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Abstract

Let Mn be a complete hypersurface with constant normalized scalar curva-
ture R in a hyperbolic space form Hn+1. We prove that if R̄ = R + 1 ≥ 0 and
the norm square |h|2 of the second fundamental form of Mn satisfies

nR̄ ≤ sup |h|2 ≤ n
(n− 2)(nR̄− 2)

[n(n− 1)R̄2 − 4(n− 1)R̄ + n],

then either sup |h|2 = nR̄ and Mn is a totally umbilical hypersurface; or

sup |h|2 =
n

(n− 2)(nR̄− 2)
[n(n− 1)R̄2 − 4(n− 1)R̄ + n],

and Mn is isometric to Sn−1(r)×H1(−1/(r2 + 1)), for some r > 0.
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1 Introduction

Let Rn+1(c) be an (n + 1)-dimensional Riemannian manifold with constant sectional
curvature c. We also call it a space form. When c > 0, Rn+1(c) = Sn+1(c) (i.e. (n+1)-
dimensional sphere space); when c = 0, Rn+1(c) = Rn+1 (i.e. (n+1)-dimensional Eu-
clidean space); when c < 0, Rn+1(c) = Hn+1(c) (i.e. (n + 1)-dimensional hyperbolic
space). We simply denote Hn+1(−1) by Hn+1. Let Mn be an n-dimensional hyper-
surface in Rn+1(c), and e1, . . . , en a local orthonormal frame field on Mn, ω1, . . . , ωn

its dual coframe field. Then the second fundamental form of Mn is

h =
∑

i,j

hijωi ⊗ ωj .(1)

Further, near any given point p ∈ Mn, we can choose a local frame field e1, . . . , en so
that at p,

∑

i,j

hijωi ⊗ ωj =
∑

i

kiωi ⊗ ωj , then the Gauss equation writes

Rijij = c + kikj , i 6= j.(2)
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n(n− 1)(R− c) = n2H2 − |h|2,(3)

where R is the normalized scalar curvature, H =
1
n

∑

i

ki the mean curvature and

|h|2 =
∑

i

k2
i the norm square of the second fundamental form of Mn.

As it is well known, there are many rigidity results for minimal hypersurfaces or
hypersurfaces with constant mean curvature H in Rn+1(c) (c ≥ 0) by use of J. Simons’
method, for example, see [1], [4], [5], [8], [12] etc., but less were obtained for hyper-
surfaces immersed into a hyperbolic space form. Walter [13] gave a classification for
non-negatively curved compact hypersurfaces in a space form under the assumption
that the rth mean curvature is constant. Morvan-Wu [7], Wu [14] also proved some
rigidity theorems for complete hypersurfaces Mn in a hyperbolic space form Hn+1(c)
under the assumption that the mean curvature is constant and the Ricci curvature is
non-negative. Moreover, they proved that Mn is a geodesic distance sphere in Hn+1(c)
provided that it is compact.

On the other hand, Cheng-Yau [3] introduced a new self-adjoint differential opera-
tor 2 to study the hypersurfaces with constant scalar curvature. Later, Li [6] obtained
interesting rigidity results for compact hypersurfaces with constant scalar curvature
in space-forms using the Cheng-Yau’s self-adjoint operator 2.

In the present paper, we use Cheng-Yau’s self-adjoint operator 2 to study the
complete hypersurfaces in a hyperbolic space form with constant scalar curvature,
and prove the following theorem:
Theorem. Let Mn be an n-dimensional (n ≥ 3) complete hypersurface with constant
normalized scalar curvature R in Hn+1. If

(1) R̄ = R + 1 ≥ 0,

(2) the norm square |h|2 of the second fundamental form of Mn satisfies

nR̄ ≤ sup |h|2 ≤ n
(n− 2)(nR̄− 2)

[n(n− 1)R̄2 − 4(n− 1)R̄ + n],

then either
sup |h|2 = nR̄

and Mn is a totally umbilical hypersurface; or

sup |h|2 =
n

(n− 2)(nR̄− 2)
[n(n− 1)R̄2 − 4(n− 1)R̄ + n],

and Mn is isometric to Sn−1(r)×H1(−1/(r2 + 1)), for some r > 0.

2 Preliminaries

Let Mn be an n-dimensional hypersurface in Hn+1. We choose a local orthonormal
frame e1, . . . , en+1 in Hn+1 such that at each point of Mn, e1, . . . , en span the tangent
space of Mn and form an orthonormal frame there. Let ω1, . . . , ωn+1 be its dual
coframe. In this paper, we use the following convention on the range of indices:
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1 ≤ A,B,C, . . . ≤ n + 1; 1 ≤ i, j, k, . . . ≤ n.

