An Almost Paracontact Structure on the Indicatrix Bundle of a Finsler Space

Manuela Gîrţu

Abstract

In a paper by I. Hasegawa, K. Yamaguchi and H. Shimada, [2], it was proved that the indicatrix bundle of a Finsler space $F^{n}=(M, L)$ has a natural almost contact structure. On a different way, the same structure was found by M. Anastasiei in [1]. Adopting the approach from [1] we prove that the indicatrix bundle of F^{n} carries also an almost paracontact structure.

Mathematics Subject Classifications 2000: 53C60
Key words and phrases: tangent manifold, framed f-structure, indicatrix bundle, almost paracontact structure.

1 Introduction

Let $F^{n}=(M, L)$ be a Finsler space. Here M is a real C^{∞} manifold of dimension n with local coordinates $\left(x^{i}\right), i, j, k \ldots=1, \ldots, n$. For the tangent manifold $T M$ with the projection τ over M we take the local coordinates $\left(x^{i} \circ \tau, y^{i}\right)$, where y^{i} are the components of a vector from $T_{p} M$, in the natural basis $\partial_{i}=\frac{\partial}{\partial x^{i}}$.

The function $L: T_{0} M: T M \backslash\{0\} \rightarrow \mathbf{R}_{+}$is smooth, positively homogeneous of degree 1 with respect to y^{i} and the matrix $\left(g_{i j}(x, y)=\frac{1}{2} \frac{\partial^{2} L^{2}}{\partial y^{i} \partial y^{j}}\right)$ is of rank n. We set $\dot{\partial}_{i}=\frac{\partial}{\partial y^{i}}$.

The homogeneity of L implies

$$
L^{2}(x, y)=g_{i j}(x, y) y^{i} y^{j}=y^{i} y_{i} \quad \text { for } \quad y_{i}=g_{i j} y^{j} .
$$

The functions $N_{j}^{i}(x, y)=\frac{1}{2} \dot{\partial}_{j}\left(\gamma_{00}^{i}\right)$, for $\gamma_{00}^{i}=\gamma_{j k}^{i}(x, y) y^{j} y^{k}$ and $\gamma_{j k}^{i}(x, y)$ the "generalized" Christoffel symbols, are the local coefficients of the nonlinear Cartan connection. See [Ch. VIII, 4] for details. One considers a new local basis $\left\{\delta_{i}, \dot{\partial}_{i}\right\}$, with $\delta_{i}=\partial_{i}-N_{i}^{k}(x, y) \dot{\partial}_{k}$, on $T_{0} M$. Its dual basis is $\left(d x^{i}, \delta y^{i}\right)$ with $\delta y^{i}=d y^{i}+N_{k}^{i}(x, y) d x^{k}$. If we assume that the quadratic form $g_{i j}(x, y) \xi^{i} \xi^{j}, \xi \in \mathbf{R}^{n}$ is positive definite, then

$$
G_{S}=g_{i j}(x, y) d x^{i} \otimes d x^{j}+g_{i j}(x, y) \delta y^{i} \otimes \delta y^{j}
$$

is a Riemannian metric on $T_{0} M$.
The linear operator P given in the local basis by

$$
\begin{equation*}
P\left(\delta_{i}\right)=\delta_{i}, \quad P\left(\dot{\partial}_{i}\right)=-\dot{\partial}_{i} \tag{1.1}
\end{equation*}
$$

defines an almost product structure on $T_{0} M$ and we have

$$
\begin{equation*}
G_{S}(P X, P Y)=G_{S}(X, Y), \quad X, Y \in \chi\left(T_{0} M\right) \tag{1.2}
\end{equation*}
$$

Here $\chi\left(T_{0} M\right)$ is the module of vector fields on $T_{0} M$. The vector field $C=y^{i} \dot{\partial}_{i}$ is called the Liouville vector field on $T_{0} M$ and $S=y^{i} \delta_{i}$ is the geodesic spray of F^{n}.

