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Abstract

In [To], the author presented a method of constructing all weakly regular
pseudospherical surfaces corresponding to given Weierstrass-type data. While
the construction itself will appear later as a separate publication, this report
contains a complete and detailed description of the Weierstrass representation
for weakly regular surfaces with K = −1, in terms of moving frames and loop
groups.
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1 Moving Frames of Surfaces in E3

This is a general introduction to the concept of a moving frame for a surface in E3,
in the spirit of [Ei] and [Ch, Te].

In the real Euclidean three-space E3 endowed with the inner product 〈·, ·〉, a
frame is an ordered quadruple F = {x, e1, e2, e3}, where x ∈ E3 and e1, e2, e3 are
orthonormal vectors of positive orientation, i.e., e3 = e1×e2. Let F denote the set of all
frames. We will mostly be interested in families of frames along certain submanifolds.
Such a family is usually called an orthonormal moving frame. Throughout the text,
we refer to it briefly as (moving) frame. A Frenet frame is an example of a moving
frame.
Example [Frenet frames along a curve]. Let α = α(t) be a curve in E3. The
Frenet frame {x, e1, e2, e3} along the curve α, as described in classical differential
geometry, consists of the unit tangent vector field e1, the unit normal vector field e2
and the unit binormal vector field e3. These vectors satisfy the Frenet equations

(1.1.1)















dx = ds · e1

de1 = ds · k(t) · e2

de2 = ds · (−k(t) · e1 + τ(t)e3)
de3 = −ds · τ(t) · e2
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Here ds = s′(t)dt represents the arc length differential, while k and τ denote
the curvature and torsion, respectively. Conversely, given arbitrary differential forms
ds 6= 0, k(t)dt, τ(t)dt, one can reconstruct the curve uniquely up to Euclidean motions.

For moving frames of surfaces, there exist differential forms generalizing ds, k(t)dt,
τ(t)dt, satisfying some integrability conditions, the Gauss-Codazzi equations. Cartan
showed that these equations can be derived from the integrability conditions satisfied
by the so-called Cartan forms (see (1.1.10–11) below).

We will see that the space of all frames F forms a 6-dimensional manifold. This
manifold can be identified with the group of Euclidean motions defined below.

Consider the groups

1.1.2 O(3) = {A : E3 → E3 linear; 〈Ax,Ay〉 = 〈x, y〉, x, y ∈ E3}

1.1.3 SL(3,R) = {A : E3 → E3 linear; det A = 1}

1.1.4 SO(3) = {A ∈ O(3); det A > 0}.

Note, SO(3) = SL(3,R) ∩O(3).
We define the group of orientation-preserving rigid motions

(1.1.5) G = {w 7→ x + Aw; x ∈ E3, A ∈ SO(3)}.

Note that the groups (1.1.2)–(1.1.5) are real Lie groups.
To identify G with F , we fix a frame F0 = {0, ě1, ě2, ě3} in F . Then if F =

{x, e1, e2, e3} is an arbitrary frame in F , the map

(1.1.6) w 7→ x +
3

∑

i=1

〈ěi, w〉ei, w ∈ E3

is an element of the group G.
Fixing F0 means fixing an origin and an orthonormal basis. Expressing the entries

of an arbitrary frame F in terms of this basis, via (1.1.6), realizes F as a pair consisting
of a translation vector and an orientation-preserving matrix.

Conversely, given g ∈ G we set

(1.1.7) x = g(0) and ei = g(ěi)− x.

The resulting F = {x, e1, e2, e3} is a frame and it is easy to see that the operations
(1.1.6) and (1.1.7) are inverse to each other.

The bijection presented above gives an isomorphism between G and F , and thus
F is endowed with a manifold structure.

We consider the maps

1.1.8 xf : F → E3, xf ({y, u1, u2, u3}) = y,

1.1.9 ef
j : F → E3, ef

j ({y, u1, u2, u3}) = uj , j = 1, 2, 3
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The differentials dxf , def
1 , def

2 and def
3 estimated at F are linear maps from the

tangent space TFF of F to E3. Therefore they can be written as linear combinations
relative to the basis ef

1 (F ), ef
2 (F ), ef

3 (F ).
Thus, at a “point” F ∈ F , we define the scalar differential forms ω1, ω2, ω3, ωij ,

1 ≤ i, j ≤ 3 via

(1.1.10) dF xf = ω1e
f
1 (F ) + ω2e

f
2 (F ) + ω3e

f
3 (F )

and

(1.1.11) dF ef
j =

3
∑

k=1

ωjkef
k(F ).

Since 〈ej , ej〉 = 1, we have 〈ef
j (F ), ef

j (F )〉 = 1, for every F ∈ F . Therefore,

(1.1.12) 〈dF ef
j (U), ef

j (F )〉 = 0, for all U ∈ TFF .

This last relation implies

(1.1.13) ωjj = 0, j = 1, 2, 3

Moreover, since 〈ef
j (F ), ef

k(F )〉 = 0 for all j 6= k, differentiation yields

(1.1.14) 〈dF ef
j (U), ef

k(F )〉+ 〈ef
j (F ),dF ef

k(U)〉 = 0,

that is

(1.1.15) ωjk = −ωkj .

Therefore, equations (1.1.10–11) are completely determined by the six 1-forms
ω1, ω2, ω3, ω12, ω13, ω23.

It is straightforward to verify the Cartan Structure Equations ([Ch, Te], p.106):

1.1.16 dωi =
3

∑

j=1

ωj ∧ ωji, i = 1, 2, 3

1.1.17 dωij =
3

∑

k=1

ωik ∧ ωkj , 1 ≤ i, j ≤ 3.

Let now M = (D, ψ) be an immersion of an open connected subset D ⊂ R2 into
R3, ψ : D → R3. This describes a parametric surface, admitting self-intersections.

All the frames {x, e1, e2, e3} with x ∈ ψ(D) form the zeroth order frame bundle of
M . The set of zeroth order frames will be denoted by FM0 .

It is easy to see that the diffeomorphism F ∼= G ∼= R3 × SO(3), induced by fixing
a frame F0, yields FM0 ∼= ψ(D)× SO(3).

Let now F ∈ FM0 . Since we identified F with G, the group of orientation-
preserving rigid motions of R3, the frame F in particular is identified with a pair
F = (ψ(u, v), A), (u, v) ∈ D, A ∈ SO(3).
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On FM0 we have natural vector fields: Y1 = ∂uF , Y2 = ∂vF and YB , where B is
any vector field of SO(3), pulled back to FM0 . Then ωj(YB) = 0.

Let S2 denote the unit sphere in R3. Let ~N : D → S2 denote a unit normal vector
field to M . Then 〈 ~N(u, v), ∂uψ(u, v)〉 = 0. If Y1 = ∂uF , Y2 = ∂vF denote the standard
vector fields along FM0 introduced above, then

1.1.18 0 = 〈 ~N(u, v), ∂uψ(u, v)〉 = 〈 ~N, dF xf (Y1)〉 =
∑

j

〈 ~N, ef
j (F )〉ωj(Y1).

Similarly, we obtain

(1.1.19) 0 =
∑

j

〈 ~N, ef
j (F )〉ωj(Y2).

Since ωj(YB) = 0 for all YB , restricting ω1, ω2, ω3 to FM0 , we obtain

(1.1.20)
∑

j

〈 ~N, ef
j (F )〉ωj = 0.

Relation (1.1.20) represents the equation of the tangent plane to M at x relative to
the frame F = {x, e1, e2, e3}. The coefficients aj := 〈 ~N, ef

j (F )〉 vary smoothly with
the frame. Note that if the frame is such that e1, e2 span the tangent plane of M at
x, then above linear relation (1.1.20) takes the form ω3 = 0.

For our goals, it is natural to consider moving frames for which e1 and e2 are
tangent to M .
Definition 1.0.1. Given an immersion M = (D,ψ) as above, we define

(1.1.21) FM1 = {(x, e1, e2, e3) ∈ FM0 ; e1, e2 ∈ TxM},

where TxM denotes the tangent plane to M at x.
F1 is called the first order frame bundle of M .
Along F1, ω3 vanishes, that is

(1.1.22) ω3|TF1 = 0.

The above relation also implies

(1.1.23) 0 = dω3 = ω1 ∧ ω13 + ω2 ∧ ω23 on TF1 × TF1.

For F1, Cartan’s structure equations (1.1.16–17) are written as

1.1.24a dω1 = ω12 ∧ ω2

1.1.24b dω2 = ω1 ∧ ω12

1.1.24c dω12 = −ω13 ∧ ω23

1.1.24d dω13 = ω12 ∧ ω23
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1.1.24e dω23 = ω13 ∧ ω12

1.1.24f ω3 = 0

1.1.24g ω1 ∧ ω13 + ω2 ∧ ω23 = 0

The third equation above is also known as the Gauss equation, while the fourth
and fifth together are known as the Codazzi equations.

By Cartan’s lemma [Ca, p.61], the last equation of (1.1.24g) implies:

(1.1.25)
{

ω13 = h11ω1 + h12ω2,
ω23 = h12ω1 + h22ω2.

for some functions hij defined on D.
By (1.1.25) and the Gauss equation (1.1.24c), we obtain

(1.1.26) dω12 = −ω13 ∧ ω23 = −[det(hij)]ω1 ∧ ω2,

where K def= det hij is called the Gaussian curvature of M .
For the immersion M = (D, ψ) and the submanifold FM1 ⊂ F , the first funda-

mental form becomes

(1.1.27) I = 〈dxf , dxf 〉 = ω2
1 + ω2

2 ,

while the second fundamendal form is

1.1.28
II = 〈−dN, dxf 〉 = 〈−def

3 , dxf 〉 =
〈

−
∑3

k=1 ω3kef
k ,

∑3
i=1 ωie

f
i

〉

= −
= −(ω31ω1 + ω32ω2) = ω13ω1 + ω23ω2.

In formula (1.1.28), we chose the normal unit vector N = e3.
Taking into account equations (1.1.25), we obtain

(1.1.29) II = h11ω2
1 + 2h12ω1ω2 + h22ω2

2 .

The two-form ω1 ∧ω2 is an area element for the surface. Therefore, since ψ : D → R3

is an immersion, it follows that

(1.1.30) ω1 ∧ ω2 6= 0.

As a consequence of formulas (1.1.25), the Gaussian curvature K = h11h22 − h2
12 is

given by

(1.1.31) ω13 ∧ ω23 = (h11ω1 + h12ω2) ∧ (h12ω1 + h22ω2) = K(ω1 ∧ ω2),

while the mean curvature H = (h11 + h22)/2 is given by

(1.1.32) ω1 ∧ ω23 − ω2 ∧ ω13 = h22(ω1 ∧ ω2)− h11(ω2 ∧ ω1) = 2H(ω1 ∧ ω2).

All the formulas presented in this section were formulated by Elie Cartan ([Ca]).
We followed the presentation of Cartan’s structure equations for R3 in [Ch, Te, eqs.
(1.1)–(1.3)] and the one for surfaces in space forms of constant Gaussian curvature
from [Te, eqs. (1.1)–(1.14)].
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2 Pseudospherical Surfaces and the Sine-Gordon
Equation

In this section, we begin our study of surfaces with constant negative Gaussian cur-
vature. Among them, surfaces of Gaussian curvature K = −1, called pseudospherical
surfaces, are of particular interest to us. We show that all surfaces with constant
Gaussian curvature are described by a sine-Gordon equation, and we write a corre-
sponding Lax system.

The following two parametrizations are of significant importance for this class of
surfaces. We will also specify the relationship between the parametrizations.

2.1 The Asymptotic Line Parametrization

Let us consider an immersion M = (D, ψ) with constant negative Gaussian curvature.
In the Euclidean space, every unit free vector represents a direction.

For each point of M , there are two directions in which the second fundamental
form vanishes, called asymptotic directions ([Ei, (46.3)]). An asymptotic line on the
surface M is a regular connected curve whose tangent unit vector is an asymptotic
direction at each point. Consequently, we have two families of asymptotic lines, each
tangent to an asymptotic direction everywhere. An asymptotic line parametrization
is a parametrization such that the coordinate lines are asymptotic lines.

The given immersion M = (D,ψ) can be locally reparametrized, such that the
coordinate lines are asymptotic lines. For an open and connected domain D, this
reparametrization can be done globally. Therefore, for the rest of this section we will
assume ψ : D → R3 to be an asymptotic line parametrization of the surface M , where
D is a open connected domain in R2.

Let ϕ represent the angle between the asymptotic lines, measured counterclockwise
from the vector field ψx to the vector field ψy.

We denote A = |ψx|, B = |ψy|.
Then the first fundamental form is ([Ei], [Bo2]):

I = |dψ|2 = A2(dx)2 + 2AB cos ϕdxdy + B2(dy)2.

For every point, via a change of coordinates, we can reparametrize the surface such
that the asymptotic lines are parametrized in arc length.

Let us assume that A and B never vanish. An immersion ψ with this property
is called weakly regular. A weakly regular surface can be always reparametrized such
that both asymptotic lines are in arc length (A = B = 1).

In this context, let N : D → S2, N =
ψx × ψy

‖ψx × ψy‖
define the Gauss map of the

immersion ψ. Remark that the unit vector field N is orthogonal to ψx, ψy, ψxx, ψyy.
Definition 2.1.1. A parametrization for which A = B = 1 is called a Chebyshev net
([Spi]).

Unless stated otherwise, we will assume for the rest of this work that the immersion
ψ corresponds to a Chebyshev net of angle (between asymptotic lines) ϕ(x, y) ∈ (0, π).
In this case, the metric becomes:

(2.1.1) I = |dψ|2 = (dx)2 + 2 cos ϕdxdy + (dy)2.
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[McL] presents a way of constructing a Chebyshev net physically, by “a piece of
nonstrech fabric that is loosely woven, so that the angle between the threads can
change. Then drape it over the surface so that the warp and weft of the fabric become
coordinate lines on the surface”. Since the threads cannot stretch, A = B = 1, but the
angle ϕ(x, y) changes. The second fundamental form in asymptotic parametrization
is written as

II = 2AB
√
−K sin ϕ dxdy.

