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Abstract

The examples, that we denote by Gw, given in [2] of contact metric spaces
which are weakly locally φ -symmetric, but not strongly, satisfy the stronger
condition that their contact metric structure is homogeneous. In this paper we
give the first example of weakly locally φ-symmetric space which is not homo-
geneous, consequently these spaces form a larger class. Moreover, we show that
the examples Gw are the only 3-dimensional weakly, but not strongly, locally
φ-symmetric spaces which have constant scalar curvature and vertical Ricci cur-
vature.

Mathematics Subject Classification:53D10, 53C25, 53C30.
Keywords and phrases: weakly φ-symmetric, strongly φ-symmetric, three-manifolds.

1 Introduction

A locally symmetric Sasakian manifold (or K-contact) manifold is of constant sec-
tional curvature 1 (see [7],[10]). For this reason, Takahashi [9] introduced the notion
of a locally φ-symmetric space. It is a Sasakian manifold satisfying the condition

(∇XR)(Y, Z, V, W ) = 0(1.1)

for all vector fields X,Y, Z, V,W orthogonal to the characteristic vector field ξ. This
notion has been for the most part explored only in the Sasakian context and it is not
clear what the corresponding notion should be for a general contact metric manifold.

D.E.Blair, T. Koufogiorgos and R.Sharma [1] extended the Takahashi’s notion to a
general contact metric manifold (M, η, g, ξ, φ) by using the same curvature condition
(1.1); moreover they proved that a 3-dimensional contact metric manifold , with
Qφ = φQ, is weakly locally φ-symmetric iff it is of constant scalar curvature. In the
Sasakian case, the condition (1.1) is satisfied if and only if all characteristic reflections
are (local) isometries. Then E. Boeckx and L. Vanhecke [3] gave the following new
generalization : a contact metric manifold is called locally φ-simmetric if and only
if all characteristic reflections are (local) isometries. To distinguish between the two
definitions, since the first is weaker than the second, following [2] we speak of weakly
locally φ-symmetric spaces (for the first one) and strongly locally φ-symmetric (for the
second one).
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In [4] was determined all 3-dimensional strongly locally φ-symmetric spaces and
proved that a contact metric three-manifold is strongly locally φ-symmetric if and
only if it is a locally homogeneous contact metric manifold satisfying the condition
σ(X) = 0 ∀X ∈ Kerη, where σ(X) denotes the vertical Ricci curvature ρ(X, ξ) =
g(Qξ,X). Recently E. Boeckx, P. Bunken and L. Vanhecke [2] give the first examples
of contact metric spaces which are weakly locally φ-symmetric, but not strongly.
These examples are non-unimodular Lie group of dimension three, that we denote
by Gw, equipped with a left invariant contact metric structure which depends by a
parameter w ∈ R, w < 0. We note that the parameter w is completely determined by
the Webster scalar curvature (see Remark 4.1).

In this paper we show that the spaces Gw are the only weakly locally φ-symmetric,
but not strongly, with constant scalar curvature and vertical Ricci curvature σ(X) (see
Theorem 4.1). The examples Gw satisfy the stronger condition that their contact met-
ric structure is homogeneous. So, one natural question is to see if there exist weakly
locally φ-symmetric three-spaces which are not homogeneous. We give a positive an-
swer to this question (see Theorem 4.3), consequently the weakly locally φ-symmetric
spaces form a larger class. In the last section, we show that the unit tangent sphere
bundle of a Riemannian two-manifold (M,G) is weakly locally φ-symmetric if and
only if (M, G) has constant sectional curvature.

2 Preliminaries on contact metric manifolds

In this section we collect some basic facts about contact metric manifolds. All mani-
folds are assumed to be connected and smooth. A (2n + 1)-dimensional manifold M
has an almost contact structure if it admits a vector field ξ (the characteristic field),
a one-form η and a (1, 1)-tensor field φ satisfying

η(ξ) = 1, φ2 = −I + η ⊗ ξ.

