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Abstract

O.Kowalski and J.Szenthe [7] proved that every homogeneous Riemannian
manifold admits a homogeneous geodesic, that is, a geodesic which is an orbit
of a one-parameter group of isometries. Then, several authors investigated the
set of all homogeneous geodesics of some homogeneous spaces.

In this paper, we study the set of homogeneous geodesics of five-dimen- sional
generalized symmetric spaces and we find several interesting behaviours.
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1 Introduction

Let (M, g) be a (connected) homogeneous space, that is, a Riemannian manifold
admitting a connected group of isometries G, acting transitively and effectively on
M . Then, M can be identified with (G/H, g), where H is the isotropy group at a fixed
point o of M . The Lie algebra g of G has a reductive decomposition g = m⊕h, where
m ⊂ g is a subspace of g isomorphic to the tangent space To(M) and h is the Lie
algebra of H. In general, such decomposition is not unique. A geodesic γ(t) through
the origin o of M = G/H is called homogeneous if it is an orbit of a one-parameter
subgroup of G, that is

γ(t) = exp(tZ)(o), t ∈ IR,(1.1)

where Z is a nonzero vector of g .
A homogeneous Riemannian manifold is called a g.o. space if all geodesics are

homogeneous with respect to the largest connected group of isometries. All naturally
reductive spaces are g.o.spaces, but the converse does not hold. In fact, A. Kaplan
[3] proved the existence of g.o. spaces which are in no way naturally reductive; the
examples of A.Kaplan are generalized Heisenberg groups with two-dimensional center.
In [8], O.Kowalski and L.Vanhecke gave a classification of all g.o.spaces (which are in
no way naturally reductive) up to dimension six.
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About the existence of homogeneous geodesics in a general homogeneous Rie-
mannian manifold, V.V.Kajzer [2] proved that a Lie group endowed with a left-
invariant metric admits at least one homogeneous geodesic. More recently, O.Kowalski
and J.Szenthe [7] proved that any homogeneous Riemannian space M = G/H admits
at least one homogeneous geodesic through the origin. They also proved that if G is
semi-simple, then M admits n = dimM mutually orthogonal homogeneous geodesics
through the origin.

A natural problem is then to study the set of all homogeneous geodesics of a homo-
geneous Riemannian manifold. Several authors investigated the sets of homogeneous
geodesics on some types of homogeneous spaces (see [6], [9], [10]).

In this paper, we consider five-dimensional generalized symmetric spaces. The
study of homogeneous geodesics in these homogeneous spaces is of particular interest,
because their Lie groups in general are not semi-simple. For the ones of order 6
(type 9, see [4]), the Lie group is solvable. In section 2 we shall recall some basic
facts about homogeneous geodesics in homogeneous Riemannian manifolds. In sections
3,4,5,6,7 and 8 we study the sets of all homogeneous geodesics of five-dimensional
generalized symmetric spaces of type 2, 3, 4, 7, 8 and 9, respectively, which are all
the examples of five-dimensional generalized symmetric spaces which are not g.o.
spaces. The most interesting results we found concern homogeneous geodesics of five-
dimensional generalized symmetric spaces of type 7a and 9. Some other cases, in
particular types 3 and 8, are interesting because they present quite complicated sets
of geodesic vectors.

2 Preliminaries on homogeneous geodesics and
generalized symmetric spaces

Let (M = G/H, g) be a homogeneous Riemannian manifold with a fixed origin o, g
and h the Lie algebras of G and H respectively and

g = m⊕ h(2.1)

a reductive decomposition. The canonical projection p : G → G/H induces an iso-
morphism between the subspace m and the tangent space To(M). Consequently, the
scalar product go on To(M) induces a scalar product <,> on m which is Ad(H)-
invariant. A non-zero vector Z ∈ g is called a geodesic vector if the curve exptX(o)
is a geodesic. We recall the following characterization of geodesic vectors:
Lemma 2.1 [8] A non-zero vector X ∈ g is a geodesic vector if and only if

< [X, Y ]m, Xm >= 0(2.2)

for all Y ∈ m (the subscript m denotes the projection into m).
Therefore, looking for all homogeneous geodesics of a homogeneous Riemannian

manifold (M = G/H, g), we first calculate the connected component G of the full
isometry group I(M), or at least the corresponding Lie algebra g . Then, we find a
decomposition of the form (2.1) and look for the geodesic vectors in the form

Z =
r∑

i=1

xiei +
s∑

j=1

ajAj(2.3)
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where {ei}i=1,2,...,r is a convenient basis of m and {Aj}j=1,2,...,s is a basis of h. When
we take Y = ei , i = 1, 2, ..., r, the condition (2.2) produces a system of r quadratic
equations for the variables xi and aj . Then, we see for which values of x1, x2, ..., xr

and a1, a2, ..., as this system is satisfied. To such solutions, for which x1, x2, ..., xr are
not all equal to zero, correspond geodesic vectors (see also [6]).

A finite family {γ1, γ2, ..., γk} of homogeneous geodesics through o ∈ M is said to
be orthogonal (respectively, linearly independent) if the corresponding initial tangent
vectors at o are orthogonal (resp., linearly independent). The following result holds:
Proposition 2.2 [6] A finite family {γ1, γ2, ..., γk} of homogeneous geodesics through
o ∈ M is orthogonal (respectively, linearly independent) if the m-components of the
corresponding geodesic vectors are orthogonal (respectively, linearly independent).