For a Chebyshev net, it clearly becomes

(2.1.2) II = 2
√
−K sin ϕdxdy,

where K represents the (constant, negative) Gaussian curvature,

K = det II/ det I.

Let us now focus on the case of the pseudospherical surfaces, that is surfaces of
Gaussian curvature K = −1. It is straightforward to calculate the principal curvatures
k1 and k2 of the immersion. k1 and k2 represent the eigenvalues of the matrix

(2.1.3) II · I−1 =
(

− cot ϕ csc ϕ
csc ϕ − cot ϕ

)

,

that is, the roots of the characteristic equation

λ2 + 2 · cot ϕ · λ− 1 = 0,

i.e.,

(2.1.4) k1 = tan
ϕ
2

and k2 = − cot
ϕ
2

.

The angle between the asymptotic lines can be written as ϕ(x, y) = 2 arctan k1.
Let e1 and e2 be the principal directions on M corresponding to k1 and k2 respec-

tively, that is the eigenvectors of the matrix II · I−1 at each point of M . Then the
relation between the asymptotic directions on M and the principal directions on M
is given by

2.1.5
∂x = cos

ϕ
2

e1 − sin
ϕ
2

e2,

∂y = cos
ϕ
2

e1 + sin
ϕ
2

e2.

2.2 The Curvature Line Parametrization; Sine-Gordon
Equation

Another useful parametrization for a pseudospherical immersion M = (D, ψ) is the
one by lines of curvature, i.e., the coordinates ui in which both the first fundamental
form I and the second fundamental form II are diagonalized as

2.2.1a I = (a1)2(du1)2 + (a2)2(du2)2
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2.2.1b II = b1 · (a1)2(du1)2 + b2 · (a2)2(du2)2.

In general, such a parametrization exists only in the neighborhood of a non-
umbilical point. Since the Gaussian curvature is negative, there are no umbilics on
M .

In particular, on a weakly regular pseudospherical surface we can find a curvature
line parametrization around every point.

More specifically, we set

u1 = x + y, u2 = x− y,

where (x, y) are the Chebyshev net coordinates from Section 2.1. (i.e. A = B = 1).
Then formulas (2.1.1) and (2.1.2), for K = −1, become:

2.2.2a I = cos2
ϕ
2
· (du1)2 + sin2 ϕ

2
· (du2)2

2.2.2b II = sin
ϕ
2

cos
ϕ
2

((du1)2 − (du2)2)

respectively.
Comparing with (2.2.1) above, we obtain:

2.2.3a a1 = cos
ϕ
2

,

2.2.3b a2 = sin
ϕ
2

,

2.2.3c b1 = k1 = tan
ϕ
2

,

2.2.3d b2 = k2 = − cot
ϕ
2

,

where ϕ(x, y) is the angle between the asymptotic directions and k1, k2 represent the
principal curvatures.

Note that (2.2.3 a-d) correspond to a choice of a1, a2, b1, b2 made without loss of
generality ([Te], 2.7).

We also note that in asymptotic line parametrization, the principal vectors given
by (2.1.5) are generally not orthogonal, so the context is different than the one of
orthonormal frames (Section 1). However, in curvature line coordinates, the principal
vectors e1 and e2 are orthogonal, and that enables us to use the moving frame context
from Section 1.

Comparing formulas (2.2.2) to the formulas (1.1.27) and (1.1.29), we deduce:

2.2.4a ω1 = a1du1 = cos
ϕ
2

du1,
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2.2.4b ω2 = a2du2 = sin
ϕ
2

du2,

2.2.4c h11 = k1, h12 = 0, h22 = k2.

Then (1.1.25) together with (2.2.4c) yield

2.2.5a ω13 = k1a1du1,

2.2.5b ω23 = k2a2du2.

We also aim at finding an expression for ω12: from equations (2.2.4a) and (2.2.4b),
we find:

2.2.6a dω1 =
∂a1

∂u2
du2 ∧ du1 = − 1

a2
· ∂a1

∂u2
du1 ∧ ω2,

2.2.6b dω2 =
∂a2

∂u1
du1 ∧ du2 =

1
a1
· ∂a2

∂u1
ω1 ∧ du2.

Comparing equation (2.2.6) to the first two structure equations, (1.1.24a) and
(1.1.24b), we obtain

(2.2.7) ω12 =
1
a1

∂a2

∂u1
du2 −

1
a2

∂a1

∂u2
du1.

As a consequence of (2.2.5a,b) and (2.2.7), we deduce

2.2.8a ω12 ∧ ω23 = −k2
∂a1

∂u2
du1 ∧ du2

2.2.8b dω13 = d(k1ω1) =
(

−k1
∂a1

∂u2
− a1

∂k1

∂u2

)

du1 ∧ du2.

Therefore, the first Codazzi equation, (1.1.24d), has the form

(k2 − k1)
∂a1

∂u2
= a1

∂k1

∂u2
,

which can be rewritten as

(2.2.9a)
1

k2 − k1

∂k1

∂u2
=

∂(log a1)
∂u2

.

Similarly, the second Codazzi equation, (1.1.24e), becomes

(2.2.9b)
1

k1 − k2

∂k2

∂u1
=

∂(log a2)
∂u1

.

Recall now that ψ is a Chebyshev net parametrization: A = |ψx| = 1 and B =
|ψy| = 1. In general (see, e.g., [Bo2], p. 114), the Codazzi equation can be written as
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(2.2.10) Ay = Bx = 0.

So the Codazzi equations become trivial for a Chebyshev net.
Let us focus now on the Gauss equation (1.1.24c):

dω12 = −ω13 ∧ ω23.

Substituting the expressions for a1 and a2 from (2.2.3) into (2.2.7), we obtain the
following expression for the connection form ω12:

(2.2.11) ω12 =
1
2

(

∂ϕ
∂u1

du2 +
∂ϕ
∂u2

du1

)

.

Therefore,

(2.2.12) dω12 =
1
2

(

∂2ϕ
∂(u1)2

− ∂2ϕ
∂(u2)2

)

du1 ∧ du2.

Further, substituting the expressions (2.2.3) for a1, a2, k1, k2 into (2.2.5), the Gauss
equation (1.1.24c) can be written in curvature coordinates as

(2.2.13)
∂2ϕ

∂(u1)2
− ∂2ϕ

∂(u2)2
= sin ϕ.

Via u1 = x + y, u2 = x− y, (2.2.13) becomes, in asymptotic line parametrization,

(2.2.14) ϕxy = sin ϕ,

Note that (2.2.13) and (2.2.14) are two different forms of the sine-Gordon equation.
Conversely, by the existence and uniqueness theorem of surface theory, given ϕ,

a solution to (2.2.14), there exists an immersion M = (D, ψ), in asymptotic line
coordinates, whose angle between asymptotic directions is ϕ.

Summarizing the discussion above, we can state now the following result, due to
Enneper (1845):
Theorem 2.2.1. ([Ch], p. 441, and [Bo2], p. 115). Up to rigid motion, there is a
one-to-one correspondence between solutions ϕ to the sine-Gordon equation (2.2.14)
with 0 < ϕ < π and the weakly regular pseudospherical surfaces in Chebyshev net
parametrization immersed in E3.
Note. This one-to-one correspondence between solutions ϕ to the sine-Gordon equa-
tion (2.2.14) and pseudospherical surfaces, whose first and second fundamental forms
are given by (2.2.2), is the particular case K < K̄ = 0 of the following general theorem
([Te], Cor.2.7):
Theorem 2.2.1. Let M2(K) be a surface with constant Gaussian curvature K, con-
tained in a Riemannian 3-dimensional space form M̄3(K̄) with constant curvature
K̄ such that K 6= K̄. If K > K̄, assume that M has no umbilic points. Then there
exist local coordinates x1, x2 and a real-valued function ψ(x1, x2) which satisfies the
differential equation

∗ ψx1x1 − ψx2x2 = −K sin ψ if−K < K̄,



Weierstrass-type Representation of Surfaces 97

∗∗ ψx1x1 + ψx2x2 = −K sinhψ if K > K̄.

Conversely, suppose ψ is a solution of (∗) (resp. (∗∗)). Then there exists a surface of
constant Gaussian curvature K in a space form M̄3(K̄), which is unique up to rigid
motion of M̄3, whose first and second fundamental forms are given respectively by

I =











cos2
ψ
2

dx2
1 + sin2 ψ

2
dx2

2if K < K̄,

cosh2 ψ
2

dx2
1 + sinh2 ψ

2
dx2

2if K > K̄,

II =











√

|K − K̄| sin ψ
2

cos
ψ
2

(dx2
1 − dx2

2)if K < K̄,
√

|K − K̄| sinh
ψ
2

cosh
ψ
2

(dx2
1 + dx2

2)if K > K̄.

2.3 Moving Frame of a Pseudospherical Surface. The Lax
System

Let D be a simply connected domain in R2 and ψ : D → R3 an immersion cor-
responding to a pseudospherical surface M = (D, ψ). Let k1, k2 be the principal
curvatures, given by formulas (2.2.3c,d) and e1, e2 corresponding principal directions
on M . Let F = {x, e1, e2, e3} ∈ FM1 be a fixed moving frame. Clearly, e3 represents
a chosen normal direction N , along M . Let us focus now on the Frenet equations of

the frame. We shall omit the component x ∈ E3 and will identify F =





e1

e2

e3



 for

the rest of this section. By (1.1.11), we have the following Frenet system on M :

(2.3.1) dF =





0 ω12 ω13

−ω12 0 ω23

−ω13 −ω23 0



F.

The 1-forms ω12, ω13 and ω23, as a consequence of formulas (2.2.4–5) and (2.2.11),
can be written as

2.3.2a ω12 =
1
2
(ϕu1du2 + ϕu2du1) =

1
2
(ϕxdx− ϕydy)

2.3.2b ω13 = k1ω1 = sin
ϕ
2
· du1 = sin

ϕ
2
· (dx + dy)

2.3.2c ω23 = k2ω2 = − cos
ϕ
2
· du2 = − cos

ϕ
2
· (dx− dy)

Let us now consider the moving frame F̃θ ∈ FM1 , that is obtained from F via a
rotation of angle θ(x, y) in the tangent plane, around N , namely

(2.3.3) F̃θ =





ẽ1

ẽ2

N



 ,
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where
(

ẽ1
ẽ2

)

=
(

cos θ sin θ
− sin θ cos θ

)(

e1

e2

)

.

In particular for θ = ϕ/2, where ϕ(x, y) is the angle between the asymptotic directions,
the resulting frame is denoted F̃ and is called the normalized frame associated with
the moving frame F (see [Wu1], p.18). Unless stated otherwise, we will denote by F
the usual coordinate frame, and by F̃ the rotated frame as stated above. A simple
calculation leads us to the system of Frenet equations for F̃ :

(2.3.4) dF̃ =





0 ω̃12 ω̃13

−ω̃12 0 ω̃23

−ω̃13 −tildeω23 0



 F̃ ,

where

(2.3.5a) ω̃12 = dθ + ω12,

(2.3.5b) ω̃13 = k1 cos θ ω1 + k2 sin θ ω2,

(2.3.5c) ω̃23 = −k1 sin θ ω1 + k2 cos θ ω2.

In particular for the normalized frame F̃ , θ = ϕ/2 implies:

(2.3.6a) dθ =
1
2
(ϕxdx + ϕydy)

(2.3.6b) ω12 =
1
2
(ϕxdx− ϕydy)

(2.3.6c) ω1 = cos
ϕ
2

(dx + dy)

(2.3.6d) ω2 = sin
ϕ
2

(dx− dy)

(2.3.6e) ω̃12 = ϕxdx

(2.3.6f) ω̃13 = sin
ϕ
2

ω1 − cos
ϕ
2

ω2 =
sin ϕ

2
(du1 − du2) = sin ϕ · dy

(2.3.6g) ω̃23 = − sin2 ϕ
2

du1 − cos2
ϕ
2

du2 = −dx + cos ϕ · dy.

As a consequence of (2.3.6), the Frenet system (2.3.4) is equivalent to the following
differential system (also called Lax system):
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(2.3.7)

∂xF̃ =





0 ϕx 0
−ϕx 0 −1

0 1 0



 F̃ = ÃF̃ ,

∂yF̃ =





0 0 sin ϕ
0 0 cos ϕ

− sin ϕ − cos ϕ 0



 F̃ = B̃F̃ .

Note that Ã and B̃ are skew-symmetric matrices.
The compatibility condition for the system (2.3.7) (i.e. F̃xy = F̃yx) is

(2.3.8) Ãy − B̃x − [Ã, B̃] = 0.

This is equivalent to the Gauss equation, which for pseudospherical surfaces in a
Chebyshev parametrization is the sine-Gordon equation (2.2.14). If, for a pseudospher-
ical surface, we use any asymptotic line parametrization ψ, but not necessarily a
Chebyshev net, the Gauss equation takes the more general form ([Bo2], p. 114):

(2.3.9) ϕxy = AB sinϕ,

where A = |ψx|, B = |ψy|.
It is interesting to remark that this equation remains invariant with respect to the

transformation

(2.3.10) A 7→ λA, B 7→ B/λ, λ ∈ R+,

which plays an essential role in the theory of pseudospherical surfaces. The transforma-
tion (2.3.10) appears in literature as Lie’s transformation or Lorentz transformation in
plane. To reconcile the two names, it is sometimes called Lie-Lorentz transformation.

The following obvious result is due to Lie (around the year 1870) and is of crucial
importance in our context ([Bo2], p. 114):
Theorem 2.3.1. Every surface with constant negative Gauss curvature has a one-
parameter family of deformations preserving the second fundamental form

(2.3.11) II = 2AB
√
−K sin ϕdxdy,

the Gaussian curvature K and the angle ϕ between the asymptotic lines. The defor-
mation is generated by the transformation (2.3.10) above.

The family of immersions mentioned above is called associated family of surfaces.
It will be denoted as ψλ : D → R3. Note that all the immersions are defined on the
same domain D.