Then one can always find a Riemannian metric g which is compatible with the struc-
ture, that is, such that

g(φX, φY ) = g(X, Y )− η(X)η(Y )

for all vector fields X and Y . (ξ, η, φ, g) is called an almost contact metric structure and
(M, ξ, η, φ, g) an almost contact metric manifold. If additionally it holds dη(X, Y ) =
g(X, φY ), then (M, ξ, η, φ, g) is called a contact metric manifold. In what follows
we denote by ∇ the Levi Civita connection and by R the corresponding Riemann
curvature tensor given by RXY = ∇[X,Y ] − [∇X ,∇Y ] for all smooth vector fields
X, Y . Moreover, we denote by ρ the Ricci tensor of type (0, 2), by Q the corresponding
endomorphism field and by r the scalar curvature. We note that σ(X) := g(Qξ,X) =
0 ∀X ∈ Kerη iff Qξ is parallel to ξ, moreover Qφ = φQ implies Qξ is parallel to ξ.
The tensor h = 1

2Lξφ, where L denotes the Lie derivative, is symmetric and satisfies
−φh = ∇ξ +φ = hφ. A contact metric space is said to be a K-contact manifold if ξ is
a Killing vector field, or equivalently, h = 0. For a three-dimensional contact metric
manifold, the Webster scalar curvature W (see [5]) and the φ−sectional curvatureH
are given by

W =
1
8
(r − ρ(ξ, ξ) + 4) 2H = r − 4(1− λ2) = r − 2ρ(ξ, ξ),(2.1)



Weakly φ-Symmetric Contact Metric Spaces 69

moreover, the contact metric structure is K-contact iff it is Sasakian.
Next, let (M, ξ, η, φ, g) be a three-dimensional contact metric manifold and m a

point of M . Then there exists a local orthonormal basis {ξ, e1, e2 = φe1} of smooth
eigenvectors of h in a neigborhood of m. Now, let U1 be the open subset of M where
h 6= 0 and let U2 be the open subset of points m ∈ M such that h = 0 in a neigh-
borhood of m. U1 ∪ U2 is an open dense subset of M . On U1 we put he1 = λe1 and
hence, from (2.4) we have he2 = −λe2 where λ is a non-vanishing smooth function.
Then we have

Lemma 2.1 [4] On U1 we have

∇ξe1 = −ae2 , ∇ξe2 = ae1 ,

∇e1ξ = −(λ + 1)e2 , ∇e2ξ = −(λ− 1)e1 ,

∇e1e1 =
1
2λ
{(e2)(λ) + A}e2 , ∇e2e2 =

1
2λ
{e1(λ) + B}e1 ,

∇e1e2 = − 1
2λ
{(e2)(λ) + A}e1 + (λ + 1)ξ ,

∇e2e1 = − 1
2λ
{e1(λ) + B}e2 + (λ− 1)ξ ,

(2.2)

[e1, e2] = − 1
2λ
{(e2)(λ) + A)}e1 +

1
2λ
{(e1)(λ) + B}e2 + 2ξ ,(2.3)

where A = ρ(ξ, e1), B = ρ(ξ, e2) and a is a smooth function.

Finally, we recall that the components of the Ricci operator Q, with respect to
{ξ, e1, e2 = φe}, are given by (see [8])



















Qξ = 2(1− λ2)ξ + Ae1 + Be2,
Qe1 = Aξ + (

r
2
− 1 + λ2 + 2aλ)e1 + ξ(λ)e2,

Qe2 = Bξ + ξ(λ)e1 + (
r
2
− 1 + λ2 − 2aλ)e2,

from which it follows easily

(∇ξQ)ξ = −4λξ(λ)ξ + {ξ(A) + aB}e1 + {ξ(B)− aA}e2,(2.4)

(∇e1Q)e1 = {e1(A) + (λ + 1)ξ(λ)− B
2λ

[e2(λ) + A]}ξ

+{e1(
r
2

+ λ2 + 2aλ)− ξ(λ)
λ

[e2(λ) + A]}e1(2.5)