An almost paracontact structure on a manifold N is a set (φ, ξ, η), where φ is a tensor field of type $(1,1), \xi$ a vector field and η an 1-form such that

$$
\begin{equation*}
\eta(\xi)=1, \varphi(\xi)=0, \eta \circ \varphi=0, \varphi^{2}=+I-\eta \otimes \xi \tag{1.3}
\end{equation*}
$$

where I denotes the Kronecker tensor field.
This structure generalizes as follows. One considers on a manifold N of dimension $(2 n+s)$ a tensor field f of type $(1,1)$. If there exists on N the vector fields $\left(\xi_{\alpha}\right)$ and the 1 - forms $\left(\eta^{\alpha}\right)(\alpha=1,2, \ldots s)$ such that

$$
\begin{equation*}
\eta^{\alpha}\left(\xi_{\beta}\right)=\delta_{\beta}^{\alpha}, f\left(\xi_{\alpha}\right)=0, \eta^{\alpha} \circ f=0, f^{2}=I-\sum_{\alpha} \eta^{\alpha} \otimes \xi_{\alpha} \tag{1.4}
\end{equation*}
$$

then $\left(f,\left(\xi_{\alpha}\right),\left(\eta^{\alpha}\right)\right)$ is called a framed $f(3,-1)$ - structure. The term was suggested by the equation $f^{3}-I=0$. This is in some sense dual to the framed f-structure which generalizes the almost contact structure and which may be called a framed $f(3,+1)$ structure. For an account of such kind of structures we refer to the book [3].

In the following (Section 2) we show that the slit tangent bundle $T_{0} M$ of a Finsler space carries a natural framed $f(3,-1)$ - structure. The set $I(M)=\{(x, y) \mid L(x, y)=$ $1\}$ is a $(2 n-1)-$ dimensional submanifold of $T_{0} M$. In Section 3 we prove that the framed $f(3,-1)$ - structure on $T_{0} M$ induces on $I(M)$ an almost paracontact structure. We note that it was known that $I(M)$ carries an almost contact structure [2], [1] but only the approach from [1] allowed us to construct this almost paracontact structure.

2 A framed $f(3,-1)$ - structure on $T_{0} M$

Let us put $\xi_{1}:=S=y^{i} \delta_{i}$ and $\xi_{2}:=C=y^{i} \dot{\partial}_{i}$. By a direct calculation one finds (P is the almost product structure (1.1)).
Lemma 2.1. $P\left(\xi_{1}\right)=\xi_{1}, P\left(\xi_{2}\right)=-\xi_{2}$. We consider the 1 - forms

$$
\eta^{1}=\frac{y_{i}}{L^{2}} d x^{i}, \eta^{2}=\frac{y_{i}}{L^{2}} \delta y^{i}
$$

and we prove
Lemma 2.2. $\eta^{1} \circ P=\eta^{1}, \eta^{2} \circ P=-\eta^{2}$.
Proof. It is sufficient to check these equalities on the adapted basis $\left(\delta_{i}, \dot{\partial}_{i}\right)$. We have

$$
\left(\eta^{1} \circ P\right)\left(\delta_{i}\right)=\eta^{1}\left(P\left(\delta_{i}\right)\right)=\eta^{1}\left(\delta_{i}\right) \quad \text { and } \quad\left(\eta^{1} \circ P\right)\left(\dot{\partial}_{i}\right)=-\eta^{1}\left(\dot{\partial}_{i}\right)=0
$$

Then

$$
\left(\eta^{2} \circ P\right)\left(\delta_{i}\right)=\eta^{2}\left(\delta_{i}\right)=0 \quad \text { and } \quad\left(\eta^{2} \circ P\right)\left(\dot{\partial}_{i}\right)=-\eta^{2}\left(\dot{\partial}_{i}\right)
$$

Let be $G=\frac{1}{L^{2}} G_{S}$ a Riemannian metric which is conformal with G_{S}.
Lemma 2.3. $\eta^{1}(X)=G\left(X, \xi_{1}\right), \eta^{2}(X)=G\left(X, \xi_{2}\right), \forall X \in \chi\left(T_{0} M\right)$.
Proof. It is sufficient to check these equalities on the basis $\left(\delta_{i}, \dot{\partial}_{i}\right)$. We have: $\eta^{1}\left(\delta_{j}\right)=$ $=\frac{y_{j}}{L^{2}}=d i \frac{1}{L^{2}} g_{j k} y^{k}$ and $G\left(\delta_{j}, \xi_{1}\right)=\frac{1}{L^{2}} G_{S}\left(\delta_{j}, y^{k} \delta_{k}\right)=\frac{1}{L^{2}} y^{k} G_{S}\left(\delta_{j}, \delta_{k}\right)=\frac{1}{L^{2}} y^{k} g_{j k}$. Further, $\eta^{1}\left(\dot{\partial}_{i}\right)=0$ and $G\left(\dot{\partial}_{j}, \xi_{1}\right)=\frac{1}{L^{2}} G_{S}\left(\dot{\partial}_{i}, y^{k} \delta_{k}\right)=0$. Similarly, one checks the equation $\eta^{2}(X)=G\left(X, \xi_{2}\right)$.

