C-Totally Real Submanifolds of $\mathbf{R}^{2 n+1}$ Satisfying a Certain Inequality

Dragoş Cioroboiu

Abstract

We establish a sharp inequality between the squared mean curvature and the scalar curvature for a C-totally real submanifold of maximum dimension in a Sasakian space form. In particular we investigate C-totally real submanifolds of $\mathbf{R}^{2 n+1}$ satisfying the equality case.

Mathematics Subject Classification: 53C12, 53C25
Key words: Sasakian space form, curvature, Whitney immersion, C-totally real submanifold

1 Introduction

Let \mathbf{C}^{n} denote the complex Euclidean n-space with complex structure J defined by

$$
J\left(x_{1}, x_{2}, \ldots, x_{2 n}\right)=\left(-x_{n+1}, \ldots,-x_{2 n}, x_{1}, \ldots, x_{n}\right)
$$

If $f: M \longrightarrow \mathbf{C}^{n}$ is an isometric immersion from a Riemannian $n-m a n i f o l d ~ M$ into \mathbf{C}^{n}, then M is called a Lagrangian submanifold (or totally real submanifold in [5]) if J carries each tangent space of M into its normal space. Lagrangian submanifolds appear naturally in the context of classical mechanics and mathematical physics.

It is well-known, that every curve in \mathbf{C}^{1} is Lagrangian. For $n \geq 2$, there is a Lagrangian immersion from an n-sphere \mathbf{S}^{n} into \mathbf{C}^{n} given by Whitney which is a called the Whitney immersion. The Whitney immersion is defined as follows :

Let $f: E^{n+1} \longrightarrow \mathbf{C}^{n}$ be a map from E^{n+1} into the complex Euclidean space \mathbf{C}^{n} defined by :

$$
f\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\frac{1}{1+x_{0}^{2}}\left(x_{1}, \ldots, x_{n}, x_{0} x_{1}, \ldots, x_{0} x_{n}\right)
$$

Denote by \mathbf{S}^{n} the unit hypersphere of E^{n+1} centered at the origin. The restriction of f to \mathbf{S}^{n} gives rise to an immersion :

$$
w: \mathbf{S}^{n} \longrightarrow \mathbf{C}^{n}
$$

Balkan Journal of Geometry and Its Applications, Vol.7, No.2, 2002, pp. 19-26.
(C) Balkan Society of Geometers, Geometry Balkan Press 2002.
which has a unique self-intersection point $f(-1,0, \ldots, 0)=f(1,0, \ldots, 0)$. With respect to the canonical complex structure J on $\mathbf{C}^{n}, w: \mathbf{S}^{n} \longrightarrow \mathbf{C}^{n}$ is a Lagrangian immersion which is the Whitney immersion.

Let \tilde{g} denote the metric on \mathbf{S}^{n} induced from the Euclidien metric on \mathbf{C}^{n} via w.
We call the Riemannian n-manifold $\tilde{\mathbf{S}^{n}}=\left(\mathbf{S}^{n}, \tilde{g}\right)$ the Whitney n-sphere.
Let S^{n} denote the unit hypersphere of \mathbf{R}^{n+1}. Consider the spherical coordinates $\left\{t_{1}, \ldots, t_{n}\right\}$ on S^{n} defined by

$$
\begin{gather*}
x_{1}=\cos t_{1}, \ldots, x_{i}=\cos t_{i} \prod_{j=1}^{i-1} \sin t_{j}, \ldots, x_{n}=\cos t_{n} \prod_{j=1}^{n-1} \sin t_{j} \tag{1.1}\\
x_{n+1}=\sin t_{n} \prod_{j=1}^{n-1} \sin t_{j}
\end{gather*}
$$