Remark 2.3.1. The Lie-Lorentz transformation (2.3.10) can be naturally induced
by replacing x with λ−1x and y by λy, λ > 0, and then

(2.3.12)
∂x = λ

(

cos ϕ
2 · e1 − sin ϕ

2 · e2
)

,
∂y = 1

λ

(

cos ϕ
2 · e1 + sin ϕ

2 · e2
)

.

We note here that the Lie-Lorentz transformation defined above on M = (D,ψ) is
equivalent to a Lorentz transformation on a Lorentzian 2-manifold, (D, II).

Also note that if ϕ(x, y) denotes the angle of a certain pseudospherical surface
M in Chebyshev net coordinates x, y, then by Lie-Lorentz transformation we create
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a new pseudospherical surface M∗, in the same associated family with the first one.
The coordinates x∗ = λ−1x and y∗ = λy are also asymptotic, and the angle between
asymptotic lines on the new surface is given by the same function as before, but this
time in variables x∗ and y∗. Thought of as a function of the old coordinates x, y, the
angle ϕ(x∗, y∗), corresponding to the new surface M∗, depends on λ. See also the
examples in Section 8, (8.1.3) and (8.2.1).

As a consequence of the coordinate change described above via the parameter λ,
starting from a Chebyshev parametrization ψ, we see that |ψx| = 1 becomes |ψx| = λ,
while |ψy| = 1 becomes |ψy| = λ−1. While via this transformation the sine-Gordon
equation remains unmodified, the corresponding differential Lax system (2.3.7) de-
pends on λ. In particular, we obtain an extended frame F = F (x, y, λ) = F (λ−1x, λy).
For the normalized frame F̃ , we obtain the extended normalized frame F̃ (x, y, λ).
Corolarry 2.3.1. The extended normalized frame F̃ (x, y, λ) satisfies the following
Lax differential system:

∂xF̃ =





0 ϕx 0
−ϕx 0 −λ

0 λ 0



 F̃ ,

2.3.13 ∂yF̃ =
1
λ





0 0 sin ϕ
0 0 cos ϕ

− sin ϕ − cosϕ 0



 F̃ .

This type of linear system is essential for the inverse scattering method in soliton
theory. Equation (2.3.13) represents the scattering system of the sine-Gordon equation
introduced by Lund (see [Lu]).

Remark 2.3.2. The frame F represents the 3 × 3 matrix





e1
e2

e3



 of rows e1, e2,

and e3, respectively. In the spirit of [Wu2] and [DoHa], instead of the classical frame
F , it is more convenient to work with U := F̃T , the transposed of the extended
normalized frame F̃ (x, y, λ). This is especially convenient in view of formulas (2.3.15)
below. Unless stated otherwise, the term of normalized coordinate frame will refer to
U above, for the rest of this text.

Consequently, formulas (2.3.7) can be rewritten as

(2.3.14) ∂xU = U · AT , ∂yU = U · BT ,

where we denoted by A and B, respectively, the transpose of Ã and B̃ from (2.3.7).
That is, equations (2.3.13) above can be rewritten as:

Corollary 2.3.2. The extended normalized frame Uλ satisfies the following Lax dif-
ferential system

∂xUλ = Uλ ·





0 −ϕx 0
ϕx 0 λ
0 −λ 0



 ,

2.3.15 ∂yUλ = Uλ∞
λ





0 0 − sin ϕ
0 0 − cosϕ

sin ϕ cos ϕ 0



 .
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The Lax system will be written in this form for the rest of this work. It plays a
crucial role in the study of pseudospherical surfaces.

3 Associated Families of Pseudospherical Surfaces
via Spectral Parameter λ

In this section we study in detail the effects of introducing the real positive para-
meter λ. We obtain in this way a λ-transformation of the Cartan forms (respec-
tively an extended Maurer-Cartan form ωλ) corresponding to the associated family
of pseudospherical surfaces (respectively the extended normalized frame Uλ).

3.1 The λ-Transformation on the 1-Forms ωi and ωij

Let us study the effect that the transformation (2.3.10) has on the 1-forms ω1, ω2,
ω12, ω13, ω23. Replacing x by x∗ := λ−1x and y by y∗ := λy in the system (2.3.2),
and taking into account the invariance of ϕ under this deformation (Thm. 2.3.1), we
obtain the “extended” forms:

3.1.1a ωλ
1 = cos

ϕ
2

(dx∗ + dy∗) = cos
ϕ
2

(λ−1dx + λdy)

3.1.1b ωλ
2 = sin

ϕ
2

(dx∗ − dy∗) = sin
ϕ
2

(λ−1dx− λdy)

3.1.1c ωλ
12 =

1
2
(ϕx∗dx∗ − ϕy∗dy∗) =

1
2
(ϕxdx− ϕydy)

3.1.1d ωλ
13 = sin

ϕ
2

(dx∗ + dy∗) = sin
ϕ
2

(λ−1dx + λdy)

3.1.1e ωλ
23 = − cos

ϕ
2

(dx∗ − dy∗) = − cos
ϕ
2

(λ−1dx− λdy).

The system above can be rewritten as

3.1.2a ωλ
1 =

1
2
(λ + λ−1)ω1 +

1
2
(λ− λ−1)ω23,

3.1.2b ωλ
2 =

1
2
(λ + λ−1)ω2 −

1
2
(λ− λ−1)ω13,

3.1.2c ωλ
12 = ω12,

3.1.2d ωλ
13 = −1

2
(λ− λ−1)ω2 +

1
2
(λ + λ−1)ω13,
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3.1.2e ωλ
23 =

1
2
(λ− λ−1)ω1 +

1
2
(λ + λ−1)ω23,

where λ > 0. Note that λ occurs rationally, with simple poles at λ = 0 and at infinity.
This will be essential below.

Cartan’s structure equations for FM1 , where ω3 is identically zero, given by (1.1.24
a-f), together with equation (1.1.31) for K = −1, form the set of equations below,
called conditions (K):

3.1.3.a dω1 = ω12 ∧ ω2,

3.1.3.b dω2 = ω1 ∧ ω12,

3.1.3.c dω12 = −ω13 ∧ ω23,

3.1.3.d dω13 = ω12 ∧ ω23,

3.1.3.e dω23 = ω13 ∧ ω12,

3.1.3.f ω1 ∧ ω13 + ω2 ∧ ω23 = 0,

3.1.3.g ω1 ∧ ω2 + ω13 ∧ ω23 = 0.

Let ω1, ω2, ω12, ω13, ω23 be differential forms defined by (1.1.10) and let ωλ
1 ,

ωλ
2 , ωλ

12, ω
λ
13, ω

λ
23 be given by (3.1.2). Then

Theorem 3.1.1. The forms ω1, ω2, ω12, ω13, ω23 satisfy the conditions (K) if and only
if ωλ

1 , ωλ
2 , ωλ

12, ω
λ
13, ω

λ
23 satisfy the conditions (K).

For every pseudospherical surface M = (D, ψ), there exists a family Mλ = (D, ψλ),
λ > 0, of pseudospherical surfaces associated with ωλ

1 , ωλ
2 , ωλ

12, ωλ
13, ω

λ
23 preserving the

angle ϕ between the asymptotic lines and also preserving the second fundamental form.
Proof. By Theorem 2.3.1, we know that the λ-transformation (2.3.10) preserves the
angle ϕ and the second fundamental form. This means that the forms ωi, ωij , and
ωλ

i , ωλ
ij , λ > 0, respectively, satisfy the same Gauss equation (3.1.3.c). The Gauss

equation is equivalent with ϕxy = sin ϕ, and so the angle ϕ is preserved for the family
Mλ. We remark that the Codazzi equation is trivially satisfied for Mλ, since for the
whole associated family ψλ, A = |ψλ

x | = λ, B = |ψλ
y | = 1/λ, λ > 0, and the Codazzi

equations are Ay = Bx = 0.
In order to finish the proof of the theorem, it is enough to show that if the Gauss

and Codazzi equations are satisfied for every real positive λ, then the rest of conditions
(K) are also satisfied for every real positive λ. This is stated in the following:
Lemma 3.1.1. If ωλ

i and ωλ
ij are given by the equations (3.1.2), and if the following

conditions are satisfied for all λ > 0:

3.1.4.i dωλ
12 = −ωλ

13 ∧ ωλ
23,
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3.1.4.ii dωλ
13 = ωλ

12 ∧ ωλ
23,

3.1.4.iii dωλ
23 = ωλ

13 ∧ ωλ
12,

then all the conditions (K) are satisfied for ωλ
i , ωλ

ij.
Proof. Assume that (3.1.4.i-iii) are satisfied. Then, by (3.1.2), after a few simplifica-
tions, we obtain

3.1.5.i
dωλ

12 + ωλ
13 ∧ ωλ

23 =
λ2 − λ−2

4
(−ω1 ∧ ω13 − ω2 ∧ ω23)+

+
λ2 + λ−2

4
(ω1 ∧ ω2 + ω13 ∧ ω23) +

1
2
(−ω1 ∧ ω2 − ω13 ∧ ω23) = 0,

3.1.5.ii dωλ
13−ωλ

12∧ωλ
23 =

λ− λ−1

2
(dω2−ω1∧ω12)+

λ + λ−1

2
(dω13−ω12∧ω23) = 0,

3.1.5.iii dωλ
23−ωλ

13∧ωλ
12 = −λ− λ−1

2
(dω1−ω12∧ω2)+

λ + λ−1

2
(dω23−ω13∧ω12) = 0.

Comparing the coefficients of the corresponding λ2 and λ−2 powers, we obtain
{

ω1 ∧ ω13 + ω2 ∧ ω23 = 0
ω1 ∧ ω2 + ω13 ∧ ω23 = 0,

that is equations (3.1.3.f) and (3.1.3.g).
Equations (3.1.3.c-e) represent a particularization for λ = 1 of equations (3.1.4.i-

iii). The coefficients of λ and equations (3.1.5.ii,iii) determine the expressions of dω1

and dω2, that is the remaining conditions (K). 2
This also completes the proof of the Theorem 3.1.1.

Remark 3.1.1. As frequently observed in soliton theory, the introduction of a para-
meter reduces the number of defining equations.

Theorem 3.1.1, that we just proved, is of central importance for the present study.
In section 2.3, we analyzed the pseudospherical surfaces in detail and described a
λ-transformation, λ > 0, that preserves the second fundamental form, the Gaussian
curvature and the angle between asymptotic lines. We also presented the extended
normalized frame Uλ (2.3.15) associated with this transformation. In this section we
studied in more detail the effects of introducing the real positive parameter λ by the
Lie-Lorentz transformation. We obtained a λ-family of 1-forms ωλ

i , ωλ
ij , i < j, which

characterizes the above-mentioned λ-family M = (D, ψλ) of associated surfaces via
the λ-transformation.

3.2 The Extended Maurer-Cartan Form ωλ of an Associated
Family of Pseudospherical Surfaces and the Extended
Normalized Frame Uλ

In section 1.1, we identified the set F of all frames with G, the group of orientation-
preserving rigid motions, via a map gf : F → G, gf (x, e1, e2, e3) = (x, A), with
x ∈ R3, A ∈ SO(3), such that ei = Aěi, where F0 = {0, ě1, ě2, ě3} was a fixed frame.
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Ei, Eij are, by definition, the six vector fields dual to the 1-forms ωi, ωij , i, j =
1, 2, 3, i < j, i.e. the vector fields satisfying

Ej(xf )(F ) = dF xf (Ej) =
∑

i

ωi(Ej)e
f
i (F ) = ef

j (F )

respectively

Eij(ef
m)(F ) = dF ef

m(Eij) =

(

∑

n

ωmn(Eij)ef
n(F )

)

=
(

δm
i δn

j ef
n − δn

i δm
j ef

n

)

=

=
(

δm
i ef

j − δm
j ef

i

)

= Sij(ef
m).

Here Sij represents the 3× 3 matrix with (i, j)-entry equal 1, (j, i)-entry equal to −1
and zero elsewhere, i < j. According to the way Eij acts on the frame F , it can be
identified with the matrix Sij .

We note that the vector fields Ei, Eij , i, j = 1, 2, 3, i < j are invariant with respect
to the particular choice of the fixed frame F0.
Remark 3.2.1. Reviewing, we obtained above the formulas

3.2.1 Ej(xf )(F ) = dF xf (Ej) = ef
j (F ),

3.2.2 (Eij(ef
m))m=1,2,3 =

(

dF ef
m(Eij)

)

m=1,2,3 = Sij





e1
e2

e3



 .

These equations are satisfied for every frame F = {x, e1, e2, e3}.
Definition 3.2.1. Consider the so(3)-valued 1-form ω given by

(3.2.3) ω = ω̃12E12 + ω̃13E13 + ω̃23E23,

where ω̃12, ω̃13 and ω̃23 are given by formulas (2.3.6 e,f,g). We will call ω the Maurer-
Cartan form of the group of Euclidean motions.

As a linear combination of matrices E12, E13, E23, the form ω becomes an so(3)-
valued 1-form on G. For a vector field Y on G, we have

(3.2.4) ω(Y ) =
∑

i<j

ω̃ij(Y )Eij

Remark 3.2.2. (a) Writing ω̃12, ω̃13 and ω̃23 explicitely as in (2.3.6), the Maurer-
Cartan form of the group of Euclidean motions restricted to FM1 for a pseudospherical
surface can be written as

(3.2.5) ω = −U−1dU =





0 ϕxdx sin ϕ dy
−ϕxdx 0 −dx + cos ϕ dy
− sin ϕ dy dx− cosϕ dy 0



 .

(b) Let us recall briefly the results from the previous section. We have proved in
Lemma 3.1.1 that if ωλ

i , ωλ
ij are given by formulas (3.1.2) and conditions (3.1.4iii–

v) are satisfied, then all the conditions (K) are satisfied. We have also seen that
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ωλ
i , ωλ

ij , λ > 0, given in (3.1.2) correspond to an associated family of surfaces that
preserve the angle ϕ between asymptotic lines, the Gaussian curvature and the second
fundamental form (Theorem 2.3.1) and that ωλ

i and ωλ
ij can be naturally induced by

a transformation x 7→ λ−1x, y 7→ λy, λ > 0 of the asymptotic line parametrization.
Let us now recall from Corollary 2.3.2 that the extended normalized moving frame

Uλ : D → SO(3) of this family of one-forms ωλ
i , ωλ

ij , λ > 0 satisfies the equations

(3.2.6)































(Uλ)−1 · ∂xUλ =





0 −ϕx 0
ϕx 0 λ
0 −λ 0





(Uλ)−1 · ∂yUλ =
1
λ





0 0 − sin ϕ
0 0 − cos ϕ

sin ϕ cosϕ 0



 .