Now we define a tensor field p of type $(1,1)$ on $T_{0} M$ by

$$
\begin{equation*}
p(X)=P(X)-\eta^{1}(X) \xi_{1}+\eta^{2}(X) \xi_{2}, X \in \chi\left(T_{0} M\right) \tag{2.1}
\end{equation*}
$$

This can be written in a more compact form as $p=P-\eta^{1} \otimes \xi_{1}+\eta^{2} \otimes \xi_{2}$.
Theorem 2.1. For the data $\left(p,\left(\xi_{a}\right),\left(\eta^{a}\right)\right), a=1,2$ the following hold
(i) $\eta^{a}\left(\xi_{b}\right)=\delta_{b}^{a}, p\left(\xi_{a}\right)=0, \eta^{a} \circ p=0$,
(ii) $p^{2}=I-\eta^{1} \otimes \xi_{1}-\eta^{2} \otimes \xi_{2}, X \in \chi\left(T_{0} M\right)$,
(iii) p is of rank $2 n-2$ and $p^{3}-p=0$.

Proof. (i) follows easily from Lemmas 2.1, 2.2 and the formula (2.1). For (ii) we have

$$
\begin{aligned}
& p^{2}(X)=p(p(X))=P\left(P(X)-\eta^{1}(X) \xi_{1}+\eta^{2}(X) \xi_{2}\right)-\eta^{1}\left(P(X)-\eta^{1}(X) \xi_{1}+\right. \\
& \left.+\eta^{2}(X) \xi_{2}\right)+\eta^{2}\left(P(X)-\eta^{1}(X) \xi_{1}+\eta^{2}(X) \xi_{2}\right)=+X-\eta^{1}(X) \xi_{1}-\eta^{2}(X) \xi_{2}
\end{aligned}
$$

the other terms vanish or cancel because of Lemmas 2.1, 2.2 and (i). Applying p to the equality (ii) and using again the Lemmas 2.1, 2.2 and (i) one gets $p^{3}-p=0$. From the second equation in (i) we see that the subspace $\operatorname{span}\left(\xi_{1}, \xi_{2}\right)$ is contained in Ker p. Let now $X=X^{i} \delta_{i}+Y^{i} \dot{\partial}_{i} \in K e r p$. On using (2.1),
$p(X)=X^{i} \delta_{i}-Y^{i} \dot{\partial}_{i}-\left(X^{i} \frac{y_{i}}{L^{2}}\right) \xi_{1}+Y^{i} \frac{y_{i}}{L^{2}} \xi_{2}=\left(X^{i}-\frac{\left(X^{k} y_{k}\right)}{L^{2}} y^{i}\right) \delta_{i}-\left(Y^{i}-\left(Y^{k} \frac{y_{k}}{L^{2}}\right) y^{i}\right) \dot{\partial}_{i}=0$ equivalent to

$$
X^{i}=\frac{X^{k} y_{k}}{L^{2}} y^{i}, \quad Y^{i}=\frac{\left(Y^{k} y_{k}\right)}{L^{2}} y^{i}
$$

Hence $X=\frac{X^{k} y_{k}}{L^{2}} \xi_{1}+\frac{Y^{k} y_{k}}{L^{2}} \xi_{2}$ that is X belongs to $\operatorname{span}\left(\xi_{1}, \xi_{2}\right)$. In other words, Ker $p=\operatorname{span}\left(\xi_{1}, \xi_{2}\right)$. Thus rank $p=2 n-2$.

