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Abstract

We establish a sharp inequality between the squared mean curvature and
the scalar curvature for a C-totally real submanifold of maximum dimension in
a Sasakian space form. In particular we investigate C-totally real submanifolds
of R2n+1 satisfying the equality case.
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1 Introduction

Let Cn denote the complex Euclidean n−space with complex structure J defined by

J(x1, x2, ..., x2n) = (−xn+1, ...,−x2n, x1, ..., xn).

If f : M −→ Cn is an isometric immersion from a Riemannian n−manifold M into
Cn, then M is called a Lagrangian submanifold (or totally real submanifold in [5] )
if J carries each tangent space of M into its normal space. Lagrangian submanifolds
appear naturally in the context of classical mechanics and mathematical physics.

It is well-known, that every curve in C1 is Lagrangian. For n ≥ 2, there is a
Lagrangian immersion from an n−sphere Sn into Cn given by Whitney which is a
called the Whitney immersion. The Whitney immersion is defined as follows :

Let f : En+1 −→ Cn be a map from En+1 into the complex Euclidean space Cn

defined by :

f(x0, x1, ..., xn) =
1

1 + x2
0
(x1, ..., xn, x0x1, ..., x0xn).

Denote by Sn the unit hypersphere of En+1 centered at the origin. The restriction
of f to Sn gives rise to an immersion :

w : Sn −→ Cn
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which has a unique self-intersection point f(−1, 0, ..., 0) = f(1, 0, ..., 0). With respect
to the canonical complex structure J on Cn, w : Sn −→ Cn is a Lagrangian immersion
which is the Whitney immersion.

Let g̃ denote the metric on Sn induced from the Euclidien metric on Cn via w.
We call the Riemannian n−manifold S̃n = (Sn, g̃) the Whitney n-sphere.
Let Sn denote the unit hypersphere of Rn+1. Consider the spherical coordinates

{t1, ..., tn} on Sn defined by

(1.1) x1 = cos t1, ..., xi = cos ti
i−1
∏

j=1

sin tj , ..., xn = cos tn
n−1
∏

j=1

sin tj ,

xn+1 = sin tn
n−1
∏

j=1

sin tj .

Recall that the Whitney immersion w : Sn −→ Cn is defined by

(1.2) w(x0, x1, ..., xn) =
1

1 + x2
0
(x1, ..., xn, x0x1, ..., x0xn).

for (x0, x1, ..., xn) ∈ Sn and consider the Whitney n−sphere S̃n = (Sn, g̃) endowed
with the Riemannian metric g̃ induced from the Whitney immersion w. (1.1) and (1.2)
imply that the components g̃αβ of the metric tensor g̃ with respect to the spherical
coordinates are given by

(1.3) g̃αα =

α−1
∏

j=1
sin2 tj

1 + cos2 t1
, g̃αβ = 0, 1 ≤ α 6= β ≤ n,

where we put
0

∏

i=1

sin2 ti = 1.

Let N and S denote the points (1, 0, ..., 0) and (−1, 0, ..., 0) in Sn, respectively.

From (1.3) we see that S̃n − {N, S} is a warped product
(

−π
2

,
π
2

)

×ρ(t) Sn−1 of the

open interval
(

−π
2

,
π
2

)

and the unit (n−1)−sphere with warped product metric given
by

g̃ =
(

1
1 + cos2 t1

)

dt21 +
(

sin2 t1
1 + cos2 t1

)

g0,

where g0 is the standard metric on the unit (n − 1)−sphere Sn−1 and ρ(t) =
sin t1√

1 + cos2 t1
.

Let {e1, ..., en} be the unit vector fields in the direction of the tangent vector

fields { ∂
∂t1

, ...,
∂

∂tn
} on S̃n respectively. Then {e1, ..., en, e1∗, ..., en∗} form an adapted

Lagrangian orthonormal frame field. By a direct, long computation, we may prove
that the second fundamental form of the Whitney immersion w with respect to this
adapted frame field satisfies (see [2])
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h(e1, e1) = 3λe1∗, h(e2, e2) = ... = h(en, en) = λe1∗,
h(e1, ej) = λej∗, h(ej , ek) = 0, 2 ≤ j 6= k ≤ n.

where
λ = − sin t1√

1 + cos2 t1
.