Comparing (3.2.5) to (3.2.6), we formulate
Definition 3.2.2. The so(3)-valued family of 1-forms

ωλ = −(Uλ)−1dUλ

(3.2.7) =





0 ϕx dx λ−1 sin ϕ dy
−ϕx dx 0 −λdx + λ−1 cos ϕ dy

−λ−1 sin ϕdy λdx− λ−1 cosϕ dy 0



 ,

is called extended Maurer-Cartan form.
Proposition 3.2.1. The system of equations (3.1.4.i-iii) is equivalent to

(3.2.8) dωλ + ωλ ∧ ωλ = 0,

for every λ > 0.
Proof. Assume the equations (3.1.4.i–iii) are satisfied. Then, by Lemma 3.1.1, the
system of equations (3.1.4.i–iii) is equivalent to the conditions (K), defined in (3.1.3).
On the other hand, (3.1.4.i–iii) are by definition the Gauss-Codazzi equations for a
pseudospherical surface. On the other hand, (3.2.8) can be checked directly, and it
reduces to the Gauss-Codazzi equations: e.g., the sine-Gordon equation is recovered
immediately from the (1,2) entry of the matrix-valued form dωλ + ωλ ∧ ωλ. 2

We will call formula (3.2.8) the flatness condition, or the zero-curvature condition
for the extended Maurer-Cartan form ωλ.
Remark 3.2.3. From equation (3.2.7), we see that the extended Maurer-Cartan form
ωλ can be written in the form

(3.2.9) ωλ := λ−1 · α−1 + α0 + λ · α1,

where α0 ∈ k = RE12 and α−1, α1 ∈ p = RE13 + RE23.
More precisely, we have

(3.2.10) α0 = ϕxE12dx,

while

(3.2.11) α−1 = (sin ϕ · E13 + cos ϕ · E23)dy,

and

(3.2.12) α1 = −E23dx.
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4 Loop Algebras and Groups Corresponding to
Pseudospherical Surfaces

We now examine the system (3.1.4) in the context of the loop algebra so(3,R) ⊗
R[λ−1, λ]. This will lead to interpreting the extended moving frame equations in terms
of loop groups, which opens some completely new possibilities. E.g., the extended
frame Uλ can be decomposed in the form U = U+ · V− = U− · V+. Here U− is an
element of the form U− = I + λ−1U−1 + λ−2U−2 + · · ·, while V+ is an element of
the form V+ = V0 + λV1 + λ2V2 + · · ·, respectively. Eventually, this will allow us to
find unconstrained data, “potentials” from which all pseudospherical surfaces can be
constructed.

4.1 Loop Algebras and Structure Equations. Introduction

Let a be a Lie algebra over R with a finite basis X1, X2, . . . , Xm; i.e. every X ∈ a is
expressed uniquely as a linear combination

(4.1.1) X = a1X1 + a2X2 + · · ·+ amXm,

where aj ∈ R.
The structure of the Lie algebra a is given by Lie’s equations

(4.1.2) [Xi, Xj ] = Ck
ijXk,

where for convenience we used the Einstein summation convention for the index k,
which will be used from now on.

An immediate consequence of the skew-symmetry of the Poisson bracket is the
skew-symmetry of the structural constants Ck

ij with respect to the indices i, j. Also,
as a consequence of the Jacobi identity, the structural constants satisfy the following
identity:

Ck
sjC

s
ir + Ck

siC
s
rj + Ck

srC
s
ji = 0.

This identity appears in literature as Lie’s quadratic identity.
Let a∗ be the dual space of a. By definition, the dual basis of a∗ is {η1, η2, . . . , ηm}

such that ηi(Xj) = δi
j . Also, for every η ∈ a∗, there is a unique linear combination

(4.1.3) η = β1η1 + β2η2 + · · ·+ βmηm.

Let Λpa∗ denote all the p-forms on a. Clearly,

(4.1.4) Λ1a∗ = a∗.

Definition 4.1.1. The exterior differential dη ∈ Λ2a∗ of a 1-form η ∈ a∗ is defined
by the equation

(4.1.5) dη(X, Y ) = −η([X, Y ]),

where X, Y ∈ a.
Equation (4.1.5) is equivalent to Cartan’s structure equations:
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(4.1.6a) dηk +
1
2
Ck

ijη
i ∧ ηj = 0.

This equivalence is straightforward and is presented in classical texts (e.g., [Ca], p.45).
In (4.1.6a), ηi ∧ ηj represents the exterior product of the 1-forms ηi and ηj .

It is easy to see that (4.1.6a) can be rewritten as

(4.1.6b) dηk + Ck
ijη

i ∧ ηj = 0,

where i < j.
Multiplying equation (4.1.6b) by Xk and taking into account Lie’s equations

(4.1.2), we obtain

Xk · dηk + [Xi, Xj ]ηi ∧ ηj = 0, i < j,

which can be rewritten as

(4.1.7) dη +
1
2
[η ∧ η] = 0,

where

(4.1.8) η = X1η1 + X2η2 + · · ·+ Xmηm.

Remark 4.1.1. If the basis {η1, η2, . . . , ηm} of a∗ is divided into two groups dis-
tinguished by indices i, j, k ∈ N1 and α, β, γ ∈ N2 respectively, then the structure
equations become

(4.1.9)
{

dηk + Ck
ijη

i ∧ ηj + Ck
iβηi ∧ ηβ + Ck

αβηα ∧ ηβ = 0, i < j, α < β
dηγ + Cγ

ijη
i ∧ ηj + Cγ

iβηi ∧ ηβ + Cγ
αβηα ∧ ηβ = 0, i < j, α < β.

Note that the restriction ηγ = 0, for every γ ∈ N2, defines a linear subspace of a.
Example 4.1.1. Consider the group of Euclidean motions T given by the structure
equations (1.1.17) and introduce the restrictions ω12 = ω13 = ω23 = 0, which define
the normal subgroup of all translations. The groups of indices specified in Remark
4.1.1 are 1, 2, 3 ∈ N1 and 12, 13, 23 ∈ N2 respectively, where we replaced η by ω.

Let us consider the quotient group G/T = O(3,R) of the Euclidean motion group
modulo the group of translations. Thus, in the second group of equations of the system
(4.1.9), the terms containing ωj , j = 1, 2, 3 disappear, and the equations become

dωij = ωik ∧ ωkj ,

with Einstein summation with respect to k and i, j = 1, 2, 3, i < j.
This gives a concrete illustration of the structure equations (1.1.24 c,d,e).
The form (4.1.8) for the Euclidean motion group is written here as

(4.1.10) ω̂ = ω1E1 + ω2E2 + ω3E3 + ω12E12 + ω13E13 + ω23E23,

The form ω̂ is sometimes called the total Maurer-Cartan form.
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4.2 The Loop Algebra Setting

Let now a represent a Lie algebra with basis X1, X2, . . . , Xm satisfying [Xi, Xj ] =
Ck

ijXk. This is equivalent to the structure equations (4.1.6).
Definition 4.2.1. The polynomial loop algebra a = b ⊗R[λ−1, λ] is the Lie algebra
with basis Xk,t = Xkλt, k = 1, 2, . . . ,m, t = 0,±1,±2, . . ., where λ is a formal
parameter.

This basis satisfies the Lie equations

(4.2.1) [Xi,r, Xj,s] = Ck
ijXk,r+s.

The notation R[λ−1, λ] used above represents the ring of Laurent polynomials in the
variable λ over the field R. Let {ηi,r} represent the basis of 1-forms dual to the basis
{Xi,r}. Then, analogous to the derivation of (4.1.6b) we obtain, as a consequence of
(4.2.1), the structure equations of the loop algebra a

(4.2.2) dηk,t +
∑

r+s=t,i<j

Ck
ijη

i,r ∧ ηj,s = 0.

Multiplying these equations by λt = λr+s, we obtain

(4.2.3) dηk,tλt +
∑

r+s=t,i<j

Ck
ijη

i,rλr ∧ ηj,sλs = 0.

That is, the structure equations of the form (4.1.6), where

ηk =
∞
∑

t=−∞
ηk,tλt

represent infinite Laurent series in the variable λ with 1-forms ηk,t as coefficients.
Let us now consider the particular case of a = so(3,R), so that a = so(3,R) ⊗

R[λ−1, λ]. The main reason why we focus on this loop algebra is provided by the
extended Maurer-Cartan form ωλ of a pseudospherical surface, introduced in (3.2.7).
Moreover, we shall introduce the twisted loop algebra

(4.2.4) Λso(3)algP = {X ∈ so(3)⊗ br[λ, λ−1]; X(−λ) = PX(λ)P−1},

where
P = diag{1, 1,−1}.

Note that P−1 = P and

(4.2.5) PE12P = E12, PE13P = −E13, PE23P = −E23.

From (3.2.7), it is easy to see that ωλ(−λ) = P · ωλ(λ) · P−1 holds. Hence, ωλ ∈
Λso(3)algP .

It will be convenient to use certain Banach completions of the Lie algebra (4.2.4).
For this purpose, for a matrix A ∈ so(3,R) independent of λ, we introduce the norm

(4.2.6) ‖A‖ = max
i
{

3
∑

j=1

|Aij |},
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where Aij denotes the (i, j)-coefficient of A.
It can be checked by a direct computation that

‖AB‖ ≤ ‖A‖ · ‖B‖. ‖I‖ = 1.

Further, if X(λ) =
∑

k∈Z
Xk · λk, we define its norm as follows:

(4.2.7) ‖X(λ)‖ =
∑

k∈Z
‖Xk‖ < ∞.

Remark 4.2.1. The norm defined by (4.2.7) can be also introduced as follows:
We start by defining the norm of a real-valued function in λ,

‖h‖ :=
∑

k∈Z
|hk| < ∞, h(λ) =

∑

k∈Z
hkλk.

Then we define the norm of the matrix-valued function X(λ) as

‖X‖ = max
i
{

3
∑

j=1

‖Xij(λ)‖}.

It is easy to see that we obtain this way the same norm as in (4.2.7).
Note that in (4.2.6) and (4.2.7), by abuse of notation, we use the same symbol ‖ ·‖

for the following three different items: norm of a function, norm of a λ-independent
matrix and norm of X(λ). It will always be clear from the context which norm we
mean.

We set

(4.2.8) Λso(3)P := completion of Λso(3)algP relative to ‖ · ‖.

Proposition 4.2.1. Λso(3)P is a Banach Lie algebra.
Proof. We can define the norm (4.2.7) for arbitrary matrices in gl(3)⊗R[λ, λ−1].

The fixed point algebra of the automorphism X(λ) 7→ P ·X(−λ)·P−1 of ΛGL(3,R)
is an associative Banach subalgebra. Inside the connected component of the Banach
Lie group of invertible elements of this fixed point algebra, we consider the connected
component of the group

(4.2.9) ΛSO(3)P = {g ∈ ΛSO(3,R); Pg(λ)P−1 = g(−λ)}.

From [Ha,Ka], it follows that ΛSO(3)P is a Banach Lie group with Lie algebra

(4.2.10) Lie ΛSO(3)P = Λso(3)P .

Remark 4.2.2. If M = (D, ψ) is, as usual, a pseudospherical surface given by the
Chebyshev immersion ψ : D → R3, where D is a simply connected domain, then
there exists a normal N : D → S2 along ψ and a frame U : D → SO(3) along ψ such
that e3 = N denotes the Gauss map of ψ:
π above denotes the canonical projection relative to the base point e3. Thus, S2 ∼=
SO(3)/K. Note that the Lie algebra of the group K ' SO(2) is Lie K = k = RE12.
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Remark 4.2.3. As we pointed out, giving an extended Maurer-Cartan form ωλ sat-
isfying the flatness condition is equivalent to giving the forms ωλ

i , ωλ
ij , i < j satisfying

the conditions (K), which is also equivalent to giving a family of surfaces Mλ of con-
stant negative Gaussian curvature K = −1. To such an associated family of surfaces,
we attached ( see (3.2.7) ) the extended frame Uλ : D ×R+ → ΛSO(3)P satisfying
(Uλ)−1dUλ + ωλ = 0, where R+ represents the set of strictly positive real numbers
λ. It will be convenient for our purposes to fix a base point x0 ∈ D , e.g. x0 = (0, 0),
and require that the frame satisfies the “initial condition”

(4.2.11) U(x0, λ) = I,

for every λ. We will use this assumption from now on.
Remark 4.2.4. The subalgebra Λso(3)algP of so(3)⊗R[λ, λ−1] defined by (4.2.4) can
also be characterized as the subalgebra consisting of elements with the following

• Property P: In a representation relative to the basis E12, E13, E23, the coefficient
of E12 is an even function of λ, while the coefficients of E13 and E23 are odd
functions of λ.

4.3 Loop Groups and Group Splittings Used for
Pseudospherical Surfaces

In order to carry out the DPW method in the context of pseudospherical surfaces, we
introduce the following subalgebras of Λso(3)P :

4.3.1 Λ+so(3)P = {X(λ) ∈ Λso(3)P ; X(λ)contains only non-negativepowers of λ}

4.3.2 Λ−so(3)P = {X(λ) ∈ Λso(3)P ; X(λ)contains only non-positivepowers of λ}

4.3.3 Λ−∗ so(3)P = {X(λ) ∈ Λ−so(3)P ; X(∞) = 0}

The connected Banach loop groups whose Lie algebras are described by definitions
(4.3.1–4.3.3) are denoted, respectively, Λ+SO(3)P , Λ−SO(3)P and Λ−∗ SO(3)P .