We now recall some basic facts about generalized symmetric spaces. A generalized
symmetric space is a connected Riemannian manifold (M, g) admitting a regular s-
structure, that is, a family {sx : x ∈ M} of symmetries on M , such that

sx ◦ sy = sz ◦ sx, z = sx(y),

for every points x, y,∈ M [5]. As it is well-known, every generalized symmetric space
is a homogeneous Riemannian space G/H [4]. An s-structure {sx : x ∈ M} is said to
be of order k ≥ 2 if (sx)k = id for all x ∈ M and (sx)i 6= id for i < k. A Riemannian
manifold (M, g) is said to be k-symmetric if it admits a regular s-structure of order
k. Each generalized symmetric space is k-symmetric for some k [4]. The order of a
generalized symmetric space is the least integer k such that (M, g) is k-symmetric.

Low-dimensional generalized symmetric spaces have been classified [4], [5]. Com-
paring this classification with the classification of low-dimensional g.o. spaces given
in [8], we see that the generalized symmetric spaces which are not g.o. spaces are the
ones of type 2, 3, 4, 7, 8 (all of order 4) and 9 (of order 6) in the classification given
in [5].

For all these spaces, in [4] it is given a basis of g , containing a basis {X1, Y1, X2, Y2,W}
of m , with respect to which the Lie bracket [, ] of g and the scalar product <,> of
m are explicitly described.

According to Lemma 2.1, a non-zero vector X ∈ g is geodesic if and only if

< [X, Y ]m, Xm >= 0

for all Y ∈ m or, equivalently, if and only if





< [X, X1]m, Xm >= 0,
< [X, X2]m, Xm >= 0,
< [X, Y1]m, Xm >= 0,
< [X, Y2]m, Xm >= 0,
< [X, W ]m, Xm >= 0.

(2.4)
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3 Homogeneous geodesics of generalized symmetric
spaces of type 2

A five-dimensional generalized symmetric space M of type 2 is IR5(x, y, z, w, t),
equipped with the Riemannian metric

g = e−2λ1tdx2 + e2λ1tdy2 + e−2λ2tdz2 + e2λ2tdw2 + dt2 +
2α[e−(λ1+λ2)tdxdz + e(λ1+λ2)tdydw] +
+2β[e(λ1−λ2)tdydz − e(λ2−λ1)tdxdw],

where either λ1 > λ2 > 0, α2 + β2 < 1, or λ1 = λ2 > 0, α = 0 and 0 ≤ β < 1, or
λ1 < 0, λ2 = 0, α = 0 and 0 < β < 1. As homogeneous space, M = G/H, where G is
the group of all matrices of the form




eλ1t 0 0 0 x
0 e−λ1t 0 0 y
0 0 eλ2t 0 z
0 0 0 e−λ2t w
0 0 0 0 1




The linear subspace m of g admits a basis {X1, Y1, X2, Y2, W} such that

[Xj ,W ] = −λjXj , [Yj ,W ] = λjYj , [·, ·] = 0 otherwise.

2a): λ1 > λ2 > 0 and α2 + β2 < 1.
In this case, h = 0 [4]. The Lie bracket [, ] and the Riemannian metric <,> are

respectively determined by

[ , ] X1 X2 Y1 Y2 W

X1 0 0 0 0 −λ1X1

X2 0 0 0 0 −λ2X2

Y1 0 0 0 0 λ1Y1

Y2 0 0 0 0 λ2Y2

W λ1X1 λ2X2 −λ1Y1 −λ2Y2 0

(3.1)

and

< , > X1 X2 Y1 Y2 W

X1 1 α 0 −β 0
X2 α 1 β 0 0
Y1 0 β 1 α 0
Y2 −β 0 α 1 0
W 0 0 0 0 1

(3.2)

(see [4]). Using (3.1) and (3.2) to compute (2.4), we obtain that X ∈ g = m is geodesic
if and only if its components (x1, x2, y1, y2, w) with respect to {X1, X2, Y1, Y2, W}
satisfy
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w(x1 + αx2 − βy2) = 0,
w(αx1 + x2 + βy1) = 0,
w(βx2 + y1 + αy2) = 0,
w(−βx1 + αy1 + y2) = 0,
−λ1x1(x1 + αx2 − βy2)− λ2x2(αx1 + x2 + βy1)+
+λ1y1(βx2 + y1 + αy2) + λ2y2(−βx1 + αy1 + y2) = 0,

(3.3)

where we took into account that λ1 > λ2 > 0.
If w 6= 0, (3.4) gives easily x1 = x2 = y1 = y2 = 0. If w = 0, the solutions of (3.4)

are given by (x1, x2, y1, y2, 0), satisfying

−λ1x1(x1 + αx2 − βy2)− λ2x2(αx1 + x2 + βy1) +(3.4)
+λ1y1(βx2 + y1 + αy2) + λ2y2(−βx1 + αy1 + y2) = 0,

Hence, we proved that X is a geodesic vector of a generalized symmetric space of type
2a if and only if

(i) X = wW, or
(ii) X = x1X1 + x2X2 + y1Y1 + y2Y2 and (3.4) holds.

Geometrically speaking, geodesic vectors of a generalized symmetric space of type
2a form a straight line (i) and a hypercone (of equation (3.4)) in the orthogonal
complement of such line (ii).

Note that W is a geodesic vector of type (i), while X1 +Y1, X1−Y1, −(α−β)X1 +
X2 − (α + β)Y1 + Y2 and −(α + β)X1 + X2 + (α− β)Y1 − Y2 are geodesic vectors of
type (ii) and all together they form an orthogonal basis of geodesic vectors.
2b): λ1 = λ2 > 0, α = 0 and β > 0.