Theorem 2.2. The Riemannian metric $G=\frac{1}{L^{2}} G_{S}$ satisfies

$$
\begin{equation*}
G(p X, p Y)=G(X, Y)-\eta^{1}(X) \eta^{1}(Y)-\eta^{2}(X) \eta^{2}(Y), X, Y \in \chi\left(T_{0} M\right) \tag{2.2}
\end{equation*}
$$

Proof. Use (2.1) and Lemma 2.3 and Lemma 2.1 as well as $G\left(\xi_{1}, \xi_{1}\right)=1, G\left(\xi_{2}, \xi_{2}\right)=$ $1, G\left(\xi_{1}, \xi_{2}\right)=0$ to obtain

$$
\begin{aligned}
& G(p X, p Y)=G(P X, P Y)-\eta^{1}(Y) G\left(P X, \xi_{1}\right)+\eta^{2}(Y) G\left(P X, \xi_{2}\right)- \\
& -\eta^{1}(X) G\left(\xi_{1}, P Y\right)+\eta^{1}(X) \eta^{1}(Y)+\eta^{2}(X) G\left(\xi_{2}, P Y\right)+\eta^{2}(X) \eta^{2}(Y)= \\
& =G(X, Y)-\eta^{1}(Y) \eta^{1}(P(X))+\eta^{2}(Y) \eta^{2}(P X)-\eta^{1}(X) \eta^{1}(P Y)+\eta^{2}(X) \eta^{2}(P Y)+ \\
& +\eta^{1}(X) \eta^{1}(Y)+\eta^{2}(X) \eta^{2}(Y)=G(X, Y)-\eta^{1}(X) \eta^{1}(Y)-\eta^{2}(X) \eta^{2}(Y)
\end{aligned}
$$

Remark. In the local basis $\left(\delta_{i}, \dot{\partial}_{i}\right)$, we get

$$
\begin{align*}
G\left(p\left(\delta_{i}\right), p\left(\delta_{j}\right)\right) & =\frac{1}{L^{2}}\left(g_{i j}-\frac{y_{i} y_{j}}{L^{2}}\right), G\left(p\left(\delta_{i}\right), p\left(\dot{\partial}_{i}\right)\right)=0 \\
G\left(p\left(\dot{\partial}_{i}\right), p\left(\dot{\partial}_{j}\right)\right) & =\frac{1}{L^{2}}\left(g_{i j}-\frac{y_{i} y_{j}}{L^{2}}\right) \tag{2.3}
\end{align*}
$$

Let us put

$$
\begin{equation*}
h(X, Y)=G(p X, Y), X, Y \in \chi\left(T_{0} M\right) \tag{2.4}
\end{equation*}
$$

We have
Theorem 2.3. The map h is a symmetric bilinear form on $T_{0} M$ of rank $2 n-2$, with the null space $\operatorname{span}\left(\xi_{1}, \xi_{2}\right)$.
Proof. h is bilinear since G is so. As for the symmetry we have

$$
\begin{aligned}
& h(Y, X)=G(p Y, X)=G\left(p Y, p^{2} X+\eta^{1}(X) \xi_{1}+\eta^{2}(X) \xi_{2}\right)= \\
& =G(p Y, p(p X))+\eta^{1}(X) G\left(p Y, \xi_{1}\right)+\eta^{2}(X) G\left(p Y, \xi_{2}\right)= \\
& =G(p Y, p(p X))+\eta^{1}(X) \eta^{1}(P Y)+\eta^{2}(X) \eta^{2}(P Y)= \\
& =G(Y, p X)-\eta^{1}(Y) \eta^{1}(p X)-\eta^{2}(Y) \eta^{2}(p X)=G(Y, p X)=h(X, Y)
\end{aligned}
$$

Then we have $h\left(\xi_{1}, \xi_{1}\right)=h\left(\xi_{2}, \xi_{2}\right)=0$. Thus $\operatorname{span}\left(\xi_{1}, \xi_{2}\right)$ is contained in the null space of h. Conversely, if $X=X^{i} \delta_{i}$ is such that $h(X, X)=0 \Longleftrightarrow G(p X, X)=0$ it results $X=\frac{X^{k} y_{k}}{L^{2}} \xi_{1}$ and similarly, if $X=Y^{i} \dot{\partial}_{i}$ is such that $h(X, X)=0$, it results $X=\frac{Y^{k} y_{k}}{L^{2}} \xi_{2}$. Thus the null space of h is just $\operatorname{span}\left(\xi_{1}, \xi_{2}\right)$ and the proof is finished.
Remark. The map h is a singular pseudo-Riemannian metric on $T_{0} M$. Locally it looks as follows

$$
h=\frac{1}{L^{2}}\left(g_{i j}-\frac{y_{i} y_{j}}{L^{2}}\right) d x^{i} \otimes d x^{j}-\frac{1}{L^{2}}\left(g_{i j}-\frac{y_{i} y_{j}}{L^{2}}\right) \delta y^{i} \otimes \delta y^{j},
$$

with

$$
\operatorname{rank}\left(g_{i j}-\frac{y_{i} y_{j}}{L^{2}}\right)=n-1
$$

since

$$
\left(g_{i j}-\frac{y_{i} y_{j}}{L^{2}}\right) y^{j}=y_{i}-y_{i}=0 \quad\left(y_{j} y^{j}=L^{2}\right)
$$