A first question arises when we aim to split à la Birkhoff elements from ΛSO(3)P

with λ ∈ R+ instead of λ ∈ S1. The classical factorization theorem is stated and
proved in [Pr, Se] for smooth loops on S1 and reformulated in [DPW], [DGS] for a
complexified Banach loop group GC .

For our applications, the relevant part is
Theorem 4.3.1. [DPW; Thm. 2.2.], [Pr, Se; Thm. 8.1.1–8.1.2]: Let G be a compact Lie
group. Then the multiplication Λ−∗ GC×Λ+GC → ΛGC is an analytic diffeomorphism
onto the open and dense subset Λ−∗ GC · Λ+GC , called the “big cell”. In particular, if
g ∈ ΛGC is contained in the big cell, then g has a unique decomposition

(4.3.4) g = g−g+,

where g− ∈ Λ−∗ GC and g+ ∈ Λ+GC . The analogous result holds for the multiplication
map Λ+

∗ GC × Λ−GC → ΛGC .
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The results stated above hold in particular for G = SO(3). The splitting (4.3.4) is
called the Birkhoff factorization of ΛGC .
Remark A. Regarding the λ ∈ S1 versus λ ∈ R+ issue, our Appendix contains the
proof of the fact that the splitting works also for some specific “loop” group with real,
positive λ.

Let Λ̃SO(3)P be the subset of ΛSO(3)P whose elements, as maps defined on R+,
admit an analytic extension to C∗. It is easy to see that Λ̃SO(3)P is a subgroup of
ΛSO(3)P . We have the following result:
Theorem 4.3.2. Λ̃−∗ SO(3)P × Λ̃+SO(3)P → Λ̃SO(3)P is a diffeomorphism onto the
open and dense subset Λ̃−∗ SO(3)P · Λ̃+SO(3)P , called the “big cell”. In particular, if
g ∈ Λ̃SO(3)P is contained in the big cell, then g has a unique decomposition

(4.3.5) g = g−g+,

where g− ∈ Λ̃−∗ SO(3)P and g+ ∈ Λ̃+SO(3)P . The analogous result holds for the
multiplication map Λ̃+

∗ SO(3)P × Λ̃−SO(3)P → Λ̃SO(3)P .
Proof. See Appendix. 2

Remark that any extended frame Uλ, as a function of the real positive parameter
λ, admits an analytic extension to C∗. This is straight-forward and is stated and
proved in Lemma A.1.

Hence, any extended frame U(x, y, λ) from the “big cell” of Λ̃SO(3)P can be split
as

(4.3.6) U = U+ · V− = U− · V+.

Here U− is an element of the form U− = I + λ−1U−1 + λ−2U−2 + · · ·, while
V+ is an element of the form V+ = V0 + λV1 + λ2V2 + · · ·, respectively. Analogous
expressions can be written for U+ and V−, respectively. Namely, U+ is an element
of the form U+ = I + λU1 + λ2U2 + · · ·, while V− is an element of the form V− =
V0 + λ−1V−1 + λ−2V−2 + · · ·.

5 Harmonic Maps and Generalized Weierstrass Data

In this section we present the notion of harmonic map from a pseudospherical surface
M to S2. This is a particular case of a harmonic map from a pseudo-Riemannian man-
ifold to another pseudo-Riemannian manifold, i.e. a differentiable map whose tension
field vanishes (see [EL]). The Gauss maps of certain classes of surfaces (e.g. constant
mean curvature, minimal, constant Gaussian curvature) are harmonic with respect
to some suitable (pseudo)metrics. It was proved that the harmonic maps from these
classes of surfaces to S2 are in one-to-one correspondence with the equivalence classes
of flat extended forms ωλ (3.2.8) under the action of a gauge group. In connection
with Sections 3 and 4, this is a strong motivation for studying such harmonic maps.

5.1 Harmonic Maps

Definition 5.1.1. Let (M, g) and (M̃, g̃) be pseudo-Riemannian manifolds. A har-
monic map f : M → M̃ is a differentiable map such that its tension field τ(f)
vanishes:
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(5.1.1) τ(f) := Trace(∇df) = 0,

where ∇ is the Levi-Civita connection on the vector bundle T ∗(M) ⊗ f∗(TM̃), pro-
vided with the natural pseudo-metric induced by g and g̃.

For Riemannian manifolds, the system (5.1.1) is elliptic. This property is not main-
tained on pseudo-Riemannian manifolds. In this case, harmonic maps are sometimes
called pseudo-harmonic.

The notion of harmonic map was first introduced by Eells and Sampson for Rie-
mannian manifolds, then generalized to pseudo-Riemannian manifolds by Eells and
Lemaire ([EL]) and then studied by several authors (e.g., [GU], [Me, St, 1]).

If (M, g) and (M̃, g̃) are two Riemannian manifolds, df(x) represents the differ-
ential of f ( linear map from TM to TM̃ at a point x of M), while its tension field
is

(5.1.2) τ(f) = div(df) = gij(∇(df))ij .

Here we used again the Einstein summation convention with respect to both in-
dices i, j. gij are the entries of the inverse g−1 of the matrix g.

The integral over M of the energy density |df |2 with respect to the area element
on M is frequently called energy functional. Equation (5.1.1) arises as the Euler-
Lagrange equation for the variational problem of the energy integral. Harmonic maps
f represent critical points of the energy functional.

We shall now introduce a concept which is actually equivalent to the one of ex-
tended Maurer-Cartan form ωλ.
Remark 5.1.1. The following represents a necessary and sufficient condition for a
map to be harmonic ([UR]):
Lemma: Let f be a smooth map from a pseudo-Riemannian manifold to the sphere
Sn. Then f is harmonic iff

(5.1.3) δf = ρ · f,

for some function ρ, where δ represents the Lorentz-Laplace operator.
In this case, ρ = e(f) = |df |2 is the energy density of f .
For the case f : M → S2, where M is a 2-dimensional manifold, see also [Me, St,

1], Prop. 1.1. Moreover, harmonicity is invariant under conformal transformations.
Remark 5.1.2. A classically known fact is the following:

If M is a weakly regular surface with K < 0, then M , endowed with its second
fundamental form II (2.1.2) in asymptotic coordinates, is a Lorentzian 2-manifold
(M, II).

Moreover, the Gauss map N : (M, II) → S2 is harmonic iff K = constant. With
respect to the second fundamental form, (5.1.3) is written as

(5.1.4) Nxy = ρ ·N.

In this sense, the Gauss map of every pseudospherical surface is harmonic.
This property of pseudospherical surfaces is sometimes called Lorentz-harmonicity.

Definition 5.1.2. Let us consider an so(3)-valued form ω.
Recall from the previous section the Lie algebras k = RE12 and p = RE13+RE23.
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Let η = η0 + η1 be the Cartan decomposition of η into its k-part η0, respectively
its p- part, η1. Then η is called an admissible connection if it satisfies the following
pair of equations (sometimes called Yang-Mills-Higgs equations):

(5.1.5) dη + η ∧ η = dη +
1
2
[η ∧ η] = 0,

(5.1.6) d(∗η1) + [η0 ∧ ∗η1] = 0.

For (5.1.5) and (5.1.6), see [Gu, Oh].
From the Remark 4.2.1, the smooth Gauss map N has the frame U as a lift. It

follows (e.g, [Bo 2]) that the maps N and U are related by the identification

(5.1.7) N ≡ U · E12 · U−1.

Note: In (5.1.7), [Bo2] uses −iσ3 instead of our E12. σ3 is the third Pauli matrix
(6.4.1). This fact is explained by the (spinor representation) isomorphim between
su(2) and so(3), which is presented in Section 6.4.

A very important result obtained by A. Sym ([Sy]) allows us to obtain the immer-
sion once we have the expression of the extended frame. This is presented in several
papers, including for the particular case of pseudospherical surfaces (e.g. [1, Me, St],
[Bo, Pi]) and can be stated as follows:
Theorem 5.1.1. Starting from a given ϕ(x, y), a solution to the sine-Gordon equa-
tion, let us consider the initial value problem consisting of the Lax system (2.3.15)
together with the initial condition U(0, 0, λ) = I. Let U(λ) be the solution to this
initial value problem. Then U(λ) represents the extended frame corresponding to the
Chebyshev immersion

(5.1.8) ψλ =
d
dt
Uλ · (Uλ)−1,

where λ = et.
By Theorem 5.1.1, once we have the extended frame, we can reconstruct the

surface. Also, the relationship between the extended frame U and the Gauss map N
is clear, via (5.1.7). So in a sense we could reconstruct everything starting from the
Gauss map. However, there is a freedom in the frame given by a gauge action.
Definition 5.1.3. Let us consider a rotation of angle θ around e3,

R =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1



 .

The rotation R, thought of as an element of SO(2), acts on the frame U , and
produces the so called gauged frame Û of the pseudospherical surface M , via the rule

(5.1.9) Û = U ·R−1.

As a consequence of this action by a rotation matrix on the frame, the Maurer-Cartan
form ω changes accordingly, to a ω̂. On the other hand, the Gauss map N = U·E12·U−1

from equation (5.1.7) is obviously invariant under such a gauge transformation.
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The following very important result is a particular case of [Me, St, 1], Prop.1.4.
Proposition 5.1.1. There is a one-to-one correspondence between the space of har-
monic maps from the Lorentzian surface M to S2 and the equivalence classes of
admissible connections, under the action of the gauge group introduced by (5.1.9).
Remark 5.1.3. On the other hand, every admissible connection “ω corresponds to
its associated loop ωλ satisfying the flatness condition (3.2.8):

dωλ + ωλ ∧ ωλ = 0.

Recall that we called ωλ extended Maurer-Cartan form.
The result above provides a strong interest in harmonic maps. Summarizing, the

Gauss map of a pseudospherical surface has the following properties:
Theorem 5.1.2. [Bo2, Prop. 7] The Gauss map N : M → S2 of a surface with
K = −1 is Lorentz-harmonic, i.e.,

(5.1.10) Nxy = qN, q : M → R.

Moreover, N forms in S2 the same kind of Chebyshev net as the immersion func-
tion does in R3:

(5.1.11) |Nx| = A, |Ny| = B, where A = |ψx|, B = |ψy|.

Proof. A lengthy but straight-forward calculation using formulas (5.1.7) and (5.1.8)
leads to formulas (5.1.10, 5.1.11). 2

Via Proposition 5.1.1 and Theorem 5.1.2, we state the following:
Remark 5.1.4. As a consequence of the previous results and remarks, we conclude:

A smooth map N : D → S2 is Lorentz-harmonic if and only if there is an extended
frame U : D → ΛSO(3)P such that π ◦ Uλ|λ=1 = N , and such that

(5.1.12) ωλ := −(Uλ)−1dUλ

satisfies the flatness condition (3.2.8).
Here we denoted by π : SO(3) → SO(3)/K the canonical projection, and K a Lie

subgroup isomorphic to SO(2), which is the isotropy group of the action of SO(3) on
the vector e3 in R3.

Let O be the point corresponding to x = 0, y = 0 in M . We consider the extended
frame corresponding to the frame U the solution Uλ of equation (5.2.6) that satisfies
the additional initial condition

(5.1.13) Uλ(0, 0, λ) = U(0, 0) = I,

where U is the frame of N : D → S2, N(0, 0) = eK, such that Lie K = k = RE12.
Clearly, Uλ(x, y, 1) = U(x, y).

Let us now consider the Cartan decomposition g = k + p where k = RE12 and
p = RE13 + RE23. Let ωλ be a 1-form that satisfies the flatness condition (3.2.8).

Via the Cartan decomposition above, ωλ can be written in the form

(5.1.14) ωλ := α0 + ωλ
1 ,

where α0 ∈ k and ωλ
1 = λ−1 · α− + λ · α1 ∈ p.
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As a consequence of Theorem 5.1.1, we obtain:
Proposition 5.1.2. Let Uλ : D → ΛSO(3)P be any map such that (Uλ)−1dUλ is
of the form (5.1.14) and satisfies the flatness condition (3.2.8). Then Uλ represents
an extended normalized frame corresponding to the associated family of Chebyshev
immersions

(5.1.15) ψλ =
d
dt
Uλ(Uλ)−1,

5.2 The Weierstrass-type Representation

A.Generalized Weierstrass Representation of Constant Mean Curvature Surfaces.
In [DPW], the authors have introduced a Weierstrass type representation through

which every harmonic map from a Riemann surface M to an arbitrary compact sym-
metric space G/K is described by a Lie GC - valued meromorphic differential on the
universal covering of M . In [Do, Ha], the authors present the case of a constant mean
curvature surface M in R3, parametrized in conformal coordinates, obtaining the
above-mentioned differential explicitely.

For the case of G = SO(3) and K = SO(2), G/K ∼= S2, this procedure is based
on introducing the extended normalized frame Uλ : D → ΛSO(3)P , which for λ = 1
represents the normalized moving frame. In this case, the so(3,C)-valued meromorphic
differential is characterized by two different meromorphic functions. The poles of the
above mentioned meromorphic functions are situated at points where the Birkhoff
loop group factorization U = U−V+ fails to exist.

The Weierstrass-type data is expressed via a Lie algebra-valued differential form

(5.2.1) ξ = U−1
− dU− = λ−1η.

Definition 5.2.1. The forms η and ξ given by equation (5.2.1) are called ( see also
[Wu2] and [DoHa]) normalized, and respectively meromorphic potentials.

Starting from the normalized potential, we can construct the associated family of
CMC surfaces Mλ = (D,ψλ).

An analogous result is presented in [DPT] for minimal surfaces in R3, parametrized
in conformal coordinates.

B.Generalized Weierstrass Representation of Pseudospherical Surfaces
The aim of Sections 5 and 6 is to present the analogue of the DPW method

explained above for the case of pseudospherical surfaces. The main result of the Section
6 is the Weierstrass-type data for pseudospherical surfaces. In Section 6 we define the
generalized Weierstrass representation as a pair of Lie algebra-valued differential forms

(5.2.2a) ξx = −U−1
+ dU+ = ληx,

(5.2.2b) ξy = −U−1
− dU− = λ−1ηy.