+{e1ξ(λ) + 2a(e2)(λ) + (2a− λ− 1)A}e2,
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(∇e2Q)e2 = {e2(B) + (λ− 1)ξ(λ)− A
2λ

[e1(λ) + B]}ξ

+{e2(ξ)λ− 2ae1(λ) + (1− λ− 2a)B}e1(2.6)

+{e2(
r
2

+ λ2 − 2aλ)− ξ(λ)
λ

[e1(λ) + B]}e2,

(∇e1Q)e2 = {e1(B) + (λ + 1)(
r
2

+ 3λ2 − 3− 2aλ) +

A
2λ

[e2(λ) + A]}ξ + {e1ξ(λ) + 2ae2(λ) + A(2a− λ− 1)}e1(2.7)

+{e1(
r
2

+ λ2 − 2aλ)− 2B(λ + 1) +
ξ(λ)
λ

[e2(λ) + A]}e2,

(∇e2Q)e1 = {e2(A) + (λ− 1)(
r
2

+ 3λ2 − 3 + 2aλ) +

+
B
2λ

[e1(λ) + B]}ξ + {e2(
r
2

+ λ2 + 2aλ)− 2A(λ− 1)(2.8)

+
ξ(λ)
λ

[(e1)(λ) + B]}e1 + {e2ξ(λ)− 2ae1(λ) + B(1− 2a− λ)}e2.

3 A characterization of weakly locally φ-symmetric contact
metric three-manifolds

In the sequel we denote by M a contact metric three-manifold and by (η, g, φ, ξ) its
contact metric structure.

Lemma 3.1 A contact metric three-manifold M is weakly locally φ-symmetric if and
only if

{

e1(H) = 2B(λ + 1)
e2(H) = 2A(λ− 1).(3.1)

where H is the φ-sectional curvature and λ is the eigenvalue corresponding to the
eigenvector e1.

Proof. From (1.1) follows that M is weakly locally φ-symmetric if and ony if

(∇V R)(X, Y, Z) = g((∇V R)(X, Y, Z), ξ)ξ

for any X, Y, Z, V ∈ Ker η. Since dimM = 3, we have the well-known formula

R(X, Y )Z = g(X, Z)QY − g(Y,Z)QX + ρ(X, Z)Y − ρ(Y,Z)X +

−r
2
{g(X, Z)Y − g(Y,Z)X},

for all X, Y, Z vector fields on M . Therefore, we have

(∇e1R)(e1, e2, e1) = (∇e1Q)e2 + g((∇e1Q)e1, e1)e2

−g((∇e1Q)e2, e1)e1 − e1(
r
2
)e2,
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(∇e1R)(e1, e2, e2) = −(∇e1Q)e1 + g((∇e1Q)e1, e2)e2

−g((∇e1Q)e2, e2)e2 + e1(
r
2
)e1,

(∇e2R)(e1, e2, e1) = (∇e2Q)e2 + g((∇e2Q)e1, e1)e2

−g((∇e2Q)e2, e1)e1 − e2(
r
2
)e2,

(∇e2R)(e1, e2, e2) = −(∇e2Q)e1 + g((∇e2Q)e1, e2)e2

−g((∇e2Q)e2, e2)e1 + e2(
r
2
)e1.

Consequently (∇e1R)(e1, e2, e1) and (∇e2R)(e1, e2, e1) are parallel to ξ if and
only if holds the following











1
2
e1(r) = g(∇e1Q)e1, e1) + g(∇e1Q)e2, e2)

1
2
e2(r) = g(∇e2Q)e1, e1) + g(∇e2Q)e2, e2).