In this case, h = so(2) = span(A), where A is determined by AX1 = X2, AX2 =
−X1, AY1 = Y2, AY2 = −Y1, AW = 0 (see [4]). Since [A,X] = AX for all X ∈ g , we
get

[ , ] X1 X2 Y1 Y2 W A

X1 0 0 0 0 −λ1X1 −X2

X2 0 0 0 0 −λ2X2 X1

Y1 0 0 0 0 λ1Y1 −Y2

Y2 0 0 0 0 λ2Y2 Y1

W λ1X1 λ2X2 −λ1Y1 −λ2Y2 0 0
A X2 −X1 Y2 −Y1 0 0

(3.5)

and

< , > X1 X2 Y1 Y2 W

X1 1 0 0 −β 0
X2 0 1 β 0 0
Y1 0 β 1 0 0
Y2 −β 0 0 1 0
W 0 0 0 0 1

(3.6)



6 G. Calvaruso and R.A. Marinosci

We computed <,> as in case 2a), taking into account α = 0. X ∈ g is geo-
desic if and only if its components (x1, x2, y1, y2, w, a) with respect to the basis
{X1, Y1, X2, Y2,W,A} of g satisfy





λ1w(x1 − βy2) + a(x2 + βy1) = 0,
λ2w(x2 + βy1)− a(x1 − βy2) = 0,
−λ1w(βx2 + y1) + a(−βx1 + y2) = 0,
−λ2w(−βx1 + y2)− a(βx2 + y1) = 0,
−λ1x1(x1 − βy2)− λ2x2(x2 + βy1)+
+λ1y1(βx2 + y1) + λ2y2(−βx1 + y2) = 0.

(3.7)

If a 6= 0, then the solutions of (3.7) are given by x1 = x2 = y1 = y2 = 0. For a = 0,
we put a1 = x1−βy2, a2 = x2 +βy1, a3 = βx2 + y1 and a4 = −βx1 + y2. The system
(3.7) reduces to

{
wai = 0, i = 1, 2, 3, 4,
−λ1x1a1 − λ2a2λ1y1a3 + λ2y2a4 = 0.

(3.8)

If w 6= 0, (3.8) gives ai = 0, i = 1, .., 4, from which it follows easily x1 = x2 = y1 =
y2 = 0. If w = 0, then (3.8) reduces to the last equation, which gives x2

1+x2
2 = y2

1 +y2
2 .

Hence, X is a geodesic vector of a generalized symmetric space of type 2b if and only
if its m-component is

(i) Xm = wW, or
(ii) Xm = x1X1 + x2X2 + y1Y1 + y2Y2 and x2

1 + x2
2 = y2

1 + y2
2 .

We can check easily that {W,X1 +Y2, X1−Y2, X2 +Y1, X2−Y1} is an orthogonal
basis of geodesic vectors of m.
2c): λ1 > 0, λ2 = 0, α = 0 and 0 < β < 1.

In this case, h = so(2)
⊕

so(2) = span(A1, A2), where A1 = A of case 2b), while
A2 is determined by A2X1 = X2, A2X2 = −X1, A2Y1 = −Y2, A2Y2 = Y1, A2W = 0
(see [4]). Similarly to case 2b), we get

[ , ] X1 X2 Y1 Y2 W A1 A2

X1 0 0 0 0 −λ1X1 −X2 −X2

X2 0 0 0 0 0 X1 X1

Y1 0 0 0 0 λ1Y1 −Y2 Y2

Y2 0 0 0 0 0 Y1 −Y1

W λ1X1 0 −λ1Y1 0 0 0 0
A1 X2 −X1 Y2 −Y1 0 − −
A2 X2 −X1 −Y2 Y1 0 − −

(3.9)

and
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< , > X1 X2 Y1 Y2 W

X1 1 0 0 −β 0
X2 0 1 β 0 0
Y1 0 β 1 0 0
Y2 −β 0 0 1 0
W 0 0 0 0 1

(3.10)

X ∈ g is geodesic if and only if its components (x1, x2, y1, y2, w, a, b) with respect to
{X1, Y1, X2, Y2,W,A1, A2} satisfy





λ1w(x1 − βy2) + (a + b)(x2 + βy1) = 0,
−(a + b)(x1 − βy2) = 0,
−λ1w(βx2 + y1) + (a− b)(−βx1 + y2) = 0,
−(a− b)(βx2 + y1) = 0,
−λ1x1(x1 − βy2) + λ1y1(βx2 + y1) = 0.

(3.11)

If a 6= ±b, then x1 = x2 = y1 = y2 = 0. If a = b = 0, then either w = 0 and
x1(x1 − βy2) + y1(βx2 + y1) = 0, or w 6= 0 and x1 = βy2, y1 = −βx2. If a = b 6= −b,
then x1 = βy2 and x2 = y1 = 0, while for a = −b 6= b, we obtain x1 = y2 = 0 and
y1 = −βx2. Hence, if X is a geodesic vector of a generalized symmetric space of type
2c, then its m-component is

(i) Xm = x1X1 + x2X2 + y1Y1 + y2Y2 with x1(x1 − βy2) + y1(βx2 + y1) = 0,
or

(ii) Xm = βy2X1 + x2X2 − βx2Y1 + y2Y2 + wW.

We can check easily that X1 + Y1, X1 − Y1 (type (i)), together with X2 − βY1 +
W,X2 − βY1 − (1− β2)W and βX1 + Y2 (type (ii)), form an orthogonal basis of m.

From the study of cases 2a), 2b) and 2c) and taking into account Proposition
2.2, we can conclude that all five-dimensional generalized symmetric spaces of type 2
admit five mutually orthogonal homogeneous geodesics through the origin.