Definition 5.2.2. The forms ηx and ηy given by equations (5.2.2a, 5.2.2b) are called
normalized x-potential and y-potential, respectively.

Starting from such a pair of normalized potentials, we can construct the associated
family of pseudospherical surfaces Mλ = (D, ψλ).
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6 Explicit Forms of the Normalized Potentials of
Pseudospherical Surfaces

6.1 Normalized Potential for CMC Surfaces Revisited

For constant mean curvature surfaces M = (D, ψ) parametrized in conformal coordi-
nates with metric ds2 = 4e2ω(z,z̄)dzdz̄, Theorem 2.1, [Wu2], offers a simple method
to calculate the normalized potential.

Namely, if the Maurer-Cartan form is

6.1.1
U−1dU = α−1λ−1 + α0 + α1 · λ
α0 = α′0dz + α′′0dz̄,

we denote by β0(z) and β1(z), respectively, the holomorphic part α′0(z, 0)dz of α′0 dz
and the holomorphic part α−1(z, 0) of α−1. Recall that the holomorphic part of a
function f(z, z̄) =

∑

k,l

aklzkz̄l is f(z, 0).

Then the following theorem will provide the normalized potential η: Theorem
6.1.1 (2.1, [Wu2]) The normalized potential η of the surface, with the origin z = 0 as
the reference point, is given by

(6.1.2) η(z) = ψ0(z) · β1(z) · ψ0(z)−1,

where ψ0 is the solution to

(6.1.3) ψ0(z)−1dψ0(z) = β0(z), ψ0(0) = U(0),

and U is the normalized frame at the origin.
For CMC surfaces (see, for example [Wu2], formula (3.18)) the normalized poten-

tial is of the form

(6.1.4) P (z) =





0 0 −b(z)
0 0 −c(z)

b(z) c(z) 0



dz,

where

6.1.5
b(z) =

1
2

(

e2ξ(z)−ξ(0) + Q(z)eξ(0)−2ξ(z)
)

,

c(z) =
i
2

(

−e2ξ(z)−ξ(0) + Q(z)eξ(0)−2ξ(z)
)

,

and ξ represents the holomorphic part ω(z, 0) of ω(z, z̄), where

ds2 = 4e2ω(z,z̄)dzdz̄

represents the metric of the surface, while Q(z) = (N, ψzz) is the (holomorphic)
coefficient of the Hopf differential Q(z)(dz)2.

Equivalently, under the adjoint map Ad : SU(2) → SO(3) (see [Wu2], Remark
3.22, and [DoHa]), via a lifting to SU(2), the normalized potential can be written as

(6.1.6) η(z) =
1
2

(

0 e2ξ(z)−ξ(0)

−Q(z)eξ(0)−2ξ(z) 0

)

dz.

In the following subsection we shall state and prove a similar result for pseudospherical
surfaces parametrized in asymptotic line coordinates.
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6.2 Normalized x- and y- Potentials for Pseudospherical
Surfaces. Ordinary Differential Systems Associated with
Normalized Potentials

By analogy with the normalized potential introduced for constant mean curvature
surfaces, it becomes natural to consider a normalized potential for other classes of
surfaces whose Gauss map is harmonic, as a map between pseudo-Riemannian sur-
faces, in particular for the class of pseudospherical surfaces.

We will introduce the generalized Weierstrass representation for pseudospherical
surfaces in a Chebyshev parametrization, as two normalized potentials:

ηx and ηy, where ηx does not depend on y, and ηy does not depend on x.
Theorem 6.2.1 below will make this explicit.
Theorems 6.3.1 and 6.3.2 in the next section will give explicit formulas for the

normalized potentials. They are consequences of Theorem 6.2.1.
In our case, the group K represents the group of rotations around e3, isomorphic

to SO(2),

(6.2.1) K =











cos r − sin r 0
sin r cos r 0

0 0 1



 ; r ∈ [0; 2π)







.

Its Lie algebra LieK is

(6.2.2) k =











0 a 0
−a 0 0
0 0 0



 ; a ∈ R







while its complement in so(3) is

(6.2.3) p =











0 0 b
0 0 c
−b −c 0



 ; b, c ∈ R







.

For the extended frame Uλ : M → ΛSO(3)P , with

(6.2.4) Uλ(0, 0, λ) = U(0, 0) = I,

we have the Lax system ((3.2.6), restated).

(6.2.5)







































(Uλ)−1 · (Uλ)x =





0 −ϕx 0
ϕx 0 λ
0 −λ 0



 = A,

(Uλ)−1 · (Uλ)y =





0 0 −λ−1 sin ϕ
0 0 −λ−1 cos ϕ

λ−1 sin ϕ λ−1 cosϕ 0



 = B.

Consequently, the Maurer-Cartan form is written as

ωλ = −(Uλ)−1 · dUλ = −A · dx− B · dy = α−1 · λ−1 + (α′0dx + α′′0dy)
︸ ︷︷ ︸

α0

+α1 · λ,
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where, obviously,

6.2.6.a α−1 =





0 0 sin ϕ
0 0 cos ϕ

− sin ϕ − cos ϕ 0



dy,

6.2.6.b α1 =





0 0 0
0 0 −1
0 1 0



 dx,

6.2.6.c α′0 =





0 ϕx 0
−ϕx 0 0

0 0 0



 , α′′0 = 0.

Definition 6.2.1. For any real smooth function f(x, y) defined on a sufficiently small
neighborhood of (0, 0) in D, we shall call f(x, 0) the x-part (of f), respectively f(0, y)
the y-part.

We also set

6.2.7 fx := f(x, 0) fy := f(0, y)

We call f(x, 0)dx the x-part of the form f(x, y)dx. Analogously, we call f(0, y)dy
the y-part of the form f(x, y)dy.

Let N : D → S2 be the Gauss map of a weakly regular pseudospherical surface
M . Thus, N is real and smooth, and Lorentz harmonic. By Remark 5.1.4, there is
a λ- family of frames Uλ : D → ΛSO(3)P such that π ◦ Uλ|λ=1 = N and such that
−(Uλ)−1dUλ is the corresponding Maurer-Cartan form ωλ.

Consequently, the 1-forms α0 and α1 defined by ωλ = α−1λ−1 +α0 +α1λ are also
smooth in x and y.

In ωλ = −(Uλ)−1dUλ = −Adx− Bdy, where A = (Uλ)−1Uλ
x and B = (Uλ)−1Uλ

y ,
we denote by

6.2.8a
β : = the x-part of the form −Adx at λ = 1

= the x-part of the form α′0dx + α1.

6.2.8b
β0 := the x-part of the form α′0 dx, where
α0(x, y) = α′0(x, y)dx + α′′0(x, y)dy.

6.2.8c β1 := β − β0 = the x-part of α1 .

γ0 and γ1 above are the analogs of β0 and β1, with respect to y. That is

6.2.9a
γ : = the y-part of the form −Bdy at λ = 1

= the y-part of α′′0dy + α−1.

6.2.9b
γ0 := the y-part of the form α′′0 dy, where
α0(x, y) = α′0(x, y)dx + α′′0(x, y)dy.
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6.2.9c γ1 := γ − γ0 = the y-part of α−1 .

Remark that formulas like the ones above may be also useful in the study of other
types of surfaces parametrized in some real coordinates x, y. That is why we shall
state some results (like Theorems 6.2.3 and 6.2.4) using generic β’s and γ’s.

For our purposes, it is important to make β and γ explicit for pseudospherical
surfaces in Chebyshev parametrization. We obtain:

(6.2.10a) β = β1 + β0

(6.2.10b) β1 = α1 =





0 0 0
0 0 −1
0 1 0



 dx,

(6.2.10c) β0 = α′0(x, 0)d =





0 ϕx(x, 0) 0
−ϕx(x, 0) 0 0

0 0 0



 dx.

(6.2.11a) γ = γ1,

(6.2.11b) γ1 =





0 0 sin ϕ(0, y)
0 0 cos ϕ(0, y)

− sin ϕ(0, y) − cos ϕ(0, y) 0



 dy,

(6.2.11c) γ0 = 0.

Let us now recall the two Birkhoff-type factorizations presented in Theorem 4.3.2.
The first type of Birkhoff factorization from Theorem 4.3.2 is performed on the

“big cell” Λ̃−∗ SO(3)P · Λ̃+SO(3)P . That is, away from a singular set S1 ⊂ D, we can
split the extended moving frame Uλ : D → SO(3) into two parts. Recall that the first
factor of this splitting is of the form g− = I +λ−1g−1 +λ−2g−2 + · · ·, while the second
factor of the splitting is of the form g+ = g0 + λg1 + λ2g2 + · · ·, respectively.

Since the “big cell” is open and Uλ : D → SO(3) is continuous, the set

D̃1 = {(x, y) ; Uλ(x, y)belongs to the “big cell”}

is open. Note that (0, 0) ∈ D̃1.
Let S1 = D− D̃1 denote the “singular” set. We have just shown that S1 is closed

and (0, 0) is not an element of the set S1. Similarly, we have S2 and D̃2 for the second
splitting.

The second type of Birkhoff splitting is the analogous splitting in the “big cell”
Λ̃+
∗ SO(3)P × Λ̃−SO(3)P . The goal of this section is to show that the first factor of

each type of splitting is an essential one, and can be viewed as an integral of the
unconstrained data that we call normalized potential.

We can perform the two splittings on the extended frame Uλ. Let U = Uλ be
the extended normalized moving frame of a pseudospherical surface and let (x, y) ∈
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D \ (S1∪S2). Then, for some uniquely determined V+ ∈ Λ+SO(3)P , V− ∈ Λ−SO(3)P
and U− ∈ Λ−∗ SO(3)P , U+ ∈ Λ+

∗ SO(3)P , U can be written as

(6.2.12) U = U+ · V− = U− · V+.

The factors carrying the “genetic material” to recreate the frame and then the
surface are U+ and U−. They can be obtained, starting from two normalized potentials
ηx and ηy respectively, by solving the two ordinary differential equations presented
in Theorem 6.2.1.

From U− and U+, one can reproduce the frame U and then construct the corre-
sponding pseudospherical immersion via the Sym-Bobenko formula (5.1.5).
Theorem 6.2.1. Let U = Uλ, U+ and U− be as above. Then the following systems of
differential equations are satisfied:

1) (U+)−1 ∂U+

∂x
dx = −λ · V0 · β1 · V −1

0 , (6.2.13)

with initial condition U+(x = 0) = I, where V0 is some matrix V0(x) ∈ SO(3).

2) (U−)−1 ∂U−
∂y

dy = −λ−1 ·W0 · γ1 ·W−1
0 , (6.2.14)

with initial condition U−(y = 0) = I, where W0 is some matrix W0(y) ∈ SO(3).
Moreover, U+ does not depend on y and U− does not depend on x.
In some other words, U+ and U− are solutions of some first order systems of

differential equations in x and y, respectively.
Proof. of 2) From equation (6.2.12), we know

(6.2.15) U− = U · V −1
+ .

Differentiating (6.2.15), we obtain

(6.2.16) dU− = dU · V −1
+ − U · V −1

+ · dV+ · V −1
+ ,

which can be rewritten as

(6.2.17) U−1
− · dU− = V+ · (U−1 · dU) · V −1

+ − dV+ · V −1
+

after left multiplication by U−1
− .

The coefficient of dx on the left-hand side of (6.2.17) contains only negative powers
of λ, while the coefficient of dx on the right-hand side of (6.2.17), in view of (6.2.5),
contains only non-negative powers of λ. Therefore, ∂xU− = 0, so U− depends on y
only.

To determine (6.2.14), we consider the coefficient of dy in (6.2.17). The left-hand
side of (6.2.17) contains only negative powers of λ, while the one on the right-hand
side, due to (6.2.5),

B = U−1∂yU = λ−1 ·





0 0 − sin ϕ
0 0 − cos ϕ

sin ϕ cos ϕ 0



 ,

contains only one term in λ−1, and no terms in λk, k < −1.
On the other hand, let
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(6.2.18) V+ = W̃0 + λW̃1 + λ2W̃2 + · · · = W̃0 · T+,

with T+ ∈ Λ+
∗ SO(3)P .

Therefore, U−1
− ∂yU− = W̃0BW̃−1

0 , where the left-hand side only depends on y.
Since U , V+ and W̃0 are all defined on D, a neighborhood of (0, 0), we can specialize
to the points of the form (0, y) for a sufficiently small interval on the line x = 0,
containing the origin.

Thus,

(6.2.19) U−1
− ∂yU− = W̃0(0, y) · B(0, y) · W̃0(0, y)−1.

We observe that

B(0, y) = λ−1 ·





0 0 − sin ϕ(0, y)
0 0 − cos ϕ(0, y)

sin ϕ(0, y) cos ϕ(0, y) 0





From formulas (6.2.5-6), we note that B = −λ−1 · α−1, and restricting to the
y-parts, we obtain

B(0, y)dy = −λ−1 · γ1,

where the form γ1 is the one given in formulas (6.2.11.c).
In (5.2.2), we defined the normalized y-potential by

(6.2.20) ηy = −λ · U−1
− ∂yU−dy.

and the meromorphic y-potential as

ξy = −U−1
− ∂yU−dy = λ−1ηy,

Denoting W0(y) := W̃0(0, y), we obtain

U−1
− ∂yU−dy = −λ−1 ·W0(y) · γ1 · [W0(y)]−1

and therefore (6.2.14).
Proof of 1)

From equation (6.2.12), we obtain

(6.2.21) U+ = U · V −1
− , U+ ∈ Λ+

∗ SO(3)P , V− ∈ Λ−SO(3)P ,

which by differentiation leads to

(6.2.22) dU+ = dU · V −1
− − U · V −1

− · dV− · V −1
− ,

and then

(6.2.23) U−1
+ dU+ = V−(U−1dU)V −1

− − dV− · V −1
− .

We compare the coefficient of dy on the left-hand side of (6.2.23) with the coefficient
of dy on the right-hand side of (6.2.23), via formula (6.2.5). The left-hand side of
(6.2.23) clearly contains only positive powers of λ, while the coefficient of dy on the
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right-hand side of (6.2.23), in view of (6.2.5), contains non-positive powers of λ only.
Thus, U+ depends exclusively on x.