An orthonormal frame field e1, ..., en, e1∗, ..., en∗ is called an adapted frame field if
e1, ..., en are orthonormal tangent vector fields and e1∗, ..., en∗ are normal vector fields
given by

e1∗ = Je1, ..., en∗ = Jen

2 Submanifolds of a Sasakian space form

Let (M̃, g) be a (2m + 1)-dimensional Riemannian manifold endowed with an endo-
morphism ϕ ( (1, 1)−tensor field) of its tangent bundle TM̃ , a vector field ξ and a
1-form η such that

{

ϕ2X = −X + η(X)ξ , ϕξ = 0 , η ◦ ϕ = 0 , η(ξ) = 1 ,
g(ϕX, ϕY ) = g(X, Y )− η(X)η(Y ) , η(X) = g(X, ξ) ,

for all vector fields X, Y ∈ Γ(TM̃).
If, in addition, dη(X, Y ) = g(ϕX, Y ), then M̃ is said to have a contact Riemannian

structure (ϕ, ξ, η, g). If, moreover, the structure is normal, i.e. if

[ϕX,ϕY ] + ϕ2[X,Y ]− ϕ[X,φY ]− ϕ[ϕX, Y ] = −2dη(X, Y )ξ,

then the contact Riemannian structure is called a Sasakian structure and M̃ is called
a Sasakian manifold. For more details and background, we refer to the standard
references [1], [8].

A plane section σ in TpM̃ of a Sasakian manifold M̃ is called a ϕ-section if it is
spanned by X and ϕX, where X is a unit tangent vector field orthogonal to ξ. The
sectional curvature K̄(σ) w.r.t. a ϕ-section σ is called a ϕ-sectional curvature. If a
Sasakian manifold M̃ has constant ϕ-sectional curvature c, then it is called a Sasakian
space form and is denoted by M̃(c).

The curvature tensor R̃ of a Sasakian space form M̃(c) is given by [1]:

˜R(X,Y )Z =
c + 3

4
(g(Y,Z)X − g(X,Z)Y )+

+
c− 1

4
(η(X)η(Z)Y − η(Y )η(Z)X + g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ+

+ g(ϕY, Z)ϕX − g(ϕX, Z)ϕY − 2g(ϕX, Y )ϕZ),

for any tangent vector fields X, Y, Z to M̃(c).
An n-dimensional submanifold M of a Sasakian space form M̃(c) is called a

C−totally real submanifold if ξ is a normal vector field on M . A direct consequence
of this definition is that ϕ(TM) ⊂ T⊥M , i.e. that M is an anti-invariant submanifold
of M̃(c), (hence their name of ”contact”-totally real submanifolds); see e.g. [6].

As examples of Sasakian space forms we mention R2m+1 and S2m+1, with standard
Sasakian structures.
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If M is a Riemannian n−manifold isometrically immersed in a Euclidian m−space
Em, one may consider extrinsic invariants as well as intrinsic invariants on M .

Let M be an n-dimensional Riemannian manifold. Denote by K(π) the sectional
curvature of the plane section π ⊂ TpM , p ∈ M . For any orthonormal basis {e1, ..., en}
of the tangent space TpM , the scalar curvature τ at p is defined by

τ =
∑

1≤i<j≤n

K(ei ∧ ej) .

Let p ∈ M and {e1, ..., en} an orthonormal basis of the tangent space TpM . We
denote by H the mean curvature vector, that is

H(p) =
1
n

n
∑

i=1

h(ei, ei)

Also, we set

hr
ij = g(h(ei, ej), er), ‖h‖2 =

n
∑

i,j=1

g(h(ei, ej), h(ei, ej)).

3 Main results

Theorem 1. If Mn is a C-totally real submanifold of a Sasakian space form M̃2n+1(c),
then the mean curvature H and the scalar curvature τ of M satisfy

(3.1) ‖H‖2 ≥ 2(n + 2)
n2(n− 1)

τ −
(

n + 2
n

) (

c + 3
4

)

.

Moreover the equality sign holds if and only if, with to respect an adapted frame
field e1, ..., en, e1∗, ..., en∗, e2n+1 = ξ with e1∗ parallel to H , the second fundamental
form of Mn in M̃2n+1(c) takes the following form:

h(e1, e1) = 3λe1∗, h(e2, e2) = ... = h(en, en) = λe1∗,

h(e1, ej) = λej∗ h(ej , ek) = 0, 2 ≤ j 6= k ≤ n,

with λ ∈ C∞(M).
Proof. Let Mn be a C-totally real submanifold of a Sasakian space form M̃2n+1(c),
and e1, ..., en, e1∗, ..., en∗, e2n+1 = ξ a local adapted frame field on Mn.

Put hi
jk = g (h(ej , ek), ei∗).