(3.2)

Imposing that the other components (∇e1R)(e1, e2, e2) and (∇e2R)(e1, e2, e2) are
parallel to ξ we get the same condition (3.2). If M is Sasakian, then Qξ = 2ξ, Qe1 =
( r
2 − 1)e1, Qe2 = r

2 − 1)e2, from which it follows

ξ(r) = g((∇ξQ)ξ, ξ) + g((∇e1Q)e1, ξ) + g((∇e2Q)e2, ξ) = 0,

and hence
r = const. ⇐⇒ e1(r) = e2(r) = 0.

But r = 4 + 2H, so ξ(H) = ξ(r) = 0 and r = const. ⇔ H = const. ⇔ e1(H) =
e2(H) = 0. Moreover (see [11]): M is locally φ-symmetric ⇔ r = const. Therefore, we
get the statement of Lemma 3.1, since for M Sasakian A = B = 0.

Now assume that M is not Sasakian. From (2.5)-(2.8) we have

g((∇e1Q)e1, e1) =
e1(r)

2
+ e1(λ2) + e1(2aλ)− ξ(λ)

λ
{e2(λ) + A},

g((∇e1Q)e2, e2) =
e1(r)

2
+ e1(λ2)− e1(2aλ) +

ξ(λ)
λ
{e2(λ) + A} − 2B(λ + 1),

g((∇e2Q)e1, e1) =
e2(r)

2
+ e2(λ2) + e2(2aλ) +

ξ(λ)
λ
{e2(λ) + B} − 2A(λ− 1),

g((∇e2Q)e2, e2) =
e2(r)

2
+ e2(λ2)− e2(2aλ)− ξ(λ)

λ
{e1(λ) + B}.

Then, using 3.2, M is weakly locally φ-symmetric if and ony if










1
2
e1(r) + 2e1(λ2) = 2B(λ + 1)

1
2
e2(r) + 2e2(λ2) = 2A(λ− 1).

(3.3)

Then, by (2.1), (3.3) is equivalent to (3.1).

Corollary 3.2 If Qξ is parallel to ξ, then M is weakly locally φ-symmetric if and
only if it has constant φ-sectional curvature.



72 D. Perrone

4 Main results

Theorem 4.1 Let M be a 3-dimensional contact metric manifold. Then M is weakly
locally φ-symmetric with constant scalar curvature and vertical Ricci curvature if,
and only if, either M is strongly locally φ-symmetric or it is locally isometric to a Lie
group Gw.

Proof. The necessary condition is trivial. We show the sufficient condition. In the
Sasakian case, the two definition are equivalent, so we have to consider only the non
Sasakian case. Then the set U1 6= ∅ where we suppose λ < 0. Since r = const., from
Lemma 3.1 we have

{

2λe1(λ) = B(λ + 1)
2λe2(λ) = A(λ− 1),(4.1)

and hence

2λ[e1, e2](λ2) = 2λ(λ− 1)e1(A)− 2λ(λ + 1)e2(B) + 2AB.(4.2)

Moreover, by Lemma 2.1 and (4.1), we have

2λ[e1, e2](λ2) = −2AB + 8λ2ξ(λ),(4.3)

and, by (4.1) and 0 = ξ(r) = g((∇ξQ)ξ, ξ) + g((∇e1Q)e1, ξ) + g((∇e2Q)e2, ξ), we get

8λ2ξ(λ) = 4λe1(A) + 4λe2(B)− 2(Be2(λ) + Ae1(λ))− 4AB
= 4λe1(A) + 4λe2(B)− 6AB.(4.4)

From (4.2) and (4.3) we have

4λ2ξ(λ) = λ(λ− 1)e1(A)− λ(λ + 1)e2(B) + 2AB(4.5)

which, using (4.4), gives

λ(λ− 3)e1(A)− λ(λ + 3)e2(B) + 5AB = 0.(4.6)