In order to obtain (6.2.13), we consider the coefficient of dx in (6.2.23). The
left-hand side of (6.2.23) contains only positive powers of λ, while the one on the
right-hand side, due to

A = U−1∂xU =





0 −ϕx 0
ϕx 0 λ
0 −λ 0



 ,

contains one term in λ and no terms in λk, with k > 1.
Like we did before in case 2), we can restrict to a sufficiently small interval around

(0, 0) on the line y = 0.
Let now

(6.2.24) V− = Ṽ0 + λ−1Ṽ1 + λ−2Ṽ2 + · · · = Ṽ0 · T−,

with T− ∈ Λ−∗ SO(3)P .
Then we note

(6.2.25) U−1
+ (x) · ∂xU+ = Ṽ0(x, 0) · A(x, 0) · Ṽ0(x, 0)−1.

Moreover, since the left-hand side of (6.2.23) contains only positive powers of λ, we
conclude that

(6.2.26) U−1
+ (x) · ∂xU+dx = −Ṽ0(x, 0) · λ · β1 · Ṽ0(x, 0)−1,

where according to formula (6.2.10.b), β1 = α1 = −E23. This is exactly the claim of
the equation (6.2.13) stated in the theorem, if we denote Ṽ0(x, 0) := V0. 2

6.3 Normalized Potentials for Pseudospherical Surfaces

In this section we find the explicit expressions of the two normalized potentials. The-
orems 6.3.1. and 6.3.2 can be thought of as corollaries to Theorem 6.2.1. Basically, we
construct the normalized potentials from the solutions to the ordinary differential sys-
tems introduced in Theorem 6.2.1. Theorems 6.3.1. and 6.3.2 are phrased analogously
to Wu’s Theorem 6.1.1 for the normalized potential of the constant mean curvature
surfaces.
Theorem 6.3.1. (x-potential) The normalized potential ηx with the origin as the
reference point is given by

(6.3.1) ηx = V0(x) · β1(x) · V0(x)−1,

where V0 is the solution of

(6.3.2)
{

V0(x)−1dV0(x) = −β0(x),
V0(0) = U(0, 0).

where β0 and β1 are given by formulas (6.2.10).
Similarly, we have the following result:
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Theorem 6.3.2. (y-potential) The normalized potential ηy with the origin as the
reference point is given by

(6.3.3) ηy = W0(y) · γ1(y) ·W0(y)−1,

where W0 is the solution of

(6.3.4)
{

W0(y)−1dW0(y) = −γ0(y),
W0(0) = U(0, 0).

where γ0 and γ1 are given by formulas (6.2.11).
Proof of Theorem 6.3.1.
Relation (6.3.3) is a rephrasing of (6.2.13):

U−1
+ ∂xU+dx = −λ · V0(x) · β1 · V0(x)−1,

where we substitute ηx = −λ−1 · (U+)−1 ·dU+, that is the definition of the normalized
x-potential.

Let us now consider again equation (6.2.23) from the proof of Theorem 6.2.1,
namely

U−1
+ dU+ = V−(U−1dU)V −1

− − dV− · V −1
−

We proved that both sides depend on x only. Now let us take a look at the coefficient
of λ0 in this equation.

The left-hand side has positive powers of λ only, while the x-part of right-hand
side only has −V0 · β0 · V −1

0 − dV0 · V0
−1 as a term that does not depend on λ.

Consequently, we obtain V0(x)−1dV0 = −β0(x). Formula (6.2.10.c) shows that

β0 = α′0(x, 0) =





0 ϕx(x, 0) 0
−ϕx(x, 0) 0 0

0 0 0



 .

Here it was taken into account that ϕx(x, 0) = (ϕ(x, 0))x, where ξ(x) := ϕ(x, 0) is
the part in x of the smooth angle function ϕ(x, y). If we consider the matrix

(6.3.5) θ =





0 ξ 0
−ξ 0 0
0 0 0



 ,

then

(6.3.6) β0 = θ′dx =





0 ξ′(x) 0
−ξ′(x) 0 0

0 0 0



 dx.

The solution V0 of the system (6.3.2) must take into account that U(0, 0, λ) = I, so
the solution is

(6.3.7) V0(x) = eθ(0)−θ(x).

Using also the expression of the form β1, the normalized x-potential ηx can be written
as



124 M. Toda

ηx = V0(x)β1(x)V −1
0 (x) = eθ(0)−θ(x)(−E23)eθ(x)−θ(0)dx.

Since

(6.3.8) eθ(0)−θ(x) =





cos(ξ(0)− ξ(x)) sin(ξ(0)− ξ(x)) 0
− sin(ξ(0)− ξ(x)) cos(ξ(0)− ξ(x)) 0

0 0 1



 ,

the formula above leads to the final expression of the x-potential, as

(6.3.9) ηx =





0 0 − sin(ξ(0)− ξ(x))
0 0 − cos(ξ(0)− ξ(x))

sin(ξ(0)− ξ(x)) cos(ξ(0)− ξ(x)) 0



 dx,

where ξ(x) := ϕ(x, 0). 2
Proof of Theorem 6.3.2.

Relation (6.3.3) is a rephrasing of (6.2.14):

U−1
− (y) · ∂yU− = −λ−1 ·W0 · γ1 ·W−1

0

where we substitute (6.2.20)

ηy = −λ · U−1
− ∂yU−,

that is the definition of the normalized y-potential.
Let us now consider equation (6.2.17) from the proof of Theorem 6.2.1, namely

U−1
− · dU− = V+ · (U−1 · dU) · V −1

+ − dV+ · V −1
+ .

We proved that both sides depend on y only. Now let us take a look at the coeffi-
cient of λ0 in this equation.

The left-hand side has negative powers of λ only, while the y-part of right-hand
side only has −W0 · γ0 ·W−1

0 − dW0 ·W0
−1 as a term that does not depend on λ.

Consequently, we obtain W0(y)−1dW0 = −γ0(x). Formula (6.2.11.c) tells us that
γ0 = 0. From this we conclude that W0(y) is actually a constant matrix, and from
the initial condition on the frame U , together with the initial condition of (6.3.4), it
follows that for every y,

W0(y) = U(0, 0) = I.

It follows that
ηy = W0(y) · γ1(y) ·W0(y)−1 = γ1(y).

Therefore,

(6.3.10) ηy =





0 0 sin ϕ(0, y)
0 0 cos ϕ(0, y)

− sin ϕ(0, y) − cos ϕ(0, y) 0



 dy.

2
Remark 6.3.1. Let us review the expressions (6.3.9) and (6.3.10) for the two nor-
malized potentials ηx and ηy, that is
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0 0 − sin(ϕ(0, 0)− ϕ(x, 0))
0 0 − cos(ϕ(0, 0)− ϕ(x, 0))

sin(ϕ(0, 0)− ϕ(x, 0)) cos(ϕ(0, 0)− ϕ(x, 0)) 0



 dx,

and




0 0 sin(ϕ(0, y))
0 0 cos(ϕ(0, y))

− sin(ϕ(0, y)) − cos(ϕ(0, y)) 0



 dy,

respectively.
Note that the normalized potentials depend exclusively on the angle ϕ(x, y) be-

tween the asymptotic lines.

6.4 Another Method for Normalized Potentials: Passage to
2 × 2 Matrices

We introduce the matrices

(6.4.1) σ1 =
(

0 1
1 0

)

, σ2 =
(

0 −i
i 0

)

, σ3 =
(

1 0
0 −1

)

called Pauli matrices.
We can rewrite in terms of 2 × 2 matrices the potentials ηx and ηy, given by

formulas (6.3.9) and (6.3.10). The Pauli matrices above will allow us to do this.
This passage from 3× 3 to 2× 2 matrices can be done via the well-known isomor-

phism between sl(2,C) and so(3,C), which induces an isomorphism between su(2)
and so(3,R). This isomorphism is defined by the correspondence

(6.4.2a) E12 ←→ (−i/2)σ3,

(6.4.2b) E13 ←→ (−i/2)σ2,

(6.4.2c) E23 ←→ (−i/2)σ1.

Via this passage to 2× 2 matrices, the two potentials become

6.4.3a, ηx =
i
2

(

0 ei(ϕ(x,0)−ϕ(0,0))

ei(ϕ(0,0)−ϕ(x,0)) 0

)

dx

6.4.3b ηy = − i
2

(

0 e−i(ϕ(0,y))

ei(ϕ(0,y)) 0

)

dy,

respectively.
Remark 6.4.1. The fact that we chose to work with Chebyshev nets (A = B = 1,
where A = |ψx|, B = |ψy|) allows this form of the normalized pair of potentials.

Had we chosen to work with arbitrary A and B (that is, not necessarily a Cheby-
shev net), a more tedious but straightforward calculation would lead us to the Weier-
strass data
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6.4.4a ηx =
iA
2

(

0 ei(ϕ(x,0)−ϕ(0,0))

ei(ϕ(0,0)−ϕ(x,0)) 0

)

dx,

6.4.4b ηy = − iB
2

(

0 e−i(ϕ(0,y))

ei(ϕ(0,y)) 0

)

dy.

The asymmetry of the two potential comes from the definition of a normalized
extended frame. Although the two potentials look asymmetric, one can make the two
expressions look similar by gauging with a certain rotation. This will be shown in
Section 7.2. The corresponding symmetric potentials are given in (7.2.19 a,b).
Remark 6.4.2. The product of the off-diagonal elements is A2 and B2 respectively
for ηx and ηy (with a factor of −1/4). This is similar to the CMC case, where the
meromorphic (normalized) potential has the form

(6.4.5) η =
(

0 f(z)
g(z) 0

)

dz,

with f · gdz2 = −Qdz2 (Hopf differential).
For the CMC case, the λ-transformation was given by

(6.4.6)
{

Q 7→ e2itQ = λ2Q,
Q̄ 7→ e−2itQ̄ = λ−2Q,

while here it is A 7→ λA, B 7→ λ−1B, λ = et. So the role played in the case of CMC
surfaces by the Hopf differential Q is taken for the case of pseudospherical surfaces
by the pair A,B.

The globally defined differential forms (A2)dx2 and (B2)dy2 are sometimes called
Klotz differentials.
Remark 6.4.3. The isomorphism described above in (6.4.2 a,b,c), between su(2) and
so(3), is provided by the spinor representation J defined as follows:

J : R3 → su(2),

(6.4.7) J(x, y, z) =
1
2

(

−iz −ix− y
−ix + y iz

)

,

which identifies R3 and su(2) via

(6.4.8) J(r) = − i
2
rσ,

where rσ = r1σ1+r2σ2+r3σ3, and σ1, σ2, σ3 are the Pauli matrices defined by (6.4.1).
Then

(6.4.9) J(r1 × r2) = [Jr1, Jr2].

If U = (e1, e2, e3) is the normalized moving frame of the surface M in asymptotic
line parametrization, we define the “2 × 2” frame P : D → SU(2) with the initial
condition P (0, 0) = I, via
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6.4.10
J(e1) = − i

2Pσ1P−1,
J(e2) = − i

2Pσ2P−1,
J(e3) = − i

2Pσ3P−1.

We have this way a correspondence between all the frames U in SO(3) and frames P
in SU(2).

A tedious but straightforward computation completely similar to the one in
[DoHa], Appendix A.4, transfers the 3 × 3 matrices A and B from (6.2.5) to the
2× 2 matrices U and V given by the corresponding Lax system:

(6.4.11) U = P−1Px =
−i
2

(

−ϕx λ
λ ϕx

)

(6.4.12) V = P−1Py =
i
2
λ−1

(

0 e−iϕ

eiϕ 0

)

with P (0, 0) = I.
This Lax system can be also obtained directly from (2.3.15) through the isomor-

phism between su(2) and so(3,R) defined by (6.4.2 a,b,c), that is

E12 ←→ (−i/2)σ3, E13 ←→ (−i/2)σ2, E23 ←→ (−i/2)σ1.

7 Examples of Pseudospherical Surfaces

A variety of surfaces of constant negative Gaussian curvature, including the pseudosphere,
were presented for the first time in a paper by Ferdinand Minding (Crelles’s Journal,
1939). Other examples, coming from non-trivial solutions of the sine-Gordon equa-
tion were published in the fifties: e.g., one and two solitons, periodic solutions in
elliptic functions and some wave packets, described by A. Seeger, H. Douth, and A.
Kochendörfer, Theorie der Versetzungen in eindimensionalen Atomreihen, Z. Phys.
134, 1953, 173–193. There are remarkably many such examples, exactly because
the sine-Gordon equation is a soliton equation which is completely integrable. This
equation was solved by Ablowitz et al. in 1973 via the method of inverse scattering
([ABW]).

In this section, I will only present a few well-known examples of infinite-type
pseudospherical surfaces and the normalized potentials associated to them.

1.The Pseudosphere. Consider the curve

(7.1.1) y(x) =
√

1− x2 − cosh−1(1/x)

and rotate it around the y-axis, as in [Spi], or [Ei]. The surface obtained this way is
called pseudosphere and its area is 2π.

In the Chebyshev net parametrization, the pseudosphere corresponds to a u2-
independent solution of the sine-Gordon equation

(7.1.2)
∂2ϕ

∂(u1)2
− ∂2ϕ

∂(u2)2
= sin ϕ,
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where, as before, u1 = x + y and u2 = x − y represent the curvature line coordi-
nates, while x, y represent the asymptotic line coordinates. The angle ϕ between the
asymptotic lines is given by

(7.1.3) ϕ = 4 tan−1 ex+y.