Recall that the Whitney immersion $w: \mathbf{S}^{n} \longrightarrow \mathbf{C}^{n}$ is defined by

$$
\begin{equation*}
w\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\frac{1}{1+x_{0}^{2}}\left(x_{1}, \ldots, x_{n}, x_{0} x_{1}, \ldots, x_{0} x_{n}\right) \tag{1.2}
\end{equation*}
$$

for $\left(x_{0}, x_{1}, \ldots, x_{n}\right) \in \mathbf{S}^{n}$ and consider the Whitney n-sphere $\tilde{\mathbf{S}^{n}}=\left(\mathbf{S}^{n}, \tilde{g}\right)$ endowed with the Riemannian metric \tilde{g} induced from the Whitney immersion w. (1.1) and (1.2) imply that the components $\tilde{g}_{\alpha \beta}$ of the metric tensor \tilde{g} with respect to the spherical coordinates are given by

$$
\begin{equation*}
\tilde{g}_{\alpha \alpha}=\frac{\prod_{j=1}^{\alpha-1} \sin ^{2} t_{j}}{1+\cos ^{2} t_{1}}, \quad \tilde{g}_{\alpha \beta}=0, \quad 1 \leq \alpha \neq \beta \leq n \tag{1.3}
\end{equation*}
$$

where we put $\prod_{i=1}^{0} \sin ^{2} t_{i}=1$.
Let N and S denote the points $(1,0, \ldots, 0)$ and $(-1,0, \ldots, 0)$ in \mathbf{S}^{n}, respectively. From (1.3) we see that $\tilde{\mathbf{S}^{n}}-\{N, S\}$ is a warped product $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times{ }_{\rho(t)} \mathbf{S}^{n-1}$ of the open interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and the unit $(n-1)$-sphere with warped product metric given by

$$
\tilde{g}=\left(\frac{1}{1+\cos ^{2} t_{1}}\right) d t_{1}^{2}+\left(\frac{\sin ^{2} t_{1}}{1+\cos ^{2} t_{1}}\right) g_{0}
$$

where g_{0} is the standard metric on the unit $(n-1)$-sphere \mathbf{S}^{n-1} and $\rho(t)=$ $\frac{\sin t_{1}}{\sqrt{1+\cos ^{2} t_{1}}}$.

Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the unit vector fields in the direction of the tangent vector fields $\left\{\frac{\partial}{\partial t_{1}}, \ldots, \frac{\partial}{\partial t_{n}}\right\}$ on $\tilde{\mathbf{S}^{n}}$ respectively. Then $\left\{e_{1}, \ldots, e_{n}, e_{1 *}, \ldots, e_{n *}\right\}$ form an adapted Lagrangian orthonormal frame field. By a direct, long computation, we may prove that the second fundamental form of the Whitney immersion w with respect to this adapted frame field satisfies (see [2])

$$
\begin{aligned}
& h\left(e_{1}, e_{1}\right)=3 \lambda e_{1 *}, \quad h\left(e_{2}, e_{2}\right)=\ldots=h\left(e_{n}, e_{n}\right)=\lambda e_{1 *}, \\
& h\left(e_{1}, e_{j}\right)=\lambda e_{j *}, \quad h\left(e_{j}, e_{k}\right)=0,2 \leq j \neq k \leq n .
\end{aligned}
$$

where

$$
\lambda=-\frac{\sin t_{1}}{\sqrt{1+\cos ^{2} t_{1}}}
$$

An orthonormal frame field $e_{1}, \ldots, e_{n}, e_{1 *}, \ldots, e_{n *}$ is called an adapted frame field if e_{1}, \ldots, e_{n} are orthonormal tangent vector fields and $e_{1 *}, \ldots, e_{n *}$ are normal vector fields given by

$$
e_{1 *}=J e_{1}, \ldots, e_{n *}=J e_{n}
$$

2 Submanifolds of a Sasakian space form

Let (\tilde{M}, g) be a $(2 m+1)$-dimensional Riemannian manifold endowed with an endomorphism φ ($(1,1)$-tensor field) of its tangent bundle $T \tilde{M}$, a vector field ξ and a 1-form η such that

$$
\left\{\begin{array}{l}
\varphi^{2} X=-X+\eta(X) \xi, \varphi \xi=0, \eta \circ \varphi=0, \eta(\xi)=1 \\
g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y), \eta(X)=g(X, \xi)
\end{array}\right.
$$