Then, by

(3.2) AϕXY = −ϕh(X,Y ) = AϕY X ∀X, Y ∈ Γ(TM),

we have
hi

jk = hj
ik = hk

ij , i, j, k = 1, ..., n.

From the definition of the mean curvature function we have
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n2 ‖H‖2 =
∑

i





∑

j

(

hi
jj

)2
+ 2

∑

j<k

hi
jjh

i
kk



 .

From the equation of Gauss we have

2τ = n(n−1)
(

c + 3
4

)

+n2 ‖H‖2−‖h‖2 = n(n−1)
(

c + 3
4

)

+n2 ‖H‖2−
n

∑

i,j,k=1

(

hi
jk

)2
.

Thus, by applying precedent relations, we obtain

τ =
n(n− 1)

2

(

c + 3
4

)

+
∑

i

∑

j<k

hi
jjh

i
kk −

∑

i 6=j

(

hi
jj

)2 − 3
∑

i<j<k

(

hi
jk

)2
.

Let m =
n + 2
n− 1

. Then, we get

n2 ‖H‖2 − m
(

2τ − n(n− 1)
(

c + 3
4

))

=
∑

i

(

hi
ii

)2
+ (1 + 2m)

∑

i 6=j

(

hi
jj

)2
+

+ 6m
∑

i<j<k

(

hi
jk

)2 − 2(m− 1)
∑

i

∑

j<k

hi
jjh

i
kk =

=
∑

i

(

hi
ii

)2
+ 6m

∑

i<j<k

(

hi
jk

)2
+ (m− 1)

∑

i

∑

j<k

(

hi
jj − hi

kk

)2
+

+ (1 + 2m− (n− 2)(m− 1))
∑

j 6=i

(

hi
jj

)2 − 2(m− 1)
∑

j 6=i

hi
jjh

i
jj =

= 6m
∑

i<j<k

(

hi
jk

)2
+ (m− 1)

∑

i 6=j,k

∑

j<k

(

hi
jj − hi

kk

)2
+

+
1

n− 1

∑

j 6=i

(

hi
ii − (n− 1)(m− 1)hi

jj

)2 ≥ 0

which implies inequality (3.1). We see that the equality sign of (3.1) holds if and only
if hi

ii = 3hi
jj , h

i
jk = 0, for distinct i, j, k. In particular, if choose e1, ..., en in such

way that ϕe1 is parallel to the mean curvature vector H, we also have hj
kk = 0 for

j > 1, k = 1, ..., n.
2

Theorem 2. Let i : Mn −→ R2n+1 be a C-totally real isometric immersion satisfying
the equality case

(3.3) ‖H‖2 =
2(n + 2)
n2(n− 1)

τ

Then either M is a totally geodesic submanifold and hence M is locally isometric
to the real space Rn or the set U of non-totally geodesic points in M is a dense subset
of M , U is an open portion of a S̃n Withney sphere with a > 1 and, up to rigid
motions of R2n+1, the immersion i is given by w̃, where w̃ : Sn −→ R2n+1 is the
immersion lifted from the Whitney immersion.
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Proof. It follows from Theorem 1 that the function φ =
(

n
n− 2

)2

‖H‖2 = λ2 is a

well-defined function on M. If the function φ vanishes identically, then M is a totally
geodesic submanifold of R2n+1. So, for simplicity, we may assume from now on that
M is non-totally geodesic, i.e. φ 6= 0. Thus, U = {p ∈ M | φ(p) 6= 0} is a non-empty
open subset of M .

Let ω1, ..., ωn denote the dual 1-forms of e1, ..., en and denoted by (ωA
B), A, B =

1, ..., n, 1∗, ...n∗, 2n + 1, the connection forms on M defined by

˜∇ei =
n

∑

j=1

ωj
i ej +

n
∑

j=1

ωj∗
i ej∗, ˜∇ei∗ =

n
∑

j=1

ωj
i∗ej +

n
∑

j=1

ωj∗
i∗ ej∗, i = 1, ..., n,

where ωj
i = −ωi

j , ωj∗
i∗ = −ωi∗

j∗
For a C-totally real submanifold Mn of a R2n+1, (3.2) yields

ωi∗
j = ωj∗

i , ωj
i = ωj∗

i∗ , ωi∗
j =

n
∑

k=1

hi
jkωk.

We find

(3.4) ω1∗
1 = 3λω1, ω1∗

i = λωi, ωi∗
i = λω1, ωi∗

j = 0, 2 ≤ i 6= j ≤ n.