The pseudosphere has a so-called y = ±x3/2-type cusp at the singularity.
The angle ϕ above corresponds to a Chebyshev net, i.e., parametrized by arc

length.
The angle ϕ(x, y) = ϕ(u1) is a solution to the equation

(7.1.4)
∂2ϕ

∂(u1)2
= sin ϕ,

a particular case of a sine-Gordon. This solution passes through π at the cusp, that
is, where u1 = x + y = 0. The two infinite spikes correspond to ϕ → 0 and ϕ → 2π,
i.e., x + y 7→ ±∞, where the two coordinate lines are asymptotically tangent to one
another, but the singularity isn’t reached, and the spike goes to infinity. Only one
spike will show up if ϕ takes values in (0, π), which was the general assumption in all
the previous sections of this text.
Proposition 7.1

The symmetric x-potential and y-potential associated with the modified frame Ũ of
the pseudosphere are, respectively

(7.1.5a) η̃x =





0 0 α(x)
0 0 β(x)

−α(x) −β(x) 0



 dx,

(7.1.5b) η̃y =





0 0 a(y)
0 0 b(y)

−a(y) −b(y) 0



 dy,

where

(7.1.6a) α(x) = 1− 8e2x

(1 + e2x)2
,

(7.1.6b) β(x) =
4ex(e2x − 1)
(1 + e2x)2

,

(7.1.6c) a(y) =
8e2y

(1 + e2y)2
− 1,

(7.1.6d) b(y) =
4ey(1− e2y)
(1 + e2y)2

.

Note that formally α(y) = −a(y) and β(y) = −b(y).
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Proof. A straight-forward computation using elementary trigonometric formulas
yields all desired expresions.

2. 1-Soliton Traveling Wave
The surfaces occuring in the associated family of the pseudosphere are called “1-

soliton traveling waves”. The pseudosphere is the particular case λ = 1. For this
family of pseudospherical surfaces, the angle ϕ(x, y) between the asymptotic lines is
given by

(7.2.1) ϕ = 4 tan−1 eλx+λ−1y, λ > 0.

The 1-soliton travelling waves can be obtained from the pseudosphere via the Lie-
Lorentz transformation x 7→ λx, y 7→ λ−1y, λ > 0.

As λ changes away from 1, the surface changes from a pseudosphere into a surface
that looks almost like a helicoid. The surface has a self-intersection on the central
axis, and the hidden part corresponds to the spike of the pseudosphere.

[Has] specifies the parametrization of this surface as

ψ(x, y) = (−2α sech u sin βu, 2α sechu cos βu, x− 2α tanh u),

where β = 1/λ and α = 2/(λ + λ−1).
Here the cusp corresponds to u = 0. Any coordinate patch that doesn’t intersect

the cusp line u = 0 must have area less than or equal to 2π. Diagonal strips −c < u < c
in the coordinate plane result in infinite areas.

Finally, we note that the x- and y- symmetric potentials of the travelling wave are
given by

(7.2.2) ξ̃x = λ · η̃x,

(7.2.3) ξ̃y = λ−1 · η̃y,

where η̃x and η̃y represent the symmetric potentials of the pseudosphere, given by
(7.1.5 a,b) with (7.1.6 a,b).

3. Amsler’s Surface.
In Chebyshev net parametrization, this surface corresponds to an angle ϕ(x, y)

that is constant on both x- and y-axes, which will be expressed by (7.3.2).
While ϕ(x, y) cannot be written explicitely, we can write the sine-Gordon equation

in a very simple form ([Me, St, 2]):
Let t := xy with (x, y) ∈ D = R2. If we express ϕ(x, y) = h(xy), with h : R →

(0, π) a differentiable function, then

(7.3.1)
d
dt

(t · dh
dt

) = sin h(t)

represents the sine-Gordon equation.
Since ϕ(x, y) is smooth, a straight-forward calculation yields

(7.3.2) ϕ(0, 0) = ϕ(x, 0) = ϕ(0, y) := ϕ0

for every pair (x, y) ∈ D.
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Amsler ([Ams]) investigated this surface for values ϕ ∈ [0, π]. He showed that the
solution ϕ(x, y) = h(xy) oscillates near π when t > 0 and near 0 when t < 0. He also
proved that the surface has two cuspidal edges corresponding to ϕ = 0 and ϕ = π,
respectively.

We also note the two straight-lines contained in the Amsler surface, corresponding
to x = 0 and y = 0.

As an obvious consequence of the angle being constant along the axes, the nor-
malized potentials of the pseudosphere are:

(7.3.3a) ηx =





0 0 0
0 0 −1
0 1 0



 dx,

(7.3.3b) ηy =





0 0 sin ϕ0

0 0 cos ϕ0
− sin ϕ0 − cos ϕ0 0



 dy.

Here we must note that formulas representing symmetric potentials are written in
this case

(7.3.4a) η̃x =





0 0 sin ϕ0
2

0 0 − cos ϕ0
2

− sin ϕ0
2 cos ϕ0

2 0



 dx,

(7.3.4b) η̃y =





0 0 sin ϕ0
2

0 0 cos ϕ0
2

− sin ϕ0
2 − cos ϕ0

2 0



dy.

In the 2× 2 matrix approach, they appear as:

7.3.5a η̃x =
i
2

(

0 ei ϕ0
2

e−i ϕ0
2 0

)

dx

7.3.5b η̃y = − i
2

(

0 e−i ϕ0
2

ei ϕ0
2 0

)

dy.

Remark 7.0.4. For Amsler surfaces, the sine-Gordon equation is written as the
second order differential equation

(7.3.6) th′′(t) + h′(t) = sin(h(t)).

Note that a change of function w = eiψ will transform equation (7.3.6) into the
so-called third Painleve equation.
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Appendix

By definition, the deformation parameter λ that generates an associated family of
pseudospherical surfaces is real and positive, λ = et. In general, λ can be real and
negative as well. Our choice is motivated by the convenience of working within the
connected Banach loop group

(ΛSO(3)P , ‖ · ‖) = {g : R+ → SO(3,R) | Pg(λ)P−1 = g(−λ)},

endowed with the norm ‖ · ‖ defined by (4.1.16).
The goal of this appendix is to show that we can split à la Birkhoff any extended

frame Uλ which admits an analytic extension on C∗.
For our purpose, it is useful to extend the real positive parameter λ such that we

can apply the Birkhoff splitting to complex loop groups with loop parameter in S1.
Let us first consider the Lax system

(A.1)
{

U−1 · ∂xU = −ϕx · E12 + µ ·E23

U−1 · ∂yU = µ−1 · (− sinϕ · E13 − cosϕ · E23),

where µ ∈ C∗ = C \ {0}.
Clearly, the Lax system (2.3.15) is the same as (A.1) if we restrict µ to R+.

Lemma A.1 Every solution U to (A.1) with initial condition U(0, 0, µ) = I is analytic
in µ ∈ C∗ and

(A.2) U(x, y, µ̄) = U(x, y, µ).

Proof. Note that the right-hand side of A.1 is analytic in µ ∈ C∗. Since the initial
condition is analytic in µ ∈ C∗, it follows that, for every x and y arbitrarily fixed, the
solution U of (A.1) is also analytic in µ ∈ C∗. Relation (A.2) is straight-forward, as
a consequence of the reality of ϕ. 2

In order to use the classical loop group factorization, let us choose λ ∈ S1. We
consider the restriction to S1 of the extended frame U satisfying the Lax system (A.1),
and will denote it Uλ.

Taking into consideration the property (A.2) of Uλ, we introduce the following
group of continuous maps:

A.3 HP = {A : S1 → SO(3,C) | A continuous, A(λ̄) = A(λ),
P ·A(λ) · P−1 = A(−λ)},

with the supplementary condition

(A.4) ‖A‖ =
∑

k∈Z
‖Ak‖ < ∞,

where
A(λ) =

∑

k∈Z
Ak · λk,

and
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(A.5) ‖B‖ = max
i
{

3
∑

j=1

|Bij |},

for every λ-independent 3× 3 matrix B.
HP is a Banach Lie group with respect to the norm ‖ · ‖.
(Note that we have used the same symbol ‖ · ‖ for different entities. We hope this

will not lead to any confusion).
Clearly, (A.3) expresses the reality of the coefficient matrices in the Fourier ex-

pansion.
Proposition A.1 For the group HP we define (H−

P )∗ and H+
P as in Section 4.3. The

multiplication (H−
P )∗ × H+

P → (H−
P )∗ · H+

P is an analytic diffeomorphism onto the
open and dense subset (H−

P )∗ ·H+
P , called the “big cell”. In particular, if A ∈ HP is

contained in the big cell, then A has a unique decomposition

(A.6) A = A−A+,

where A− ∈ (H−
P )∗ and A+ ∈ H+

P . The analogous result holds for the multiplication
map (H+

P )∗ ×H−
P → (H+

P )∗ ·H−
P .

Proof. Let A : S1 → SO(3,C) be an element of HP . By the definition of HP , we
have

A(λ) = (A(λ̄), for every λ ∈ S1.

On the other hand, by Theorem 4.3.1, A(λ) can be decomposed à la Birkhoff in a big
cell of ΛSO(3,C), as

(A.7), A(λ) = A−(λ)A+(λ), for every λ ∈ S1,

A−(λ) ∈ Λ−∗ SO(3,C), A+(λ) ∈ Λ+SO(3,C).
As a consequence of (A.6) and (A.7), we obtain

(A.8) A(λ) = A−(λ̄) ·A+(λ̄).

Also, (A.7) and (A.8) yield

A−(λ)−1 ·A−(λ̄) = A+(λ) ·A+(λ̄)
−1

.

The left-hand side is an element of Λ−∗ SO(3,C), while the right-hand side is an
element of Λ+SO(3,C), and hence both sides are equal to the identity matrix. There-
fore,

A.9
A−(λ̄) = A−(λ)
A+(λ̄) = A+(λ), for every λ ∈ S1.

Hence, A+ and A− satisfy the first condition (A.6) from the definition of the group
HP , meaning that their coefficient matrices are real.

On the other hand, the symmetry condition

A(−λ) = P ·A(λ) · P−1 = P ·A−(λ) · P−1 · P ·A+(λ) · P−1,

together with the uniqueness of the Birkhoff splitting
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A(−λ) = A−(−λ) ·A+(−λ),

yield the symmetry condition for A−, A+:

A−(−λ) = P ·A−(λ) · P−1

A+(−λ) = P ·A+(λ) · P−1.

Thus, the Birkhoff factorization holds for HP . The analytic diffeomorphism (H−
P )∗ ×

H+
P → (H−

P )∗ ·H+
P is a particularization of the analytic diffeomorphism analyzed in

Theorem 4.2.1. 2
Theorem 4.3.2. states the Birkhoff splitting for arbitrary elements g in the Banach

loop group ΛSO(3)P which admit an analytic extension to C∗.
Now we are ready to present its proof.

Proof of Theorem 4.3.2. Let g : R+ → SO(3), g(−λ) = P · g(λ) · P−1, be an
element of the Banach loop group ΛSO(3)p that has an analytic extension g̃ to C∗.

Set A := g̃|S1 .
Since g ∈ ΛSO(3)P , the matrix coefficients of g are real, that is

A(λ) =
∑

k∈Z
Akλk, λ ∈ S1,

Note that A ∈ HP , where HP denotes the loop group defined by (A.3). The
algebraic conditions are obviously satisfied. Also, by [GO], Theorem 1.4, analytic
functions satisfy the finite norm condition.

Here we are only interested in elements A belonging to the big cell of HP .
The previous proposition shows that the Birkhoff splitting holds for the big cell

of HP .
Then, let A− ∈ (H−

P )∗ and A+ ∈ H+
P be such that

A = A−A+,

where
A− = I +

∑

k<0

Akλk,

A+ =
∑

k≥0

Akλk, λ ∈ S1.

We need to show that A− and A+ admit analytic extensions to C∗.
By our hypothesis, A has an analytic extension to C∗. The element A− admits

an analytic extension to the exterior of the unit circle S1. Therefore, (A−)−1A = A+
can be extended analytically outside of the unit disk.

On the other hand, A+ admits an analytic extension inside the unit disk. Thus,
by analytic prolongation, A+ admits an analytic extension to C∗.

From A(A+)−1 = A−, it follows next that A− also admits an analytic extension
to C∗.

Let Ã− and Ã+ be the analytic extensions of A− and A+ to C∗, respectively.
Next, let g− and g+ denote their restrictions to R+:

g− = Ã−|R+
, g+ = Ã+|R+

.
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Clearly, g, g− and g+ have analytic extensions to C∗, respectively: g̃, Ã− and Ã+
such that

g̃|S1 = A = A− ·A+ = Ã−|S1 · Ã+|S1 ,

that is g̃ and Ã−Ã+ coincide on S1. Therefore, g̃ and Ã−Ã+ will coincide on R+ as
well, and g = g−g+ is a unique factorization.

This proves the splitting.
It remains to prove that Λ̃−∗ SO(3)P × Λ̃+SO(3)P → Λ̃SO(3)P is a diffeomorphism

onto the open and dense subset Λ̃−∗ SO(3)P · Λ̃+SO(3)P .
Note that Λ̃SO(3)P is a subgroup of ΛSO(3)P with the induced topology. On

the other hand, it is natural to view the diffeomorphism Λ−∗ SO(3)P × Λ+SO(3)P →
ΛSO(3)P as a restriction of the analytic diffeomorphism (H−

P )∗ ×H+
P → (H−

P )∗ ·H+
P

from Proposition A.1.
Consequently, we have the the induced diffeomorphism Λ̃−∗ SO(3)P×Λ̃+SO(3)P →

Λ̃SO(3)P . 2

References

[ABW] Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H., Method for Solving the
Sine-Gordon Equation, Phys. Rev. Lett. 30, 1973, 191–193.

[Ams] Amsler, M.H., Des surfaces a courbure negative constante dans l’espace a
trois dimensions et de leurs singularites, Math. Ann. 130, 1955, 234-256.

[Bo1] Bobenko, A.I., Constant Mean Curvature Surfaces and Integrable Equations,
Russ. Math. Surveys 46:4, 1991, 1–45.

[Bo2] Bobenko, A. I., Surfaces in terms of 2 by 2 matrices, in Harmonic Maps and
Integrable Systems, Vieweg 1994, 83-128.

[Ca] Cartan, E., Les systems differentiels exterieurs, Paris, 1949.

[Ch,Te] Chern, S.S., Terng, C.L., An Analogue of Bäcklund’s Theorem in Affine
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