4 Homogeneous geodesics of generalized symmetric
spaces of type 3

A five-dimensional generalized symmetric space M of type 3 is the homogeneous
space M = SO(3,C)/SO(2), where SO(3,C) is the special complex orthogonal
group and the Riemannian metric of M is induced by a real invariant positive semi-
definite form of GL(3, C) (see [4]). The subalgebra is h = so(2) = span(A), where
AX1 = X2, AX2 = −X1, AY1 = Y2, AY2 = −Y1, AW = 0, with respect to a basis
{X1, X2, Y1, Y2,W} of m . The Lie bracket [, ] and the Riemannian metric <,> are
respectively given by
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[ , ] X1 X2 Y1 Y2 W A

X1 0 0 0 −W −X1 −X2

X2 0 0 W 0 −X2 X1

Y1 0 −W 0 0 Y1 −Y2

Y2 W 0 0 0 Y2 Y1

W X1 X2 −Y1 −Y2 0 0
A X2 −X1 Y2 −Y1 0 0

(4.1)

and

< , > X1 X2 Y1 Y2 W

X1 a2 0 0 −γ 0
X2 0 a2 γ 0 0
Y1 0 γ a2 0 0
Y2 −γ 0 0 a2 0
W 0 0 0 0 b2

(4.2)

where a, b > 0, γ are real numbers, a2 > |γ| (see [4]).
Using (4.1) and (4.2) to compute (2.4), we obtain that X ∈ g is geodesic if

and only if its components (x1, x2, y1, y2, w, r) with respect to {X1, X2, Y1, Y2,W,A}
satisfy





w(a2x1 + (b2 − γ)y2) + r(a2x2 + γy1) = 0,
w(a2x2 − (b2 − γ)y1)− r(a2x1 − γy2) = 0,
w(−a2y1 + (b2 − γ)x2) + r(a2y2 − γx1) = 0,
w(−a2y2 − (b2 − γ)x1)− r(a2y1 + γx2) = 0,
x2

1 + x2
2 = y2

1 + y2
2 ,

(4.3)

taking into account that a2 6= 0.
We can now find all the solutions of (4.3). If r = w = 0, then (4.3) reduces to

x2
1 + x2

2 = y2
1 + y2

2 . If r = 0 6= w, the solutions of (4.3) are x1 = x2 = y1 = y2 = 0 if
a2 − b2 + γ 6= 0, and x1 + y2 = x2 − y1 = 0 if a2 − b2 + γ = 0.

The case r 6= 0 is much more complicated. After some standard but quite long
calculations, we eventually find that, when r 6= 0, the solutions of (4.3) are given by





x1 = −b2w(ry1 + wy2)
a2(r2 + w2)

+
γ

a2
y2,

x2 =
b2w(wy1 − ry2)

a2(r2 + w2)
− γ

a2
y1, with r2 =

b2w2(b2 − 2γ)
a4 − γ2

− w2.

Thus, if X is a geodesic vector of a generalized symmetric space of type 3, then its
m-component is

(i) Xm = x1X1 + x2X2 + y1Y1 + y2Y2 and x2
1 + x2

2 = y2
1 + y2

2 , or
(ii) Xm = wW if a2 − b2 + γ 6= 0, while

Xm = x2X2 + x2Y1 + wW if a2 − b2 + γ = 0, or

(iii) Xm = (−b2w(ry1 + wy2)
a2(r2 + 1)

+
γ

a2
y2)X1 + (

b2w(wy1 − ry2)
a2(r2 + 1)

− γ

a2
y1)X2 + y1Y1+

+y2Y2 + wW, where r2 = b2w2(b2−2γ)
a4−γ2 − w2 6= 0.
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One can check that W is a vector of type (ii), while V1 = X1 + Y1, V2 = X1 − Y1,
V3 = γX1 +a2X2−γY1 +a2Y2 and V4 = γX1−a2X2 +γY1 +a2Y2 are of type (i), and
{V1, V2, V3, V4,W} is an orthogonal basis of m. Therefore, Proposition 2.2 implies that
five-dimensional generalized symmetric spaces of type 3 admit five mutually orthogonal
homogeneous geodesics through the origin o.

5 Homogeneous geodesics of generalized symmetric
spaces of type 4

Five-dimensional generalized symmetric spaces M of type 4 are complex matrix groups



eλt 0 z
0 e−λt w
0 0 1




where z, w ∈ C and t ∈ IR. M is also the space C2(z, w) × IR(t), equipped with a
Riemannian metric

g = e−(λ+λ̄)tdzdz̄ + e(λ+λ̄)tdwdw̄ + dt2 + 2c[e(λ̄−λ)tdzdw̄ + e(λ−λ̄)tdz̄dw] +

+γe−2λtdz2 + γ̄e−2λ̄tdz̄2 − γe2λtdw2 − γ̄e2λ̄tdw̄2,

with λ, γ ∈ C, c ∈ IR, γγ̄ + c2 < 1/4 [4]. Put ν = (1 + b2)γ, where c =
1− b2

2(1 + b2)
.

Then, γγ̄ + c2 < 1/4 is equivalent to νν̄ < b2.
2a): λ + λ̄ 6= 0 and ν 6= 0.

In this case, h = 0 [4]. With respect to a suitable basis {X1, X2, Y1, Y2, W} of g,
the Lie bracket [, ] and the Riemannian metric <, > are given by (see [4])

[ , ] X1 X2 Y1 Y2 W

X1 0 0 0 0 −ηX2 − µY2

X2 0 0 0 0 ηX1 − µY1

Y1 0 0 0 0 −µX2 + ηY2

Y2 0 0 0 0 −µX1 − ηY1

W ηX2 + µY2 −ηX1 + µY1 µX2 − ηY2 µX1 + ηY1 0

(5.1)

and

< , > X1 X2 Y1 Y2 W

X1 1 α 0 −β 0
X2 α b2 β 0 0
Y1 0 β 1 α 0
Y2 −β 0 α b2 0
W 0 0 0 0 1

(5.2)
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where λ = η+ iµ and ν = α+ iβ. Using (5.1) and (5.2) in (2.4), we obtain that X ∈ g
is geodesic if and only if its components satisfy





wη(αx1 + b2x2 + βy1) + wµ(−βx1 + αy1 + b2y2) = 0,
−wη(x1 + αx2 − βy2) + wµ(βx2 + y1 + αy2) = 0,
wµ(αx1 + b2x2 + βy1)− wη(−βx1 + αy1 + b2y2) = 0,
wµ(x1 + αx2 − βy2) + wη(βx2 + y1 + αy2) = 0,
(ηx1 + µy1)(αx1 + b2x2 + βy1) + (µx1 − ηy1)(−βx1 + αy1 + b2y2)+
+(−ηx2 + µy2)(x1 + αx2 − βy2) + (µx2 + ηy2)(βx2 + y1 + αy2) = 0