Then the structure equations of Hn+1 are given by

dωA =
∑

B

ωAB ∧ ωB , ωAB + ωBA = 0,(4)

dωAB =
∑

C

ωAC ∧ ωCB −
1
2

∑

C,D

KABCDωC ∧ ωD,(5)

KABCD = −(δACδBD − δADδBC).(6)

Restricting these forms to Mn, we have

ωn+1 = 0.(7)

From Cartan’s lemma we can write

ωn+1i =
∑

j

hijωj , hij = hji.(8)

From these formulas, we obtain the structure equations of Mn:

dωi =
∑

j

ωij ∧ ωj , ωij + ωji = 0,(9)

dωij =
∑

k

ωik ∧ ωkj −
1
2

∑

k,l

Rijklωk ∧ ωl,(10)

Rijkl = −(δikδjl − δilδjk) + (hikhjl − hilhjk),(11)

where Rijkl are the components of the curvature tensor of Mn and

h =
∑

i,j

hijωi ⊗ ωj(12)

is the second fundamental form of Mn. We also have

Rij = −(n− 1)δij + nHhij −
∑

k

hikhkj ,(13)

n(n− 1)(R + 1) = n2H2 − |h|2,(14)

where R is the normalized scalar curvature, and H the mean curvature.
Define the first and the second covariant derivatives of hij , say hijk and hijkl by

∑

k

hijkωk = dhij +
∑

k

hkjωki +
∑

k

hikωkj ,(15)

∑

l

hijklωl = dhijk +
∑

m

hmjkωmi +
∑

m

himkωmj +
∑

m

hijmωmk.(16)

Then we have the Codazzi equation
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hijk = hikj ,(17)

and the Ricci identity

hijkl − hijlk =
∑

m

hmjRmikl +
∑

m

himRmjkl.(18)

For a C2-function f defined on Mn, we defined its gradient and Hessian (fij) by
the following formulas

df =
∑

i

fiωi,
∑

j

fijωj = dfi +
∑

j

fjωji.(19)

The Laplacian of f is defined by ∆f =
∑

i fii.
Let φ =

∑

ij

φijωi ⊗ ωj be a symmetric tensor defined on Mn, where

φij = nHδij − hij .(20)

Following Cheng-Yau [3], we introduce an opertator 2 associated to φ acting on
any C2-function f by

2f =
∑

i,j

φijfij =
∑

i,j

(nHδij − hij)fij .(21)

Since φij is divergence-free, it follows [3] that the operator 2 is self-adjoint relative
to the L2 inner product of Mn, i.e.

∫

Mn
f2g =

∫

Mn
g2f.(22)

We can choose a local frame field e1, . . . .en at any point p ∈ Mn, such that
hij = kiδij at p, by use of (21) and (14), we have

2(nH) = nH∆(nH)−
∑

i

ki(nH)ii =

=
1
2
∆(nH)2 −

∑

i

(nH)2i −
∑

i

ki(nH)ii =(23)

=
1
2
n(n− 1)∆R +

1
2
∆|h|2 − n2|∇H|2 −

∑

i

ki(nH)ii.

On the other hand, through a standard calculation by use of (17) and (18), we get

1
2
∆|h|2 =

∑

i,j,k

h2
ijk +

∑

i

ki(nH)ii +
1
2

∑

i,j

Rijij(ki − kj)2.(24)

Putting (24) into (23), we have

2(nH) =
1
2
n(n− 1)∆R + |∇h|2 − n2|∇H|2 +

1
2

∑

i,j

Rijij(ki − kj)2.(25)
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From (11), we have Rijij = −1 + kikj , i 6= j, and by putting this into (25), we
obtain

2(nH) =
1
2
n(n− 1)∆R + |∇h|2−n2|∇H|2−n|h|2 + n2H2− |h|4 + nH

∑

i

k3
i .(26)

Let µi = ki −H and |Z|2 =
∑

i

µ2
i , we have

∑

i

µi = 0, |Z|2 = |h|2 − nH2,(27)

∑

i

k3
i =

∑

i

µ3
i + 3H|Z|2 + nH3,(28)

From (26)-(28), we get

2(nH) =
1
2
n(n−1)∆R+|∇h|2−n2|∇H|2+|Z|2(−n+nH2−|Z|2)+nH

∑

i

µ3
i .(29)

We need the following algebraic lemma due to M. Okumura [9] (see also [1]).
Lemma 2.1. Let µi, i = 1, . . . , n, be real numbers such that

