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Abstract

Quantum supergroups have some special properties in two dimensions. We
give an exponential representation of a supermatrix in GLp,q(1|1) using a differ-
ent method of the first author and co-worker [Balkan Phys. Lett. 5, 32 (1997)]
and we obtain the commutation relations satisfied by the matrix elements of
the exponent. We show that these relations can be expressed in terms of an
r-matrix. In the Appendix, we get the matrix representations of the generators
of a supermatrix in GLp,q(1|1).

Mathematics Subject Classification: 17B37, 20G42
Key words: Two parameter deformation, quantum supergroup, exponential repre-
sentation, r-matrix approach.

1 Introduction

In fact quantum groups are, in mathematical sense, not groups they are quantum de-
formations of the well-known classical groups. However the quantum groups smoothly
go over to the classical groups if the limit of deformation parameter has to be 1. The
theory and applications of quantum groups have attracted a lot of attention among
mathematicians and physicists. It should be added that the quantum deformations
have been subsequently extended to supergroups and superalgebras [1-6].

For convenience of the reader, we recall the basic notations concerning the quan-
tum supergroup GLp,q(1|1). Manin [1] have considered quantum deformations of the
concepts of a super-vector space (or the quantum superplane in two dimensions) and
its dual which are defined in terms of variables satisfying certain quadratic algebra.
Quantum supergroups as matrix supergroups can be viewed as linear transformations
on the quantum coordinates which preserve the defining relations for quantum su-
perplanes and their dual. In this point of view, the quantum supergroup GLp,q(1|1)
consists of all matrices in the form

T =
(

a β
γ d

)

where the matrix elements a, β, γ and d obey the following commutation relations
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(1)

aβ = qβa, dβ = qβd,

aγ = pγa, dγ = pγd,

qβγ + pγβ = 0, β2 = 0 = γ2,

[a, d] = (p− q−1)γβ,

as usual, latin and greek letters denote even and odd matrix elements, respectively
and [·, ·] stants for Lie bracket. Here the deformation parameters p and q are non-zero
complex numbers and pq ± 1 is assumed to be nonzero.

These commutation relations are equivalent to the equation

(2) RT1T2 = T2T1R

where

(3) T1 = T ⊗s I, T2 = I ⊗s T,

and

(4) R =







1 0 0 0
0 q 1− pq 0
0 0 p 0
0 0 0 pq





 .

Here we employ the convenient grading notation

(5) (T1)ij
kl = T i

kδj
l, (T2)ij

kl = (−1)πi(πj+πl)T j
lδi

k,

where the z2-grade of the entries T i
j of the matrix T is defined as πi+πj . The nonation

⊗s denotes the super-tensor product. (Note that the product of the supermatrices, i.e.
the z2-graded matrices, is the same as the non-graded case but for the tensor product
of two graded matrices, we have (5). For this reason, we substitute ⊗s for the tensor
notation ⊗.)

The inverse supermatrix is

(6) T−1 =
(

a−1 + a−1βd−1γa−1 −a−1βd−1

−d−1γa−1 d−1 + d−1γa−1βd−1

)

,

provided that the matrix elements a and d of T are invertible. Note that the matrix
T−1 does not belong to GLp,q(1|1) but it belongs to GLp−1,q−1(1|1).

The quantum superdeterminant of T is defined as

(7) D = ad−1 − βd−1γd−1

and it is easy to show that D is central.
In [6] it was shown that any element of GLp,q(1|1) can be written as the exponential

of a matrix. The entries of the matrix of the exponent belong to algebras depending
to p, q.

In this work we will give an exponential representation of a supermatrix
T ∈GLp,q(1|1) which is not the same with the work in [6] and with the help of the
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methods of finite differences for equations we will obtain the commutation relations
satisfied by the matrix elements of the exponent. This will be presented in section
2. In section 3, we will show that these relations can be expressed in terms of an
r-matrix which is the exponential of quantum R-matrix in (4). In the Appendix we
will give the matrix representations of the generators of T and we will check that the
relations (1) are satisfied.