Since ρ(ξ, ei) = const., from (4.6) and (4.5) we get AB = 0 and ξ(λ) = 0. Now, we

consider separately the cases A = B = 0; A 6= 0, B = 0; A = 0, B 6= 0.
Case A=B=0. In this case, (4.1) gives e1(λ) = e2(λ) = 0 and hence, since ξ(λ) = 0,
we have λ constant. Now, using the formula

ei(r) = g((∇ξQ)ξ, ei) + g((∇e1Q)e1, ei) + g((∇e2Q)e2, ei),(4.7)

for i=1,2, and (2.4)-(2.6), since r and λ are constant, we get e1(a) = e2(a) = 0.
Moreover, ξ(a) = [e1, e2](a) = 0. So, also a is constant. Then, applying Theorem 3.1
of [8] and theorem 5.1 of [4], we get that M is strongly locally locally φ-symmetric.

Case A=0, B 6= 0. From (4.1) we have e2(λ) = 0 and e1(λ) =
B
2λ

(λ + 1). But, see

lamma 2.1, (a+λ−1)e1(λ) = [ξ, e2](λ) = 0. Therefore either a = 1−λ or e1(λ) = 0.
Assume a = 1− λ. Then lemma 2.1 gives
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∇ξe1 = (λ− 1)e2 , ∇ξe2 = (1− λ)e1 ,

∇e1ξ = −(λ + 1)e2 , ∇e2ξ = −(λ− 1)e1 ,

∇e1e1 = 0, ∇e2e2 =
B(1 + 3λ)

4λ2 e1 ,

∇e1e2 = (λ + 1)ξ, ∇e2e1 = −B(1 + 3λ)
4λ2 e2 + (λ− 1)ξ,

(4.8)

and

[e1, e2] =
B(1 + 3λ)

4λ2 e2 + 2ξ.(4.9)

Consequently using (4.8),

R(e1, e2)e1 = −∇e1∇e2e1 +∇e2∇e1e1 +∇[e1e2]e1 =

=
{

− B2

16λ4 (15λ2 + 16λ + 5) + (λ− 1)(λ + 3)
}

e2 + Bξ.

On the other hand 2g(R(e1, e2)e1, e2) = 2H = r − 4(1− λ2), therefore we obtain

8λ4{r + 2(λ− 1)2}+ B2(15λ2 + 16λ + 5) = 0.

This equation, since B, r are constant, implies λ = const.(6= 0) and hence, by (4.1),
λ = −1 and a = 2. Assuming e1(λ) = 0, we have λ = const. = −1. In this case

Qξ = Be2, Qe1 =
(r

2
− 2a

)

e1, Qe2 = Bξ +
(r

2
+ 2a

)

e2,

and hence applying formula (4.7), for i=1,2, we get

e2(a) = 0, 2e1(a) = (2− a)B.(4.10)

Moreover [e1, e2] = −B
2 e2 + 2ξ, so (4.10) gives

−B
2

e2(a) + 2ξ(a) = [e1, e2](a) = e1e2(a)− e2e1(a) = −e2

{

2− a
2

B
}

= 0,

from which we have ξ(a) = 0. Then by (2.2)

(a− 2)e1(a) = [ξ, e2](a) = ξe2(a)− e1ξ(a) = 0.

gives a = const., and by (4.10), a = 2. Thus, we have

[e1, e2] = −B
2

e2 + 2ξ, [ξ, e2] = 0, [e1, ξ] = 2e2.

So, M is locally isometric to a Lie group Gw (see [2],[8]).
Case A 6=0, B=0. We show that this case can not occur. A 6= 0, B = 0 and λ < 0,
by (4.1), imply

e1(λ) = 0, e2(λ) =
A(λ− 1)

2λ
6= 0.

Then computing R(e1, e2)e1 as in the before case, we get λ = const. which contradicts
e2(λ) 6= 0.
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Corollary 4.2 A 3-dimensional homogeneous contact metric manifold is weakly, but
not strongly, locally φ-symmetric iff it is locally isometric to a Lie group Gw.