(5.3)

It is not difficult to show that if w 6= 0, the solutions of (5.3) are given by (0, 0, 0, 0, w),
while if w = 0, (5.3) reduces to the fifth equation. So, in this case the solutions are
(x1, x2, y1, y2, 0) such that

(ηx1 + µy1)(αx1 + b2x2 + βy1) + (µx1 − ηy1)(−βx1 + αy1 + b2y2) +(5.4)
+(−ηx2 + µy2)(x1 + αx2 − βy2) + (µx2 + ηy2)(βx2 + y1 + αy2) = 0

We then proved that X is a geodesic vector of a generalized symmetric space of type
4a if and only if

(i) X = wW, or
(ii) X = x1X1 + x2X2 + y1Y1 + y2Y2 and (5.4) holds.

Then, for generalized symmetric spaces of type 4a, geodesic vectors form a straight
line (i) and a hypercone (of equation (5.4)) in the orthogonal complement of such line
(ii).

About the existence of an orthogonal basis of geodesic vectors, we found that such
basis always exists, but it strongly varies with the different values of α, β, η and µ.
Taking into account that η 6= 0 and α+iβ 6= 0, an orthogonal basis of geodesic vectors
is given by:

a) {X1, Y1, X2 − βY1, βX1 + Y2,W} when α = µ = 0;

b) {X1 +
αµ + βη +

√
∆

αη − βµ
Y1, X1 +

αµ + βη −√∆
αη − βµ

Y1, (βk − α)X1 + X2 − (αk +

β)Y1 + kY2, (β + αk)X1 − kX2 + (βk − α)Y1 + Y2,W}, with ∆ = (α2 + β2)(η2 + µ2)

and k =
αµ− βη +

√
∆

αη + βµ
, when α 6= ±µ

η
β;

c) {X1, Y1, X2−(1+
µ2

η2
)βY1+

µ

η
Y2,−η2 + µ2

ηµ
X1+X2− η

µ
Y2,W} when α =

µ

η
β 6= 0;

d) {X1+
µ

η
Y1, X1− η

µ
Y1,

µ

η
βX1+X2−βY1, βX1+

µ

η
βY1+Y2,W} if α = −µ

η
β 6= 0.

Therefore, five-dimensional generalized symmetric spaces of type 4a admit five
mutually orthogonal homogeneous geodesics through the origin.
2b): λ + λ̄ = 0, ν = 0 and b2 6= 1.



Homogeneous Geodesics in Five-Dimensional Generalized Symmetric Spaces 11

Since λ+ λ̄ = 0, we have λ = iµ, µ ∈ IR. In this case, h = so(2) = span(A), where
A is determined by AX1 = −Y1, AX2 = Y2, AY1 = X1, AY2 = −X2, AW = 0 (see
[4]). Computing [, ] and <,>, taking into account that now ν = 0 and λ = iµ, we get

[ , ] X1 X2 Y1 Y2 W A

X1 0 0 0 0 −µY2 Y1

X2 0 0 0 0 −µY1 −Y2

Y1 0 0 0 0 −µX2 −X1

Y2 0 0 0 0 −µX1 X2

W µY2 µY1 µX2 µX1 0 0
A −Y1 Y2 X1 −X2 0 0

(5.5)

and {X1, X2, Y1, Y2,W} is an orthogonal basis, with < X1, X1 >=< Y1, Y1 >= <
W,W >= 1 and < X2, X2 >=< Y2, Y2 >= b2 6= 1.

Therefore, X ∈ g is geodesic if and only if its components (x1, x2, y1, y2, w, a)
with respect to the basis {X1, Y1, X2, Y2,W,A} satisfy





µwb2y2 − ay1 = 0,
µwy1 + ab2y2 = 0,
µwb2x2 + ax1 = 0,
µwx1 − ab2x2 = 0,
2µ(x1y2 + x2y1) = 0.

(5.6)

It is easy to show that if µ = 0, then any vector of m is the component of a
geodesic vector. Hence, we now focus on the case µ 6= 0. When w 6= 0, from (5.6) we
get x1 = x2 = y1 = y2 = 0, while if w = 0, then (5.6) reduces to x1y2 + x2y1 = 0.
Therefore, if µ 6= 0, X is a geodesic vector of a generalized symmetric space of type
4b if and only if

(i) Xm = wW, or
(ii) Xm = x1X1 + x2X2 + y1Y1 + y2Y2 and x1y2 + x2y1 = 0.

We can check easily that X1, X2, Y1, Y2 and W are mutually orthogonal geodesic
vectors. Thus, five-dimensional generalized symmetric spaces of type 4b admit five
linearly independent homogeneous geodesics through the origin o.
2c): λ + λ̄ 6= 0, ν = 0 and b2 = 1.