2 Exponential expansion of T

In this section, we will give the exponential representation of a supermatrix
T ∈ GLp,q(1|1) which is not the same with [6]. At first we note that the matrix
Tn, the n-th power of T , belongs to the quantum supergroup GLpn,qn(1|1) if T is in
GLp,q(1|1). This is proved in [6]. This result suggests that a quantum supermatrix
can be expressed as an exponential of a matrix whose entries are non-commutative.

Let T be a quantum supermatrix, i.e, the entries of T obey the (p, q)-commutation
relations given by (1). Then one can write

(8) T = eM ,

where

(9) M =
(

x µ
ν y

)

.

We want to obtain the commutation relations satisfied by the matrix elements of
M . Because of this, we write the equation (8) in the form

(10) M =
∞
∑

n=1

(−1)n+1

n
(T − I)n

where I denotes the 2x2 unit matrix.
First we obtain explicit formulas for the matrix elements of the n-th power of

T − I in order to find the matrix elements of M . The following transformation plays
an important role in our calculations. If f is any function of the matrix elements of
T and of the deformation parameters p, q we define

(11) fτ (a, β, γ, d, p, q) = f(d, γ, β, a, q, p).

Then the relations (1) are invariant under τ . So the function fτ is well-defined.
Let

(12) T − I =
(

â β
γ d̂

)

where
â = a− 1, and d̂ = d− 1.

Then the matrix (T − I)n has the form

(13) (T − I)n =
(

(a− 1)n + Fnβγ Gnβ
Gτ

nγ (d− 1)n + F τ
n γβ

)
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with some Fn and Gn.
The proof can be done by induction on n. It is obviously true for n = 1. Let the

formula (13) be true for n = k. Using the fact that

Xk+1 = XkX

for any square matrix X, we have

(14) (T − I)n+1 =





âk+1 + Fkβγâ + Gkβγ âkβ + Gkβd̂

Gτ
kγâ + d̂kγ d̂k+1 + F τ

k γβd̂ + Gτ
kγβ



 .

Thus it is obvious that if (T − I)n satisfies the reguired property, (T − I)n+1 will
satisfy it too.

The formula (14) gives the following equation for Gn:

(15) Gn+1 = Gn(q−1d− 1) + (a− 1)n.

This equation may be solved using the methods of finite differences for equations as
in [7]. In this way, one finds

(16) (Gn)h = C1(q−1d− 1)n

as the homegenous solution of (15). The particular solution of (15) is in the form

(17) (Gn)p = C2(a− 1)n.

Since the particular solution must satisfy the equation (15), with the that one gets

(18) C2 = (a− q−1d)−1.

Therefore the solution of (15) is

(19) Gn = C1(q−1d− 1)n + (a− q−1d)−1(a− 1)n.

The initial condition according to (13) is G1 = 1. Consequently the solution of (15)
formally is

(20) Gn = (a− q−1d)−1{(a− 1)n − (q−1d− 1)n}.

Then

(21) Gnβ =
(a− 1)n − (q−1d− 1)n

(a− q−1d)
β.

Note that the matrix elements a and d of T behave as commuting quantities when
are in a product case by β or γ. Thus it is not necessary to order the arguments in
(21).

It is verify that the formula (21) is the same with

(22) Gnβ =
n−1
∑

j=1

(a− 1)n−j−1(q−1d− 1)jβ.
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This formula was given in [6]. Thus, using the transformation (11) we can write

(23) Gτ
nγ =

(d− 1)n − (p−1a− 1)n

d− p−1a
γ.

Now we will obtain the Fn from (14). By (13) one can write

(24) Fn+1 = Fn(λ−1a− 1) + Gn, λ = pq.

The homegenous solution of (24) is

(25) (Fn)h = K1(λ−1a− 1)n.