for all vector fields $X, Y \in \Gamma(T \tilde{M})$.
If, in addition, $d \eta(X, Y)=g(\varphi X, Y)$, then \tilde{M} is said to have a contact Riemannian structure (φ, ξ, η, g). If, moreover, the structure is normal, i.e. if

$$
[\varphi X, \varphi Y]+\varphi^{2}[X, Y]-\varphi[X, \phi Y]-\varphi[\varphi X, Y]=-2 d \eta(X, Y) \xi
$$

then the contact Riemannian structure is called a Sasakian structure and \tilde{M} is called a Sasakian manifold. For more details and background, we refer to the standard references [1], [8].

A plane section σ in $T_{p} \tilde{M}$ of a Sasakian manifold \tilde{M} is called a φ-section if it is spanned by X and φX, where X is a unit tangent vector field orthogonal to ξ. The sectional curvature $\bar{K}(\sigma)$ w.r.t. a φ-section σ is called a φ-sectional curvature. If a Sasakian manifold \tilde{M} has constant φ-sectional curvature c, then it is called a Sasakian space form and is denoted by $\tilde{M}(c)$.

The curvature tensor \tilde{R} of a Sasakian space form $\tilde{M}(c)$ is given by [1]:

$$
\begin{aligned}
\widetilde{R}(X, Y) Z & =\frac{c+3}{4}(g(Y, Z) X-g(X, Z) Y)+ \\
& +\frac{c-1}{4}(\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi+ \\
& +g(\varphi Y, Z) \varphi X-g(\varphi X, Z) \varphi Y-2 g(\varphi X, Y) \varphi Z)
\end{aligned}
$$

for any tangent vector fields X, Y, Z to $\tilde{M}(c)$.
An n-dimensional submanifold M of a Sasakian space form $\tilde{M}(c)$ is called a C-totally real submanifold if ξ is a normal vector field on M. A direct consequence of this definition is that $\varphi(T M) \subset T^{\perp} M$, i.e. that M is an anti-invariant submanifold of $\tilde{M}(c)$, (hence their name of "contact"-totally real submanifolds); see e.g. [6].

As examples of Sasakian space forms we mention $\mathbf{R}^{2 m+1}$ and $\mathbf{S}^{2 m+1}$, with standard Sasakian structures.

If M is a Riemannian n-manifold isometrically immersed in a Euclidian m-space E^{m}, one may consider extrinsic invariants as well as intrinsic invariants on M.

Let M be an n-dimensional Riemannian manifold. Denote by $K(\pi)$ the sectional curvature of the plane section $\pi \subset T_{p} M, p \in M$. For any orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of the tangent space $T_{p} M$, the scalar curvature τ at p is defined by

$$
\tau=\sum_{1 \leq i<j \leq n} K\left(e_{i} \wedge e_{j}\right)
$$

Let $p \in M$ and $\left\{e_{1}, \ldots, e_{n}\right\}$ an orthonormal basis of the tangent space $T_{p} M$. We denote by H the mean curvature vector, that is

$$
H(p)=\frac{1}{n} \sum_{i=1}^{n} h\left(e_{i}, e_{i}\right)
$$

Also, we set

$$
h_{i j}^{r}=g\left(h\left(e_{i}, e_{j}\right), e_{r}\right), \quad\|h\|^{2}=\sum_{i, j=1}^{n} g\left(h\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right)
$$

3 Main results

Theorem 1. If M^{n} is a C-totally real submanifold of a Sasakian space form $\tilde{M}^{2 n+1}(c)$, then the mean curvature H and the scalar curvature τ of M satisfy

$$
\begin{equation*}
\|H\|^{2} \geq \frac{2(n+2)}{n^{2}(n-1)} \tau-\left(\frac{n+2}{n}\right)\left(\frac{c+3}{4}\right) \tag{3.1}
\end{equation*}
$$