By applying the equation of Codazzi, we obtain

(3.5) e1λ = λω2
1(e2) = ... = λωn

1 (en), e2λ = ... = enλ = 0,

(3.6) ωj
1(ek) = 0, 1 < j 6= k ≤ n.

By precedent formulas yield

(3.7) ωj
1 = e1(lnλ)ωj , j = 2, ..., n

From Cartan’s structure equations and (3.7) we get dω1 = 0 and ∇e1e1 = 0.
Therefore, we have the following

Lemma 3. On U , the integral curves of ϕH (or, equivalently, of e1) are geodesics
of M .

Let D denote the distribution spanned by ϕH and D⊥ denote the orthogonal
complementary distribution of D on U. Then D and D⊥ are spanned by {ϕH} and
{e2, ..., en}, respectively.

By using (3.6) we obtain the following.
Lemma 4. On U , the distributions D and D⊥ are both integrable.
Proof. For any j, k > 1, (3.6) implies

〈[ej , ek], e1〉 = ω1
k(ej)− ω1

j (ek) = 0

Thus, the distribution D⊥ is completely integrable. The integrability of D is ob-
vious, since D is a 1-dimensional distribution.

Now, we give the following.
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Lemma 5. On U , there exist local coordinate systems {x1, ..., xn} satisfying the
following conditions :

(a) D is spanned by { ∂
∂x
} and D⊥ is spanned by { ∂

∂x2
, ...,

∂
∂xn

},

(b) e1 =
∂
∂x

, ω1 = dx,

(c) the metric tensor g takes the form : g = dx2 +
n

∑

j,k=2

gjk(x, x2, ..., xn)dxjdxk,

where x = x1.
Proof. It is well-know, that there exists a local coordinate systems {y1, ..., yn} such

that e1 =
∂

∂y1
. Since D⊥ is completely integrable, there also exists a local coordinate

systems {z1, ..., zn} such that
∂

∂z2
, ..,

∂
∂zn

span D⊥. Put x = x1 = y1,x2 = z2, ..., xn =

zn, then {x1, ..., xn} is a desired coordinate system.
(3.5) and Lemma 5 imply that λ depends only on x = x1, i.e. λ = λ(x). Let λ′

and λ′′ denote the first and second derivates of λ with respect to x.
Lemma 6. On U , the function λ satisfies the following second order ordinary differ-
ential equation:

(3.8)
d2λ
dx2 + 2λ3 = 0

Proof. By taking the exterior differentiation of (3.7) and using (3.4), (3.7) and Car-
tan’s structure equations, we find

(lnλ)′′ + (ln λ)′2 = −2λ2

which is equivalent to (3.8).
Lemma 7. The solution of the second order ordinary differential equation (3.8) are
given by

(3.9) λ(x) = − sin(t(x) + b)

a
√

1 + cos2(t(x) + b)
,

where t(x) is the inverse function of x(t) defined by

(3.10) x =

t
∫

0

adu
√

1 + cos2(u + b)

and a and b are constants with a > 0 and 0 ≤ b < 2π.
Proof. (3.10) implies that x(t) is a strictly increasing differentiable function of t.

Thus, x = x(t) has an inverse function, denoted by t = t(x). From (3.10) we get

(3.11)
dt
dx

=
1
a

√

1 + cos2(t(x) + b),

Thus by (3.9), (3.11), and chain rule, we find
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(3.12)

dλ
dx

= − 2 cos(t(x) + b)
a2(1 + cos2(t(x) + b))

d2λ
dx2 = − 2 sin3(t(x) + b)

a3(1 + cos2(t(x) + b))
3
2

(3.9) and (3.12) imply that, for any a and b are constants with a > 0 and 0 ≤ b <
2π, the function λ given by (3.9) is a solution of the differential equation (3.8).

Let f = f(x, λ, λ
′
) = −2λ3. Then f,

∂f
∂λ

,
∂2f
∂λ2 are continous functions on the 3-

space R3. Thus, by Existence and Uniquenss Theorem of second ordinary differential
equation, the differential equation (3.8) together with the given initial conditions :
λ(x0) = λ0, λ

′
(x0) = λ′0, has a unique solution.

Since for any two arbitrary constants λ0, λ′0 we may find real number a and b with
a > 0 and 0 ≤ b < 2π which satisfy the following two conditions :

sin(t(x0) + b)

a
√

1 + cos2(t(x0) + b)
= λ0,

2 cos(t(x0) + b)
a2(1 + cos2(t(x0) + b)

= λ′0,

therefore every solution of the differential equation (3.8) takes the form given by
(3.10). The rigidy theorem of C-totally real immersions in R2n+1 achieves the proof.
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