In this case, h = so(2)
⊕

so(2) = span(A1, A2), where A1 = A of type 4b, while
A2 is determined by A2X1 = X2, A2X2 = −X1, A2Y1 = −Y2, AY2 = Y1, AW = 0
(see [4]). Hence, computing the Lie bracket, we get

[ , ] X1 X2 Y1 Y2 W A1 A2

X1 0 0 0 0 −ηX2 − µY2 Y1 −X2

X2 0 0 0 0 ηX1 − µY1 −Y2 X1

Y1 0 0 0 0 −µX2 + ηY2 −X1 Y2

Y2 0 0 0 0 −µX1 − ηY1 X2 −Y1

W ηX2 + µY2 −ηX1 + µY1 µX2 − ηY2 µX1 + ηY1 0 0 0
A1 −Y1 Y2 X1 −X2 0 − −
A2 X2 −X1 −Y2 Y1 0 − −
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Note that in this case {X1, X2, Y1, Y2,W} is an orthonormal basis of m .
X ∈ g is geodesic if and only if its components (x1, x2, y1, y2, w, a, b) with respect

to {X1, Y1, X2, Y2,W,A1, A2} satisfy





w(ηx2 + µy2)− ay1 + bx2 = 0,
w(ηx1 − µy1)− ay2 + bx1 = 0,
w(µx2 − ηy2) + ax1 − by2 = 0,
w(µx1 + ηy1)− ax2 + by1 = 0,
2µ(x1y2 + y1x2) = 0.

(5.7)

When w 6= 0, (5.7) gives x1 = x2 = y1 = y2 = 0. For w = 0, (5.7) reduces to its last
equation x1y2 + y1x2 = 0. Thus, if X is a geodesic vector of a generalized symmetric
space of type 4c, then its m-component is

(i) Xm = wW, or
(ii) Xm = x1X1 + x2X2 + y1Y1 + y2Y2 and x1y2 + x2y1 = 0.

Note that {X1, X2, Y1, Y2,W} is an orthonormal basis of m, where X1, X2, Y1,
Y2 are of type (i) while W is of type (ii). Therefore, from Proposition 2.2 it follows
that five-dimensional generalized symmetric spaces of type 4c admit five mutually
orthogonal homogeneous geodesics through the origin.

6 Homogeneous geodesics of generalized symmetric
spaces of type 7

As homogeneous spaces, five-dimensional generalized symmetric spaces M of type 7
are real matrix groups




eλt 0 0 0 x
0 e−λt 0 0 y

teλt 0 eλt 0 u
0 −te−λt 0 e−λt v
0 0 0 0 1




M is also IR5(x, y, u, v, t), equipped with a Riemannian metric

g = dt2 + e−2λt(tdx− du)2 + e2λt(tdy + dv)2 + a2(e−2λtdx2 + e2λtdy2) +
+2γ(dydu− dxdv),

where λ, a, γ ∈ IR, λ ≥ 0, a > 0 and γ2 < a2.
2a): λ 6= 0.

In this case, h = 0 [4]. Following [4], there exists a basis {X1, X2, Y1, Y2,W} of g
such that
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[ , ] X1 X2 Y1 Y2 W

X1 0 0 0 0 −λX1 −X2

X2 0 0 0 0 −λX2

Y1 0 0 0 0 λY1 + Y2

Y2 0 0 0 0 λY2

W λX1 + X2 λX2 −λY1 − Y2 −λY2 0

(6.1)

and

< , > X1 X2 Y1 Y2 W

X1 a2 0 0 −γ 0
X2 0 1 γ 0 0
Y1 0 γ a2 0 0
Y2 −γ 0 0 1 0
W 0 0 0 0 1

(6.2)

We now use (6.1) and (6.2) to compute (2.4). Taking into account that λ 6= 0, we get




a2x1 − γy2 = 0,
x2 + γy1 = 0,
γx2 + a2y1 = 0,
y2 − γx1 = 0,

(6.3)

which only admits the solutions (0, 0, 0, 0, w). So, X is a geodesic vector of a gener-
alized symmetric space of type 7a if and only if X is parallel to W . In other words,
geodesic vectors of a five-dimensional generalized symmetric space of type 7a form a
straight line. As a consequence, we clearly have the following
Theorem 6.1 Five-dimensional generalized symmetric spaces of type 7a only admit
one homogeneous geodesic through the origin.
2b): λ = 0.

In this case, h = so(2) = span(A), where A is determined by AX1 = −Y1,
AX2 = Y2, AY1 = X1, AY2 = −X2, AW = 0 (see [4]). Computing [, ] and <,>,
taking into account that now λ = 0 and γ = 0 [4], we get

[ , ] X1 X2 Y1 Y2 W A

X1 0 0 0 0 −X2 Y1

X2 0 0 0 0 0 −Y2

Y1 0 0 0 0 Y2 −X1

Y2 0 0 0 0 0 X2

W X2 0 −Y2 0 0 0
A −Y1 Y2 X1 −X2 0 0

(6.4)

and {X1, X2, Y1, Y2, W} is an orthogonal basis of g , with < X1, X1 >=< Y1, Y1 >= a2

and < X2, X2 >=< Y2, Y2 >=< W,W >= 1.
Using (6.4) to compute (2.4), it is easy to show that X ∈ g is geodesic if and

only if its components (x1, x2, y1, y2, w, a) with respect to the basis {X1, Y1, X2, Y2,
W,A} satisfy



14 G. Calvaruso and R.A. Marinosci





ay1 − wx2 = 0,
ay2 = 0,
ax1 − wy2 = 0,
ax2 = 0,
x1x2 − y1y2 = 0.

(6.5)

For a 6= 0, (6.5) gives x1 = x2 = y1 = y2 = 0. For a = 0, we have either w = 0 and
x1x2 − y1y2 = 0, or w 6= 0 and x2 = y2 = 0. Therefore, if X is a geodesic vector of a
generalized symmetric space of type 7b, then its m-component is given by

(i) Xm = x1X1 + x2X2 + y1Y1 + y2Y2 and x1x2 − y1y2 = 0, or
(ii) Xm = x1X1 + y1Y1 + wW.

Finally, since all the vectors of the orthogonal basis {X1, X2, Y1, Y2,W} are of type
(i) or (ii), we can conclude that five-dimensional generalized symmetric spaces of type
7b admit five mutually orthogonal homogeneous geodesics through the origin.