Moreover the equality sign holds if and only if, with to respect an adapted frame field $e_{1}, \ldots, e_{n}, e_{1 *}, \ldots, e_{n *}, e_{2 n+1}=\xi$ with $e_{1 *}$ parallel to H, the second fundamental form of M^{n} in $\tilde{M}^{2 n+1}(c)$ takes the following form:

$$
\begin{gathered}
h\left(e_{1}, e_{1}\right)=3 \lambda e_{1 *}, \quad h\left(e_{2}, e_{2}\right)=\ldots=h\left(e_{n}, e_{n}\right)=\lambda e_{1 *}, \\
h\left(e_{1}, e_{j}\right)=\lambda e_{j *} \quad h\left(e_{j}, e_{k}\right)=0, \quad 2 \leq j \neq k \leq n,
\end{gathered}
$$

with $\lambda \in C^{\infty}(M)$.
Proof. Let M^{n} be a C-totally real submanifold of a Sasakian space form $\tilde{M}^{2 n+1}(c)$, and $e_{1}, \ldots, e_{n}, e_{1 *}, \ldots, e_{n *}, e_{2 n+1}=\xi$ a local adapted frame field on M^{n}.

Put $h_{j k}^{i}=g\left(h\left(e_{j}, e_{k}\right), e_{i *}\right)$.
Then, by

$$
\begin{equation*}
A_{\varphi X} Y=-\varphi h(X, Y)=A_{\varphi Y} X \quad \forall X, Y \in \Gamma(T M) \tag{3.2}
\end{equation*}
$$

we have

$$
h_{j k}^{i}=h_{i k}^{j}=h_{i j}^{k}, \quad i, j, k=1, \ldots, n .
$$

From the definition of the mean curvature function we have

$$
n^{2}\|H\|^{2}=\sum_{i}\left(\sum_{j}\left(h_{j j}^{i}\right)^{2}+2 \sum_{j<k} h_{j j}^{i} h_{k k}^{i}\right)
$$

From the equation of Gauss we have
$2 \tau=n(n-1)\left(\frac{c+3}{4}\right)+n^{2}\|H\|^{2}-\|h\|^{2}=n(n-1)\left(\frac{c+3}{4}\right)+n^{2}\|H\|^{2}-\sum_{i, j, k=1}^{n}\left(h_{j k}^{i}\right)^{2}$.
Thus, by applying precedent relations, we obtain

$$
\tau=\frac{n(n-1)}{2}\left(\frac{c+3}{4}\right)+\sum_{i} \sum_{j<k} h_{j j}^{i} h_{k k}^{i}-\sum_{i \neq j}\left(h_{j j}^{i}\right)^{2}-3 \sum_{i<j<k}\left(h_{j k}^{i}\right)^{2}
$$

Let $m=\frac{n+2}{n-1}$. Then, we get

$$
\begin{aligned}
n^{2}\|H\|^{2} & -m\left(2 \tau-n(n-1)\left(\frac{c+3}{4}\right)\right)=\sum_{i}\left(h_{i i}^{i}\right)^{2}+(1+2 m) \sum_{i \neq j}\left(h_{j j}^{i}\right)^{2}+ \\
& +6 m \sum_{i<j<k}\left(h_{j k}^{i}\right)^{2}-2(m-1) \sum_{i} \sum_{j<k} h_{j j}^{i} h_{k k}^{i}= \\
& =\sum_{i}\left(h_{i i}^{i}\right)^{2}+6 m \sum_{i<j<k}\left(h_{j k}^{i}\right)^{2}+(m-1) \sum_{i} \sum_{j<k}\left(h_{j j}^{i}-h_{k k}^{i}\right)^{2}+ \\
& +(1+2 m-(n-2)(m-1)) \sum_{j \neq i}\left(h_{j j}^{i}\right)^{2}-2(m-1) \sum_{j \neq i} h_{j j}^{i} h_{j j}^{i}= \\
& =6 m \sum_{i<j<k}\left(h_{j k}^{i}\right)^{2}+(m-1) \sum_{i \neq j, k} \sum_{j<k}\left(h_{j j}^{i}-h_{k k}^{i}\right)^{2}+ \\
& +\frac{1}{n-1} \sum_{j \neq i}\left(h_{i i}^{i}-(n-1)(m-1) h_{j j}^{i}\right)^{2} \geq 0
\end{aligned}
$$

which implies inequality (3.1). We see that the equality sign of (3.1) holds if and only if $h_{i i}^{i}=3 h_{j j}^{i}, h_{j k}^{i}=0$, for distinct i, j, k. In particular, if choose e_{1}, \ldots, e_{n} in such way that φe_{1} is parallel to the mean curvature vector H, we also have $h_{k k}^{j}=0$ for $j>1, k=1, \ldots, n$.