Remark 4.1 (i) If in the proof of theorem 4.1 we assume λ > 0, then can not occur
the case A = 0, B 6= 0. (ii) The non unimodular Lie group Gw is associated to the Lie
algebra

[e1, e2] = αe2 + 2ξ, [e1, ξ] = 2e2, [ξ, e2] = 0,

hence it is determined by the Milnor’s isomorphism invariant D [6] given by: D =

−8γ
α2 = − 16

α2 < 0. In our case α = −B
2

. On the other hand, computing the Webster

scalar curvature of Gw, using (2.1), we find W = −α2

4
− 1

2
< 0. So D, and hence Gw,

is determined by the Webster scalar curvature W.

Theorem 4.3 There exists a weakly locally φ-symmetric space with constant scalar
curvature and non constant vertical Ricci curvature. In particular such space is neither
locally homogeneous nor strongly locally φ-symmetric.

Proof. Consider the 3-dimensional manifold M1 = {x ∈ R3 : x1 6= 0}. In the sequel

we denote by ∂i, i = 1, 2, 3, the partial derivative
∂

∂xi
. Let η the 1-form defined by

η = x1x2dx1 + dx3.

η is a contact form because

η ∧ dη = −x1dx1 ∧ dx2 ∧ dx3.

The characteristic vector field of (M1, η) is ξ = ∂3. In fact

η(∂3) = 1, (dη)(∂3, ·) = x1dx2 ∧ dx1)(∂3, ·) = 0.

It is not difficult to see that the contact distribution is generated by the global vector
fields

e1 = − 2
x1

∂2, e2 = ∂1 −
4x3

x1
∂2 − x1x2∂3.

The vector fields e1, e2, ξ satisfy

[ξ, e1] = 0, [ξ, e2] = 2e1, [e1, e2] = 2ξ +
1
x1

e1.(4.11)

Now, consider the Riemannian metric g defined by

g(ξ, e1) = g(ξ, e2) = g(e1, e2) = 0, g(ξ, ξ) = g(e1, e1) = g(e2, e2) = 1,

and the tensor φ defined by

φ(ξ) = 0, φ(e1) = e2, φ(e2) = −e1.

The tensors η, g and φ satisfy
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(dη)(ξ, ei) = 0 = g(ξ, φei), (dη)(ei, ei) = 0 = g(ei, φei),

(dη)(e1, e2) =
1
2
{e1η(e2)− e2η(e1)− η([e1, e2])} = −1 = g(e1, φe2).

Then (η, g, φ) is a contact metric structure on M1. Moreover the tensor h satisfies

h(e1) =
1
2
{[ξ, e2]− φ[ξ, e1]} = e1, h(e2) = hφe1 = −φh(e1) = −e2.

Thus λ = +1 and (e1, e2, e3 = ξ) is an orthonormal φ-basis of eigenvector for h.
Since (e1, e2, e3 = ξ) is an orthonormal basis, the Levi-Civita connection is defined
by the formula

∇eiej =
1
2

∑

k

−{g(ei, [ej , ek]) + g(ej , [ek, ei]) + g(ek, [ei, ej ])}ek.

Then, by (4.11), we get

∇ξξ = 0, ∇e1ξ = −2e2, ∇e2ξ = 0,

∇ξe1 = −2e2, ∇e1e1 = − 1
x1

e2, ∇e2e1 = 0,

∇ξe2 = 2e1, ∇e1e2 = 1
x1

e1 + 2ξ, ∇e2e2 = 0.

(4.12)

Using (4.12) we obtain

R(e1, e2)e1 = −4e2, R(ξ, e1)e2 = 0, R(ξ, e2)e1 = − 2
x1

e2,

from which H = −4, B = 0, and A = − 2
x1

. Moreover λ = 1, then
{

e1(H) = 0 = 2B(λ + 1)
e2(H) = 0 = 2A(λ− 1),

and hence, using Lemma 3.1, (M1, η, g) is a weakly locally φ-symmetric. Of course
such space is neither homogeneous nor strongly locally φ-symmetric because A is not
a constant function. This conclude the proof. Remark 4.2 The main result of [5]

says that every compact and orientable three-manifold has a contact metric structure
whose Webster scalar curvature W is either a constant ≤ 0 or it is strictly positive
everywhere. Theorem 4.2 gives an example of non-compact contact metric three-
manifold with W = const. = − 1

2 < 0 with the geometric property that the basis
{e1, e2, ξ} is parallel along the integral curves of the vector field e2.