7 Homogeneous geodesics of generalized symmetric
spaces of type 8

As homogeneous spaces, five-dimensional generalized symmetric spaces M of type 8
are Ie(IR3)/SO(2) or Ih(IR3)/SO(2), where Ie (respectively, Ih) denotes the group of
all positive affine transformations of IR3 that preserve dx2 + dy2 + dz2 (respectively,
dx2 + dy2 − dz2). M is also described as submanifold of IR6(x, y, z, α, β, γ), such that
α2 + β2 ± γ2 = ±1. The Riemannian metric of M is induced by the regular invariant
quadratic form

ḡ = dx2 + dy2 ± dz2 + λ2(dα2 + dβ2 ± dγ2) + [µ± (−1)](αdx + βdy ± γdz)2,

where λ, µ > 0 [4]. The five-dimensional generalized symmetric spaces of type 8a
(respectively, 8b) are obtained when we have the sign ”+” (respectively, ”− ”) in the
previous formulas. Here we analyze the case 8a, the case 8b can be treated similarly
and it leads to the same conclusions. In both cases, h = so(2) = span(A), where A
is determined by AX1 = −Y1, AX2 = Y2, AY1 = X1, AY2 = −X2, AW = 0, with
{X1, X2, Y1, Y2,W} a basis of m . The Lie bracket on M is determined by

[ , ] X1 X2 Y1 Y2 W A

X1 0 W 0 0 −X2 Y1

X2 −W 0 0 0 0 −Y2

Y1 0 0 0 −W Y2 −X1

Y2 0 0 W 0 0 X2

W X2 0 −Y2 0 0 0
A −Y1 Y2 X1 −X2 0 0

(7.1)

Moreover, {X1, X2, Y1, Y2,W} is an orthogonal basis of m , with < X1, X1 >=
< Y1, Y1 >= b2, < X2, X2 >=< Y2, Y2 >= 1 and < W,W >= c2, where b, c > 0
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[4]. Using (7.1) to compute (2.4), we obtain that X ∈ g is geodesic if and only if
its components (x1, x2, y1, y2, w, a) with respect to the basis {X1, Y1, X2, Y2,W,A}
satisfy





x2w(1− c2)− y1ab2 = 0,
x1wc2 + ay2 = 0,
−y2w(1− c2) + x1ab2 = 0,
y1wc2 + ax2 = 0,
x1x2 − b2y1y2 = 0.

(7.2)

For a = w = 0, (7.2) reduces to x1x2 − b2y1y2 = 0. If a = 0 6= w, we get x1 = x2 =
y1 = y2 = 0 when c2 6= 1, while if c2 = 1 we only have x1 = y1 = 0. If a 6= 0, we must
distinguish different cases. We eventually obtain:

1) If c2 − 1 < 0, then x1 = x2 = y1 = y2 = 0.

2) If c2 − 1 > 0 and b2 = 1, then, in addition to x1 = x2 = y1 = y2 = 0, we also have

the solutions x2 = −wc2

a
y1, y2 = −wc2

a
x1 and w = ± ab

c
√

c2 − 1
.

3) If c2 − 1 > 0 and b2 6= 1, the solutions are either x1 = x2 = y1 = y2 = 0, or

x2 = y1 = 0, y2 = −wc2

a
x1 and w = ± ab

c
√

c2 − 1
, or x1 = y2 = 0, x2 = −wc2

a
y1 and

w = ± ab

c
√

c2 − 1
.

In this way, we proved that the if X is a geodesic vectors of a five-dimensional
generalized symmetric space of type 8a, then its m-component is:

(i) Xm = wW, or
(ii) Xm = x1X1 + x2X2 + y1Y1 + y2Y2 and x1x2 − b2y1y2 = 0, or
(iii) Xm = x2X2 + y2Y2 + wW (only when c2 = 1), or

(iv) Xm = x1X1 − wc2

a
y1X2 + y1Y1 − wc2

a
x1Y2 ± ab

c
√

c2 − 1
W (only when c2 > 1

and b2 = 1), or

(v) Xm = x1X1 − wc2

a
x1Y2 ± ab

c
√

c2 − 1
W and

Xm = −wc2

a
y1X2 + y1Y1 ± ab

c
√

c2 − 1
W (only when c2 > 1 and b2 6= 1).

The calculations for spaces of type 8b are similar. Since all the vectors of the
orthogonal basis {X1, X2, Y1, Y2,W} are geodesic vectors of type (i) or (ii), which
exist for all values of b and c, we can conclude that five-dimensional generalized
symmetric spaces of type 8 admit five mutually orthogonal homogeneous geodesics
through the origin.
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8 Homogeneous geodesics of generalized symmetric
spaces of order 6 (type 9)

Five-dimensional generalized symmetric spaces of order 6 can be described in the
following way. The underlying manifold is IR5(x, y, z, u, v), equipped with the Rie-
mannian metric

g =
2
3
a2(du2 + dudv + dv2) + (2b2 + 1)(e2(u+v)dx2 + e−2udy2 +(8.1)

+e−2vdz2) + 2(b2 − 1)(evdxdy + eudxdz − e−(u+v)dydz),

where a > 0 and b > 0 are real numbers. The space (IR5, g) can be identified with the
homogeneous space G/H, where G is the group of all matrices of the form




e−(u+v) 0 0 x
0 eu 0 y
0 0 ev y
0 0 0 1




Generalized symmetric spaces of type 9 have a special interest because they are of
solvable type, that is, G is a solvable Lie group. In a forthcoming paper [1], the authors
and O. Kowalski will study homogeneous geodesics in some examples of generalized
symmetric spaces of solvable type of arbitrary odd dimension.