∑

i

µi = 0 and
∑

i

µ2
i =

β2, where β = constant ≥ 0. Then

− n− 2
√

n(n− 1)
β3 ≤

∑

i

µ3
i ≤

n− 2
√

n(n− 1)
β3,(30)

and the equality holds in (30) if and only if at least (n− 1) of the µi are equal.
By use of Lemma 2.1, we have

2(nH) ≥ 1
2
n(n− 1)∆R + |∇h|2 − n2|∇H|2 +

+ (|h|2 − nH2)

(

−n + 2nH2 − |h|2 − n(n− 2)
√

n(n− 1)
H

√

|h|2 − nH2

)

.(31)

3 Umbilical hypersurface in a hyperbolic space form

In this section, we consider some special hypersurfaces in a hyperbolic space form
which we will need in the following discussion.

First we want to give a description of the real hyperbolic space-form Hn+1(c) of
constant curvature c (< 0). For any two vectors x and y in Rn+2, we set

g(x, y) =
n+1
∑

i=1

xiyi − xn+2yn+2.

(Rn+2, g) is the so-called Minkowski space-time. Denote ρ =
√

−1/c. We define
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Hn+1(c) = {x ∈ Rn+2 | xn+2 > 0, g(x, x) = −ρ2}.

Then Hn+1(c) is a connected simply-connected hypersurface of Rn+2. It is not hard to
check that the restriction of g to the tangent space of Hn+1(c) yields a complete Rie-
mannian metric of constant curvature c. Here we obtain a model of a real hyperbolic
space form.

We are interested in those complete hypersurfaces with at most two distinct con-
stant principal curvatures in Hn+1(c). This kind of hypersurfaces was described by
Lawson [5] and completely classified by Ryan [11].
Lemma 3.1 [11]. Let Mn be a complete hypersurface in Hn+1(c). Suppose that,
under a suitable choice of a local orthonormal tangent frame field of TMn, the shape
operator over TMn is expressed as a matrix A. If Mn has at most two distinct constant
principal curvatures, then it is congruent to one of the following:

(1) M1 = {x ∈ Hn+1(c) | x1 = 0}. In this case, A = 0, and M1 is totally geodesic.
Hence M1 is isometric to Hn(c);

(2) M2 = {x ∈ Hn+1(c) | x1 = r > 0}. In this case, A =
1/ρ2

√

1/ρ2 + 1/r2
In, where

In denotes the identity matrix of degree n, and M2 is isometric to Hn(−1/(r2 + ρ2));

(3) M3 = {x ∈ Hn+1(c) | xn+2 = xn+1 + ρ}. In this case, A = 1
ρIn, and M3 is

isometric to a Euclidean space En;

(4) M4 = {x ∈ Hn+1(c) |
n+1
∑

i=1

x2
i = r2 > 0}. In this case, A =

√

1/r2 + 1/ρ2In,

and M4 is isometric to a round sphere Sn(r) of radius r;

(5) M5 = {x ∈ Hn+1(c) |
k+1
∑

i=1

x2
i = r2 > 0,

n+1
∑

j=k+2

x2
j − x2

n+2 = −ρ2 − r2}.

In this case, A = λIk ⊕ νIn−k, where λ =
√

1/ρ2 + 1/r2, and ν =
1/ρ2

√

1/r2 + 1ρ2
, M5

is isometric to Sk(r)×Hn−k(−1/(r2 + ρ2)).

Remark 3.1. M1, . . . , M5 are often called the standard examples of complete hy-
persurfaces in Hn+1(c) with at most two distinct constant principal curvatures. It
is obvious that M1, . . . ,M4 are totally umbilical. In the sence of Chen [2], they are
called the hyperspheres of Hn+1(c). M3 is called the horosphere and M4 the geodesic
distance sphere of Hn+1(c).

Remark 3.2. Ryan [11] stated that the shape operator of M2 is A =
√

1/r2 − 1/ρ2In,
and M2 is isometric to Hn(−1/r2), where r ≤ ρ. This is incorrect and we have
corrected it here.

4 The proof of Theorem

The following lemma essentially due to Cheng-Yau [3].
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Lemma 4.1. Let Mn be an n-dimensional hypersurface in Hn+1.Suppose that the
normalized scalar curvature R = constant and R ≥ −1. Then |∇h|2 ≥ n2|∇H|2.
Proof. From (14),

n2H2 −
∑

i,j

h2
ij = n(n− 1)(R + 1).

Taking the covariant derivative of the above expression, and using the fact R =
constant, we get

n2HHk =
∑

i,j

hijhijk.