5 The unit tangent sphere bundle of a surface

Let (M,G) be a 2-dimensional Riemannian manifold. Consider on M isothermal local
coordinate (x1, x2) on M . Then the Riemannian metric G is given by

G = e2f ((dx1)2 + (dx2)2)
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where f is a C∞ function on M . Let TM be the tangent sphere bundle. The immersion
of the unit tangent sphere bundle T 1M = {z = (p, v) ∈ TM : e2f ((v1)2 + (v2)2) = 1}
into TM is defined by

(y1, y2, θ) −→ (x1, x2, v1, v2) = (y1, y2, e−fcosθ, e−fsinθ).

Let(η, g, ξ, φ) the standard contact metric structure on T 1M . Then ξ = 2ξ′ where
ξ′ is geodesic flow given by

ξ′ = v1
∂

∂y1
+ v2

∂
∂y2

+ (v1f2 − v2f1)
∂
∂θ

.

where f1 = ∂f
∂x1

and f2 = ∂f
∂x2

. Moreover setting

e2 = 2
∂
∂θ

= 2
{

−v2
∂

∂v1
+ v1

∂
∂v2

}

,

and

e1 = 2U = 2
{

−v2
∂

∂y1
+ v1

∂
∂y2

− (v2f2 + v1f1)
∂
∂θ

}

then (ξ, e1, e2 = φe1) is a local orthonormal φ-basis of T 1M . Denote by ∇ the Levi-
Civita connection of (T 1M, g). The Gaussian curvature k of (M, G) considered as a
function on T 1M is defined by k(p, v) = k(p). Using the Christoffel symbols of (M, G),
we find

∇ξξ = ∇e1e1 = ∇e2e2 = 0, ∇e1ξ = −∇ξe1 = −ke2,
∇e2e1 = (k − 2)ξ, ∇e2ξ = (2− k)e1, ∇ξe2 = −ke1, ∇e1e2 = kξ.

Cosequently, we get

R(e1, e2)e1 = −e1(k)ξ + k2e2,

R(ξ, e1)e2 = −ξ(k)ξ − e1(k)e1,

R(ξ, e2)e1 = −ξ(k)ξ,

he1 =
1
2
{[ξ, e2]− φ[ξ, e1]} = (k − 1)e1, he2 = −φhe1 = (1− k)e2,

from which














H = g(R(e1, e2)e1, e2) = k2

B = ρ(ξ, e2) = g(R(ξ, e1)e2, e1) = −e1(k)
A = ρ(ξ, e1) = g(R(ξ, e2)e1, e2) = 0
λ = k − 1.

Then e2(H) = e2(k2) = 0 = 2A(λ− 1) and

e1(H) = 2B(λ + 1) ⇔ e1(k2) = 0.

Moreover 2ξ(k2) = [e1, e2](k2). So, by lemma 3.1, T 1M is weakly locally φ-symmetric
if and only if (M,G) has constant curvature. Hence we get the following theorem.

Theorem 5.1 The unit tangent sphere bundle T 1M equipped with the standard con-
tact metric structure is weakly locally φ-symmetric if and only if the base manifold
has constant Gaussian curvature.
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Remark 5.1. Let M(c) be a 2-dimensional Riemannian manifold of constant Gaussian
curvature c. Then the universal covering of T 1(M) is a simply connected Lie group
equipped with a left invariant contact metric structure, more precisely we get :
SU(2) if c > 0, S̃L(2, R) if c < 0, Ẽ(2) if c = 0, the universal covering of the
isometry groups of S2, H2 and E2, respectively.
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