But the particular solution of (24) must be in the form

(26) (Fn)p = (a− q−1d)−1 [

K2(a− 1)n −K3(q−1d− 1)n]

,

since there is two expressions in Gn. The initial condition for Fn is F1 = 0. Hence the
solution of (24) formally is

(27) Fnβ = q2
{

(q−1d− 1)n

(qa− d)(p−1a− d)
+

1
(p−1 − q)a

(

(p−1q−1a− 1)n

p−1a− d
− (a− 1)n

qa− d

)}

β.

Therefore with (11) one can find

(28) F τ
n γ = p2

{

(p−1a− 1)n

(a− pd)(a− q−1d)
+

1
(q−1 − p)d

(

(p−1q−1d− 1)n

q−1d− a
− (d− 1)n

pd− a

)}

γ.

A careful reader could ask why β appears in the formula (27). The answer is in which
to write orderly the formulas and also to use the note in below of (21).

We now easily obtain the expressions for the matrix elements of M in terms of T .

(29) x =
∞
∑

n=1

(−1)n+1

n
{(a− 1)n + Fnβγ} = ln a + f(X)βγ

where

(30)
f(X) = f(a, β, γ, d, p, q) = pq

ln(da−1)
(a− pd)(a− q−1d)

βγ

+
pq2

(pq − 1)a

(

p ln p
a− pd

− q−1 ln q
a− q−1d

)

βγ.

Similarly, one has

(31) µ =
ln(qad−1)
a− q−1d

β.

Applying τ in (11) we obtain the other elements of M :

(32) y = xτ = ln d + [f(X)]τγβ,
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and

(33) ν =
ln(pda−1)
d− p−1a

γ.

Now one can verify that the matrix elements of M satisfy the following relations:

(34)

[x, µ] = h1µ, [y, µ] = h1µ, µ2 = 0,

[x, ν] = h2ν, [y, ν] = h2ν, ν2 = 0

[x, y] = 0, µν + νµ = 0

where

(35) h1 = ln q and h2 = ln p.

Now we want to show that if the matrix elements of M in (9) satisfy the algebra
(34) then T = eM ∈ GLp,q(1|1). First we will derive the explicit form of Mn, the n-th
power of M , by methods of equations in finite differences which we used the preceding
to find the matrix elements of (T − I)n. It is easy to prove by induction that Mn has
the form

(36) Mn =
(

xn − µνUn µVn

νV τ
n yn − νµUτ

n

)

where the transformation τ is given by

τ : (x, µ, ν, y, h1, h2) 7→ (y, ν, µ, x, h2, h1)

as just (11). Since Mn+1 = MMn we have

(37) Mn+1 =
(

xn+1 − xµνUn + µνV τ
n xµVn + µyn

νxn + yνV τ
n yn+1 − yνµUτ

n + νµVn

)

.

Hence we have the following recurence relations for Un and Vn:

(38) Un+1 = (x + h1 + h2)Un − V τ
n ,

(39) Vn+1 = (x + h1)Vn + yn.

Using the methods of finite differences for equations, it is easy to verify that the
solution of (39) has in the form

(40) Vn =
(x + h1)n − yn

x− y + h1
.

Similarly, one has

(41) Un =
(

x
h1 + h2

− y + h2

w

)

(x + h1 + h2)n−1

wτ − xn

(h1 + h2)wτ +
(y + h2)n

wwτ

where
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(42) w = x− y + h1

or with the required arrangements one gets

(43) Un = − (x + h1 + h2)n

(h1 + h2)w
− xn

(h1 + h2)wτ +
(y + h2)n

wwτ .

We easily obtain the expressions for the matrix elements of T in terms of M , using
the formula (8):

(44)

a = ex +
µν

wwτ (Γex − pey),

d = ey +
νµ

wwτ (Γτey − qex) = aτ ,

β =
µ
w

(qex − ey),

γ = ν
wτ (pey − ex) = βτ

where
Γ =

h1 + pqh2

h1 + h2
+

1− pq
h1 + h2

(x− y).

