2 Geodesic vectors of five-dimensional generalized symmetric spaces of type 9 form
(a) a plane (2-dimensional vector subspace) \mathcal{P} of \mathbf{g} (type (v)), and
(b) four straight lines, respectively generated by the geodesic vectors $-X_{2}+Y_{2}+W$, $-X_{2}+(h-1) Y_{2}+W,-X_{2}+Y_{2}+(h-1) W$ and $(1-h) X_{2}+Y_{2}+W$ (types $(i),(i i)$, (iii) and (iv), respectively), in the orthogonal complement of \mathcal{P}.

Finally, we can conclude with the following result.
Theorem 8.3 Five-dimensional generalized symmetric space of type 9 admit five linearly independent homogeneous geodesics through the origin o, but never five orthogonal ones. There are at most three mutually orthogonal homogeneous geodesics through o.
Acknowledgments. The authors wish to express their gratitude towards Dr. E. Boeckx for his helpful hints and comments during the preparation of this paper.

Supported by funds of the University of Lecce and the M.U.R.S.T.

References

[1] G. Calvaruso, O. Kowalski and R.A. Marinosci, Homogeneous geodesics in solvable Lie groups, Acta Math. Hungarica, 2002.
[2] V.V. Kajzer, Conjugate points of left-invariant metrics on Lie groups, Soviet Math., 34 (1990), 32-44.
[3] A. Kaplan, On the geometry of groups of Heisemberg type, Bull. London Math. Soc., 15 (1983), 35-42.
[4] O. Kowalski, Classification of generalized symmetric Riemannian spaces of dimension $n \leq 5$, Rozpravi CS AV, Rada MP V 85(1975), n.8.
[5] O. Kowalski, Generalized symmetric spacesLectures Notes in Math., SpringerVerlag, Berlin, Heidelberg, New York, 805, 1980).
[6] O. Kowalski, S. Nikčević and Z. Vlášek, Homogeneous geodesics in homogeneous Riemannian manifolds (examples), Geometry and Topology of Submanifolds, (Beijing/Berlin,1999, World Sci. Publishing co., River Edge, NJ, (2000), 104112.
[7] O. Kowalski and J. Szenthe, On the existence of homogeneous geodesics in homogeneous Riemannian manifolds, Geom. Dedicata 81 (2000), 209-214. Erratum: Geom. Dedicata 84 (2001), 331-332.
[8] O. Kowalski and L. Vanhecke, Riemannian manifolds with homogeneous geodes$i c s$, Bull. Un. Mat. Ital. 5 (1991), 189-246.
[9] O. Kowalski and Z. Vlášek, Homogeneous Riemannian manifolds with only one homogeneous geodesic, 2001, to appear in Publ. Math. Debrecen
[10] R.A. Marinosci, Homogeneous geodesics in a three-dimensional Lie group, Comm. Math. Univ. Carolinae43, 2 (2002) 261-270.

Universitá degli Studi di Lecce,
Dipartimento di Matematica "E. de Giorgi",
Via Provinciale Lecce-Arnesano, 73100 Lecce, Italy.
e-mail:giovanni.calvaruso@unile.it; rosanna@ilenic.unile.it

[^0]: Balkan Journal of Geometry and Its Applications, Vol.8, No.1, 2003, pp. 1-19.
 (c) Balkan Society of Geometers, Geometry Balkan Press 2003.