Theorem 2. Let $i: M^{n} \longrightarrow \mathbf{R}^{2 n+1}$ be a C-totally real isometric immersion satisfying the equality case

$$
\begin{equation*}
\|H\|^{2}=\frac{2(n+2)}{n^{2}(n-1)} \tau \tag{3.3}
\end{equation*}
$$

Then either M is a totally geodesic submanifold and hence M is locally isometric to the real space \mathbf{R}^{n} or the set U of non-totally geodesic points in M is a dense subset of M, U is an open portion of a $\tilde{\mathbf{S}^{n}}$ Withney sphere with $a>1$ and, up to rigid motions of $\mathbf{R}^{2 n+1}$, the immersion i is given by \widetilde{w}, where $\widetilde{w}: \mathbf{S}^{n} \longrightarrow \mathbf{R}^{2 n+1}$ is the immersion lifted from the Whitney immersion.

Proof. It follows from Theorem 1 that the function $\phi=\left(\frac{n}{n-2}\right)^{2}\|H\|^{2}=\lambda^{2}$ is a well-defined function on M. If the function ϕ vanishes identically, then M is a totally geodesic submanifold of $\mathbf{R}^{2 n+1}$. So, for simplicity, we may assume from now on that M is non-totally geodesic, i.e. $\phi \neq 0$. Thus, $U=\{p \in M \mid \phi(p) \neq 0\}$ is a non-empty open subset of M.

Let $\omega^{1}, \ldots, \omega^{n}$ denote the dual 1-forms of e_{1}, \ldots, e_{n} and denoted by $\left(\omega_{B}^{A}\right), A, B=$ $1, \ldots, n, 1 *, \ldots n *, 2 n+1$, the connection forms on M defined by

$$
\widetilde{\nabla} e_{i}=\sum_{j=1}^{n} \omega_{i}^{j} e_{j}+\sum_{j=1}^{n} \omega_{i}^{j *} e_{j *}, \quad \widetilde{\nabla} e_{i *}=\sum_{j=1}^{n} \omega_{i *}^{j} e_{j}+\sum_{j=1}^{n} \omega_{i *}^{j *} e_{j *}, i=1, \ldots, n
$$

where $\omega_{i}^{j}=-\omega_{j}^{i}, \omega_{i *}^{j *}=-\omega_{j *}^{i *}$
For a C-totally real submanifold M^{n} of a $\mathbf{R}^{2 n+1},(3.2)$ yields

$$
\omega_{j}^{i *}=\omega_{i}^{j *}, \omega_{i}^{j}=\omega_{i *}^{j *}, \quad \omega_{j}^{i *}=\sum_{k=1}^{n} h_{j k}^{i} \omega^{k} .
$$

We find

$$
\begin{equation*}
\omega_{1}^{1 *}=3 \lambda \omega^{1}, \omega_{i}^{1 *}=\lambda \omega^{i}, \quad \omega_{i}^{i *}=\lambda \omega^{1}, \quad \omega_{j}^{i *}=0,2 \leq i \neq j \leq n \tag{3.4}
\end{equation*}
$$

By applying the equation of Codazzi, we obtain

$$
\begin{gather*}
e_{1} \lambda=\lambda \omega_{1}^{2}\left(e_{2}\right)=\ldots=\lambda \omega_{1}^{n}\left(e_{n}\right), \quad e_{2} \lambda=\ldots=e_{n} \lambda=0 \tag{3.5}\\
\omega_{1}^{j}\left(e_{k}\right)=0, \quad 1<j \neq k \leq n \tag{3.6}
\end{gather*}
$$

By precedent formulas yield

$$
\begin{equation*}
\omega_{1}^{j}=e_{1}(\ln \lambda) \omega^{j}, \quad j=2, \ldots, n \tag{3.7}
\end{equation*}
$$

From Cartan's structure equations and (3.7) we get $d \omega^{1}=0$ and $\nabla_{e_{1}} e_{1}=0$.
Therefore, we have the following
Lemma 3. On U, the integral curves of φH (or, equivalently, of e_{1}) are geodesics of M.