Now one can easily prove that the matrix elements a, β, γ and d of T satisfy the
relations (1). For simplicity, we prove the invariance of one of the relations in (1) here.
Proofs of the remaining relations are similar. Since xy = yx, one get

aβ = ex µ
w

(qex − ey)

=
q
w

µ(qex − ey)ex = qβa.

Of course, using the formula (8), one can obtain the matrix elements of T−1, too.
To this end we will use the following simple trick. First we note that the matrix
elements of (−M) satisfy the commutation relations (34) with h′1 = −h1 and h′2 =

−h2. By definition, T−1 = e−M . Hence, if T−1 =
(

ã β̃
γ̃ d̃

)

, we have the following

equations

(45)

ã = e−x +
µν

pqwwτ (Γτe−x − qe−y),

d̃ = e−y +
νµ

pqwwτ (Γe−y − pe−x),

β̃ =
µ
w

(q−1e−x − e−y),

γ̃ =
ν

wτ (p−1e−y − e−x).

We also find the identity

(46) D = ex−y

using the relations (44) into (7). Note that it is easy verify that the super-trace of M
which is defined by



14 S.A. Çelik and D. Gülten

strM = x− y

is central element of the algebra (34).
We finish this section the following observations. Let us consider the associative

algebra (34). One can prove that for h1 6= h2 they are all invariant under the com-
mutation relations in (34). Indeed, in this case one can make the following change of
basis:

(47) X = h1x− h2y,

(48) Y = h2x− h1y.

In the new basis the commutation relations are:

(49)

[X, µ] = h1(h1 − h2)µ, [X, ν] = h2(h1 − h2)ν,

[Y, µ] = h1(h2 − h2)µ, [Y, ν] = h2(h2 − h1)ν,

[X, Y ] = 0, [µ, ν]+ = 0

where
[A,B]+ = AB + BA.

We rescale

(50) U =
1

h1 − h2
X, V =

1
h2 − h1

Y,

and find

(51)

[U, µ] = h1µ, [U, ν] = h2ν,

[V, µ] = h1µ, [V, ν] = h2ν,

[U, V ] = 0, [µ, ν]+ = 0

These relations are the same with (34). This proves that all algebras with (34) have
the same structure if h1 6= h2. For h1 = h2, the quantity X in (47) equal to strM
(and also Y ) so that the relations (49) become trivial because it is central element for
the algebra (34).

If we make the following change of basis

(52) X ′ = h1x + h2y, Y ′ = h2x + h1y,

in the new basis the commutation relations are:

(53)

[X ′, µ] = h1(h1 + h2)µ, [X ′, ν] = h2(h1 + h2)ν,

[Y ′, µ] = h1(h2 + h2)µ, [Y ′, ν] = h2(h2 + h1)ν,

[X ′, Y ′] = 0, [µ, ν]+ = 0.

Again, we rescale the X ′ and Y ′ in the form

(54) U ′ =
2

(h1 + h2)2
X ′, V ′ =

2
(h1 + h2)2

Y ′,
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respectively. Then one obtains

(55)

[U ′, µ] =
2h1

h1 + h2
µ, [U ′, ν] =

2h2

h1 + h2
ν,

[V ′, µ] =
2h1

h1 + h2
µ, [V ′, ν] =

2h2

h1 + h2
ν,

[U ′, V ′] = 0, [µ, ν]+ = 0.

This algebra is the same with in [6].

3 The r-matrix for exponential form

In this section we will show that the (h1, h2)-commutation relations satisfied by the
matrix elements of the exponent matrix M in (9) can be also obtained by an r-matrix
which is the exponential of quantum R-matrix in (4). As recall from sect. 1, the
(p, q)-commutation relations are equivalent to the equation RT1T2 = T2T1R.