By Cauchy-Schwarz inequality, we have
∑

k

n4H2(Hk)2 =
∑

k

(
∑

i,j

hijhijk)2 ≤ (
∑

i,j

h2
ij)

∑

i,j,k

h2
ijk,

that is
n4H2‖∇H‖2 ≤ |h|2|∇h|2.

On the other hand, from R + 1 ≥ 0, we have n2H2 − |h|2 ≥ 0. Thus

H2|∇h|2 ≥ n2H2|∇H|2

and Lemma 4.1 follows.
From the assumption of the Theorem that R is constant and R̄ = R + 1 ≥ 0 and

Lemma 4.1 we have

2(nH) ≥ (|h|2 − nH2)

(

−n + 2nH2 − |h|2 − n(n− 2)
√

n(n− 1)
H

√

|h|2 − nH2

)

.(32)

By Gauss equation (14) we know that

|Z|2 = |h|2 − nH2 =
n− 1

n
(|h|2 − nR̄).(33)

From (32) and (33) we have

2(nH) ≥ n− 1
n

(|h|2 − nR̄)φH(|h|),(34)

where

φH(|h|) = −n + 2nH2 − |h|2 − n(n− 2)
√

n(n− 1)
H

√

|h|2 − nH2.

By (33) we can write φH(|h|) as

φR̄(|h|) = −n+2(n−1)R̄− n− 2
n

|h|2− n− 2
n

√

(n(n− 1)R̄ + |h|2)(|h|2 − nR̄).(35)

Therefore (34) becomes

2(nH) ≥ n− 1
n

(|h|2 − nR̄)φR̄(|h|),(36)
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It is a direct check that our assumption

sup |h|2 ≤ n
(n− 2)(nR̄− 2)

[n(n− 1)R̄2 − 4(n− 1)R̄ + n](37)

is equivalent to

(−n+2(n−1)R̄−n− 2
n

sup|h|2)2 ≥ (n− 2)2

n2 (n(n−1)R̄+sup|h|2)(sup|h|2−nR̄).(38)

But it is clear from (37) that (38) is equivalent to

−n+2(n−1)R̄−n− 2
n

sup|h|2 ≥ n− 2
n

√

(n(n− 1)R̄ + sup|h|2)(sup|h|2 − nR̄).(39)

So under the hypothesis that

sup |h|2 ≤ n
(n− 2)(nR̄− 2)

[n(n− 1)R̄2 − 4(n− 1)R̄ + n],

we have
φR̄(

√

sup|h|2) ≥ 0.(40)

On the other hand,

2(nH) =
∑

i,j

(nHδij − nhij)(nH)ij =
∑

i

(nH − nhii)(nH)ii =

= n
∑

i

H(nH)ii − n
∑

i

ki(nH)ii ≤ (|H|max − C)∆(nH),(41)

where |H|max is the maximum of the mean curvature H and C = min ki is the
minimum of the principal curvatures of Mn.

Now we need the following maximum principle at infinity for complete manifolds
due to Omori [10] and Yau [15]:

Lemma 4.2. Let Mn be an n-dimensional complete Riemannian manifold whose
Ricci curvature is bounded from below and f : Mn → R a smooth function bounded
from below. Then for each ε > 0 there exists a point pε ∈ Mn such that

(i) |∇f |(pε) < ε,

(ii) ∆f(pε) > −ε,

(iii) inf f ≤ f(pε) ≤ inf f + ε.

From the hypothesis of the Theorem and Gauss equation, we know that the Ricci
curvature is bounded below. So we may apply Lemma 4.2 to the following smooth
function f on Mn defined by

f =
1

√

1 + (nH)2
.

It is immediate to check that
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|∇f |2 =
1
4
|∇(nH)2|2

(1 + (nH)2)3
(42)

and that

∆f = −1
2

∆(nH)2

(1 + (nH)2)3/2 +
3
4

|∇(nH)2|2

(1 + (nH)2)5/2 .(43)

By Lemma 4.2 we can find a sequence of points pk, k ∈ N in Mn, such that

lim
k→∞

f(pk) = inf f, ∆f(pk) > −1
k

, |∇f |2(pk) <
1
k2 .(44)

Using (44) in the equations (42) and (43) and the fact that

lim
k→∞

(nH)(pk) = supp∈Mn(nH)(p),(45)

we get

− 1
k
≤ −1

2
∆(nH)2

(1 + (nH)2)3/2 (pk) +
3
k2 (1 + (nH)2(pk))1/2.(46)

Hence we obtain

∆(nH)2

(1 + (nH)2)2
(pk) <

2
k

(
1

√

1 + (nH)2(pk)
+

3
k

).(47)

On the other hand, by (36) and (41), we have

n− 1
n

(|h|2 − nR̄)φR̄(|h|) ≤ 2(nH) ≤ n(|H|max − C)∆(nH).(48)

At points pk of the sequence given in (44), this becomes

n− 1
n

(|h|2(pk)− nR̄)φR̄(|h|(pk)) ≤ 2(nH(pk))

≤ n(|H|max − C)∆(nH)(pk).(49)

Let k →∞ and use (47) we have that the right hand side of (49) goes to zero, so we

have either
n− 1

n
(sup|h|2 − nR̄) = 0, i.e. sup |h|2 = nR̄ or φR̄(

√

sup|h|2) = 0.