Let \mathcal{D} denote the distribution spanned by φH and \mathcal{D}^{\perp} denote the orthogonal complementary distribution of \mathcal{D} on U. Then \mathcal{D} and \mathcal{D}^{\perp} are spanned by $\{\varphi H\}$ and $\left\{e_{2}, \ldots, e_{n}\right\}$, respectively.

By using (3.6) we obtain the following.
Lemma 4. On U, the distributions \mathcal{D} and \mathcal{D}^{\perp} are both integrable.
Proof. For any $j, k>1$, (3.6) implies

$$
\left\langle\left[e_{j}, e_{k}\right], e_{1}\right\rangle=\omega_{k}^{1}\left(e_{j}\right)-\omega_{j}^{1}\left(e_{k}\right)=0
$$

Thus, the distribution \mathcal{D}^{\perp} is completely integrable. The integrability of \mathcal{D} is obvious, since \mathcal{D} is a 1 -dimensional distribution.

Now, we give the following.

Lemma 5. On U, there exist local coordinate systems $\left\{x_{1}, \ldots, x_{n}\right\}$ satisfying the following conditions :
(a) \mathcal{D} is spanned by $\left\{\frac{\partial}{\partial x}\right\}$ and \mathcal{D}^{\perp} is spanned by $\left\{\frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{n}}\right\}$,
(b) $e_{1}=\frac{\partial}{\partial x}, \omega^{1}=d x$,
(c) the metric tensor g takes the form : $g=d x^{2}+\sum_{j, k=2}^{n} g_{j k}\left(x, x_{2}, \ldots, x_{n}\right) d x_{j} d x_{k}$, where $x=x_{1}$.
Proof. It is well-know, that there exists a local coordinate systems $\left\{y_{1}, \ldots, y_{n}\right\}$ such that $e_{1}=\frac{\partial}{\partial y_{1}}$. Since \mathcal{D}^{\perp} is completely integrable, there also exists a local coordinate systems $\left\{z_{1}, \ldots, z_{n}\right\}$ such that $\frac{\partial}{\partial z_{2}}, . ., \frac{\partial}{\partial z_{n}} \operatorname{span} \mathcal{D}^{\perp}$. Put $x=x_{1}=y_{1}, x_{2}=z_{2}, \ldots, x_{n}=$ z_{n}, then $\left\{x_{1}, \ldots, x_{n}\right\}$ is a desired coordinate system.
(3.5) and Lemma 5 imply that λ depends only on $x=x_{1}$, i.e. $\lambda=\lambda(x)$. Let λ^{\prime} and $\lambda^{\prime \prime}$ denote the first and second derivates of λ with respect to x.
Lemma 6. On U, the function λ satisfies the following second order ordinary differential equation:

$$
\begin{equation*}
\frac{d^{2} \lambda}{d x^{2}}+2 \lambda^{3}=0 \tag{3.8}
\end{equation*}
$$

Proof. By taking the exterior differentiation of (3.7) and using (3.4), (3.7) and Cartan's structure equations, we find

$$
(\ln \lambda)^{\prime \prime}+(\ln \lambda)^{\prime 2}=-2 \lambda^{2}
$$

which is equivalent to (3.8).
Lemma 7. The solution of the second order ordinary differential equation (3.8) are given by

$$
\begin{equation*}
\lambda(x)=-\frac{\sin (t(x)+b)}{a \sqrt{1+\cos ^{2}(t(x)+b)}}, \tag{3.9}
\end{equation*}
$$