3 An almost paracontact structure on the indicatrix bundle of the Finsler space $F^{n}=(M, L)$

The indicatrix bundle of F^{n} is the submanifold

$$
I(M)=\left\{(x, y) \in T_{0} M \mid L(x, y)=1\right\}
$$

of $T_{0} M$ projected over M. It is well-known that $\xi_{2}=y^{i} \dot{\partial}_{i}$ is normal to $I(M)$ and this is unitary with respect to G since

$$
G\left(\xi_{1}, \xi_{2}\right)=\frac{1}{L^{2}} y^{i} y^{j} g_{i j}=1
$$

We consider $T_{0} M$ with the Riemannian metric G and then $I(M)$ appears as a hypersurface of $T_{0} M$ with normal vector field ξ_{2}. We restrict to $I(M)$ all the objects introduced above and indicate this fact by putting a bar over the letters denoting those objects. We have:

- $\bar{\xi}_{1}=\xi_{1}$ since ξ_{1} is tangent to $I(M)$,
- $\bar{\eta}^{2}=0$ on $I(M)$ since $\eta^{2}(X)=G\left(X, \xi_{2}\right)=0$ for $X \in \chi(I(M))$,
- $\bar{G}=\left.G_{S}\right|_{I(M)}$ because $L^{2}=1$ on $I(M)$,
- $\bar{p}(X)=P(X)-\bar{\eta}^{1}(X) \xi_{1}$ for $X \in \chi(I(M))$.
- The map \bar{p} is an endomorphism of the tangent bundle to $I(M)$ since $G\left(\bar{p} X, \xi_{2}\right)=$ 0.

We put $\bar{\xi}_{1}=\bar{\xi}, \bar{\eta}^{1}=\bar{\eta}$ and as a consequence of the Theorem 2.1 we get
Theorem 3.1. The triple ($\bar{p}, \bar{\xi}, \bar{\eta}$) defines an almost paracontact structure on $I(M)$, that is,
(i) $\bar{\eta}(\bar{\xi})=1, \bar{p}(\bar{\xi})=0, \bar{\eta} \circ \bar{p}=0$,
(ii) $\left.\bar{p}^{2}(X)=X-\bar{\eta}(X) \bar{\xi}, X \in \chi(I(M))\right)$,
(iii) $\bar{p}^{3}-p=0, \operatorname{rank} \bar{p}=2 n-2=(2 n-1)-1$.

Using the restriction to $I(M)$ and the Theorem 2.2 one infers
Theorem 3.2. The Riemannian metric \bar{G} satisfies

$$
\begin{equation*}
\bar{G}(\bar{p} X, \bar{p} Y)=\bar{G}(X, Y)-\bar{\eta}(X) \bar{\eta}(Y), X, Y \in \chi(I(M)) . \tag{3.1}
\end{equation*}
$$

From the last two theorems we see that the ensemble $(\bar{p}, \bar{\xi}, \bar{\eta}, \bar{G})$ defines an almost metrical paracontact structure on $I(M)$.

References

[1] Anastasiei, M., A framed f-structure on tangent manifold of a Finsler space, Analele Univ. Bucureşti, Mat.- Inf., XLIX, 2000, 3-9.
[2] Hasegawa, I., Yamaguchi, K., Shimada, H., Sasakian structures on Finsler manifolds in P.L. Antonelli and R. Miron (eds.), Lagrange and Finsler Geometry, Kluwer Academic Publishers, 1996, p. 75-80.
[3] Mihai, I., Roşca, R., Verstraelen, L., Some aspects of the differential geometry of vector fields, PADGE, Katholieke Universiteit Leuven, vol.2, 1996.
[4] Miron, R., Anastasiei, M., The geometry of Lagrange spaces: theory and applications, Kluwer Academic Publ., FTPH 59, 1994.

Faculty of Sciences
University of Bacău 5500, Bacău, Romania