If sup |h|2 = nR̄, by (33) |Z|2 =
n− 1

n
(|h|2−nR̄) we have sup |Z|2 =

n− 1
n

(sup|h|2−
nR̄) = 0, then |Z|2 = 0 and Mn is totally umbilical.

If φR̄(
√

sup|h|2) = 0, it is easy to prove that

sup H2 =
1
n2

[

(n− 1)2
nR̄ + 2
n− 2

− 2(n− 1) +
n− 2

nR̄ + 2

]

,

then equalities hold in (30) and Lemma 4.1, we follow that ki = constant for all i and
(n− 1) of the ki are equal. After renumberation if necessary, we can assume

k1 = k2 = · · · = kn−1 k1 6= kn.
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Therefore, from Lemma 3.1, we know that Mn is a hypersurface in Hn+1 with two
distinct principal curvatures, and Mn is isometric to Sn−1(r)×H1(−1/(r2 + 1)), for
some r > 0. This completes the proof of Theorem.

When Mn is compact, we can prove

Corollary 1. Let Mn be an n-dimensional (n ≥ 3) compact hypersurface with con-
stant normalized scalar curvature R in Hn+1. If

(1) R̄ = R + 1 ≥ 0,

(2) the norm square |h|2 of the second fundamental form of Mn satisfies

nR̄ ≤ |h|2 ≤ n
(n− 2)(nR̄− 2)

[n(n− 1)R̄2 − 4(n− 1)R̄ + n],(50)

then Mn is a totally umbilical hypersurface.

Proof. From (36) we have

2(nH) ≥ n− 1
n

(|h|2 − nR̄)[−n + 2(n− 1)R̄− n− 2
n

|h|2 −

− n− 2
n

√

(n(n− 1)R̄ + |h|2)(|h|2 − nR̄)],(51)

It is a direct check that our assumption condition (50) is equivalent to

(

−n + 2(n− 1)R̄− n− 2
n

|h|2
)2

≥ (n− 2)2

n2 (n(n− 1)R̄ + |h|2)(|h|2 − nR̄).(52)

But it is clear from (50) that (52) is equivalent to

− n + 2(n− 1)R̄− n− 2
n

|h|2 ≥ n− 2
n

√

(n(n− 1)R̄ + |h|2)(|h|2 − nR̄),(53)

therefore the right hand side of (51) is non-negative. Because Mn is compact and the
operator 2 is self-adjoint, we have

∫

Mn 2(nH)dv = 0. Thus either

|h|2 = nR̄,(54)

that is, |h|2 = nH2, Mn is a totally umbilical hypersurface; or

|h|2 =
n

(n− 2)(nR̄− 2)
[n(n− 1)R̄2 − 4(n− 1)R̄ + n].(55)

In the latter case, equalities hold in (30) and Lemma 4.1, and it follows that Mn has
at most two distinct constant principal curvatures. We conclude that Mn is totally
umbilical from the compactness of Mn. This completes the proof of Corollary 1.

Corollary 2. Let Mn be an n-dimensional compact hypersurface with constant nor-
malized scalar curvature R and R + 1 ≥ 0 in Hn+1. If M has non-negative sectional
curvature, then M is a totally umbilical hypersurface.

Proof. Because Mn is compact and the operator 2 is self-adjoint, form (25), we have
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∫

Mn



|∇h|2 − n2|∇H|2 +
1
2

∑

i,j

Rijij(ki − kj)2



 = 0.(56)

If Mn has constant normalized scalar curvature R and R ≥ −1, from Lemma 4.1, we
have |∇h|2 ≥ n2|∇H|2. So if M has non-negative sectional curvature, form (56) we
have |∇h|2 = n2|∇H|2 and Rijij = 0, when ki 6= kj on Mn. Since Rijij = −1 + kikj ,
then either Mn is totally umbilical, or Mn has two different principal curvatures,
in the latter case, Mn is still totally umbilical from the compactness of Mn. This
completes the proof of Corollary 2.
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