where $t(x)$ is the inverse function of $x(t)$ defined by

$$
\begin{equation*}
x=\int_{0}^{t} \frac{a d u}{\sqrt{1+\cos ^{2}(u+b)}} \tag{3.10}
\end{equation*}
$$

and a and b are constants with $a>0$ and $0 \leq b<2 \pi$.
Proof. (3.10) implies that $x(t)$ is a strictly increasing differentiable function of t.
Thus, $x=x(t)$ has an inverse function, denoted by $t=t(x)$. From (3.10) we get

$$
\begin{equation*}
\frac{d t}{d x}=\frac{1}{a} \sqrt{1+\cos ^{2}(t(x)+b)} \tag{3.11}
\end{equation*}
$$

Thus by (3.9), (3.11), and chain rule, we find

$$
\begin{align*}
\frac{d \lambda}{d x} & =-\frac{2 \cos (t(x)+b)}{a^{2}\left(1+\cos ^{2}(t(x)+b)\right)} \\
\frac{d^{2} \lambda}{d x^{2}} & =-\frac{2 \sin ^{3}(t(x)+b)}{a^{3}\left(1+\cos ^{2}(t(x)+b)\right)^{\frac{3}{2}}} \tag{3.12}
\end{align*}
$$

(3.9) and (3.12) imply that, for any a and b are constants with $a>0$ and $0 \leq b<$ 2π, the function λ given by (3.9) is a solution of the differential equation (3.8).

Let $f=f\left(x, \lambda, \lambda^{\prime}\right)=-2 \lambda^{3}$. Then $f, \frac{\partial f}{\partial \lambda}, \frac{\partial^{2} f}{\partial \lambda^{2}}$ are continous functions on the 3 space \mathbf{R}^{3}. Thus, by Existence and Uniquenss Theorem of second ordinary differential equation, the differential equation (3.8) together with the given initial conditions : $\lambda\left(x_{0}\right)=\lambda_{0}, \quad \lambda^{\prime}\left(x_{0}\right)=\lambda_{0}^{\prime}$, has a unique solution.

Since for any two arbitrary constants $\lambda_{0}, \lambda_{0}^{\prime}$ we may find real number a and b with $a>0$ and $0 \leq b<2 \pi$ which satisfy the following two conditions :

$$
\frac{\sin \left(t\left(x_{0}\right)+b\right)}{a \sqrt{1+\cos ^{2}\left(t\left(x_{0}\right)+b\right)}}=\lambda_{0}, \quad \frac{2 \cos \left(t\left(x_{0}\right)+b\right)}{a^{2}\left(1+\cos ^{2}\left(t\left(x_{0}\right)+b\right)\right.}=\lambda_{0}^{\prime}
$$

therefore every solution of the differential equation (3.8) takes the form given by (3.10). The rigidy theorem of C-totally real immersions in $\mathbf{R}^{2 n+1}$ achieves the proof.

References

[1] D.E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math., vol. 509, Springer, Berlin, (1976).
[2] V. Borrelli, B.-Y. Chen and Jean-Marie Morvan, A basic inequality for Lagrangian submanifolds and its application to Whitney's immersion CRAS t.321, Serie 1, (1995).
[3] B.-Y. Chen, Some pinching and classification theorems for minimal submanifolds, Archiv Math. 60 (1993), 568-578.
[4] B.-Y. Chen and K. Ogune, On totally real submanifolds, Trans. Amer. Math. Soc.193, (1974).
[5] F. Defever, I. Mihai and L. Verstraelen, B.-Y. Chen's inequality for C-totally real submanifolds of Sasakian space forms, Boll. Un. Mat. Ital.11-B (1997), 365-374.
[6] K. Yano and M. Kon, Anti-invariant Submanifolds, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, (1976).
[7] K. Yano and M. Kon, CR-Submanifolds of Kaehlerian and Sasakian Manifolds, Birkhäuser, Boston, (1983).
[8] K. Yano and M. Kon, Structures on Manifolds, Series in Pure Mathematics, vol. 3, World Scientific, Singapore, (1984).

University Politehnica of Bucharest, Department of Mathematics I
Splaiul Independenţei 313, 77206 Bucharest, Romania