Now we write, for the R-matrix in (4),

(56) R = er

where r is a 4x4 matrix. To find the matrix elements of r, if one write the exponent
as

r = ln R,

then we obtain

(57) r =







0 0 0 0
0 h1 −(h1 + h2) 0
0 0 h2 0
0 0 0 h1 + h2





 ,

which is the term of the first order of smallness in the R-matrix. Decomposing the
equation (2) to the second order, we find formula

(58) [M1,M2] = [M1 + M2, r]

where the matrices M1 and M2 have in the form (5), respectively. To obtain this
formula, we assumed that T = eM for the term of the first order in T and that the
elements of M are of the same order of smallness as h1 and h2 (as recall q = eh1 and
p = eh2). The formula (58) written explicitly, reproduce (34).

4 Conclusion

In this work, one has written a supermatrix is in GLp,q(1|1) as the exponential form of
a matrix whose entries are noncommutative and to obtain the commutation relations
satisfied by the matrix elements of the exponent matrix, using the finite differences
methods for equations one has explicitly gets the matrix elements of the n-th power
of the required matrices.
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The exponential form which is considered in this work is not the same in Ref. 6.
Therefore the commutation relations satisfied by the matrix elements of the exponent
matrix are not the same, too. However, using a special transformation the algebra
which is obtained in this paper identified with the algebra in [6] for the exponent
matrix.

Finally, the relations satisfied by the matrix elements of the exponent matrix are
expressed in terms of an r-matrix.

In this work will be finished the following observation: In section 1 it is noted
that the relations satisfied by the matrix elements of a quantum supermatrix can be
expressed in terms of an R-matrix, using the convention super-tensor product (see,
equ.s (2-5)). Of course, the relations (1) can be also obtained with the following way,
again with an R̂-matrix. Recall that for the tensor product of two supermatrices we
have

(A⊗B)(C ⊗D) = (−1)πBπC (AC ⊗BD).

Let us consider the matrix

R̂ =







−q 0 0 0
0 p−1 − q 1 0
0 qp−1 0 0
0 0 0 p−1





 .

Then one can easily verify that the relations (1) equivalent to the equation

R̂(T ⊗ T ) = (T ⊗ T )R̂.

Here, the explicit form of T ⊗ T is

T ⊗ T =







a2 aβ −βa β2

aγ ad βγ −βd
−γa −γβ da −dβ
−γ2 −γd −dγ d2





 .

Acknowledgement. We wish to express our deep gratitude to Dr. Salih Çelik for
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Appendix. Here we will give the matrix representations of the generators of the
supermatrix T is in GLp,q(1|1) and we will check that the relations (1) are satisfied.

Let M be the set of all 4x4 matrices with complex entries such that only in the
first row and on the diagonal of their have non-zero elements. Consider the following
elements of M:

a =







1 0 1 0
0 p−1 0 0
0 0 pq−1 0
0 0 0 q−1





 , β =







0 0 0 q
0 0 0 0
0 0 0 0
0 0 0 0





 ,

(A1) d =







1 0 −qp−1 0
0 p−1 0 0
0 0 qp−1 0
0 0 0 q−1





 , γ =







0 p 0 0
0 0 0 0
0 0 0 0
0 0 0 0





 .
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Then one can easily check that these matrices satisfy the relations (1). In this case,
the superdeterminant in (7) takes the form

(A2) D = p2q−2.

Hence one finds

(A3) lnD = 2(h2 − h1).

In other hand, by (29, 31-33) we obtain

x =







0 0 1 + h1 0
0 −h2 0 0
0 0 h2 − h1 0
0 0 0 −h1





 , µ =







0 0 0 1 + 2h1

0 0 0 0
0 0 0 0
0 0 0 0





 ,

(A4) y =







0 0 −(1 + h1) 0
0 −h2 0 0
0 0 h1 − h2 0
0 0 0 −h1





 , ν =







0 1 + 2h2 0 0
0 0 0 0
0 0 0 0
0 0 0 0





 .

We can easily verify that these matrices satisfy the algebra (34). In this case, the
super-trace is

(A5) str = 2(h2 − h1).

Comparing (A4) with (A5), we see that

(A6) lnD = str.
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