Following [4], the Lie algebra g of G admits a basis {X1, X2, Y1, Y2,W} such that

[ , ] X1 X2 Y1 Y2 W

X1 0 −X2 0 0 W
X2 X2 0 X2 0 0
Y1 0 −X2 0 Y2 0
Y2 0 0 −Y2 0 0
W −W 0 0 0 0

(8.2)

and

< , > X1 X2 Y1 Y2 W

X1
2
3a2 0 1

3a2 0 0
X2 0 2b2 + 1 0 b2 − 1 b2 − 1
Y1

1
3a2 0 2

3a2 0 0
Y2 0 b2 − 1 0 2b2 + 1 −(b2 − 1)
W 0 b2 − 1 0 −(b2 − 1) 2b2 + 1

(8.3)

Since h = 0 [4], each geodesic vector must be an element of g. We use (8.2) and (8.3)
to compute (2.4). Putting

h =
b2 − 1
2b2 + 1

,
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we get easily that X ∈ g is geodesic if and only if its components satisfy




(x2 + w)(x2 + hy2 − w) = 0,
(x1 + y1)(x2 + hy2 + hw) = 0,
(x2 + y2)(x2 − y2 + hw) = 0,
y1(hx2 + y2 − hw) = 0,
x1(hx2 − hy2 + w) = 0.

(8.4)

By the definition of h, it follows easily that h− 1 6= 0, h + 1 6= 0 and 2h− 1 6= 0, for
all b > 0. We now find all the solutions of (8.4).

a) If x1 = 0, (8.4) reduces to




(x2 + w)(x2 + hy2 − w) = 0,
y1(x2 + hy2 + hw) = 0,
(x2 + y2)(x2 − y2 + hw) = 0,
y1(hx2 + y2 − hw) = 0.

(8.5)

Adding the second and the fourth equation of (8.5) and taking into account that
h + 1 6= 0, we get that either y1 = 0 or x2 + y2 = 0.

If also y1 = 0, then (8.5) reduces to
{

(x2 + w)(x2 + hy2 − w) = 0,
(x2 + y2)(x2 − y2 + hw) = 0,

whose solutions are (0,−w, 0, w, w), (0,−w, 0, (h − 1)w, w), (0,−y2, 0, y2, (h − 1)y2),
(0, (1− h)w, 0, w, w).

When y1 6= 0, the only solutions are (0, 0, y1, 0, 0).

b) If x1 6= 0, from the last equation of (8.4) we get hx2 − hy2 + w = 0.
If y1 = 0, the case is similar to the case x1 = 0, y1 6= 0. Proceeding in the same

way, we get the solutions (x1, 0, 0, 0, 0).
If y1 6= 0, (8.4) gives





hx2 − hy2 + w = 0,
hx2 + y2 − hw) = 0,
(x2 + w)(x2 + hy2 − w) = 0,
(x1 + y1)(x2 + hy2 + hw) = 0,
(x2 + y2)(x2 − y2 + hw) = 0.

(8.6)

whose solutions are (x1, 0, y1, 0, 0).
So, we proved the following

Proposition 8.1 X is a geodesic vector of a five-dimensional generalized symmetric
space of type 9 if and only if

(i) X = −wX2 + wY2 + wW, or
(ii) X = −wX2 + (h− 1)wY2 + wW, or
(iii) X = −y2X2 + y2Y2 + (h− 1)y2W, or
(iv) X = (1− h)wX2 + wY2 + wW, or
(v) X = x1X1 + y1Y1.
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Note that two geodesic vectors of two distinct types among (i), (ii), (iii) and (iv) are
always distinct, since h− 1 6= 1.

If we add to {X1, Y1} a triplet of vectors chosen in {V1 = −X2 + Y2 + W,V2 =
−X2 + (h − 1)Y2 + W,V3 = −X2 + Y2 + (h − 1)W,V4 = −(h − 1)X2 + Y2 + W}, we
then always get five linearly independent geodesic vectors, taking into account that
h− 2 6= 0. Hence, there exist five linearly independent geodesic vectors in M .

About the orthogonality, it is easy to prove that a geodesic vector of type (v) is
orthogonal to all geodesic vectors of type (i), (ii), (iii) or (iv). Moreover, for example
X1 and V = X1 − 2Y1 are two orthogonal geodesic vectors of type (v). Finally, two
geodesic vectors chosen in two different types among (i), (ii), (iii) and (iv) are never
mutually orthogonal. In fact, < V1, V2 >=< V1, V3 >= < V1, V4 >= 3(h + 1) 6= 0,
while < V2, V3 >=< V2, V4 >=< V3, V4 >= (2b2+1)(2h−1)−(b2−1)(h2+2) 6= 0. So,
we can conclude that there are at most three geodesic vectors mutually orthogonal,
for example taking X1, V = X1 − 2Y1 and V1. So, from Proposition 8.1 it follows
Corollary 8.2 Geodesic vectors of five-dimensional generalized symmetric spaces of
type 9 form

(a) a plane (2-dimensional vector subspace) P of g (type (v)), and

(b) four straight lines, respectively generated by the geodesic vectors −X2+Y2+W ,
−X2 + (h− 1)Y2 + W , −X2 + Y2 + (h− 1)W and (1−h)X2 + Y2 + W (types (i), (ii),
(iii) and (iv), respectively), in the orthogonal complement of P.

Finally, we can conclude with the following result.
Theorem 8.3 Five-dimensional generalized symmetric space of type 9 admit five
linearly independent homogeneous geodesics through the origin o, but never five or-
thogonal ones. There are at most three mutually orthogonal homogeneous geodesics
through o.
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Universitá degli Studi di Lecce,
Dipartimento di Matematica ”E. de Giorgi”,
Via Provinciale Lecce-Arnesano, 73100 Lecce, Italy.
e-mail:giovanni.calvaruso@unile.it; rosanna@ilenic.unile.it


