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Abstract

Let M™ be a complete hypersurface with constant normalized scalar curva-
ture R in a hyperbolic space form H""'. We prove that if R = R+ 1 > 0 and
the norm square |h|? of the second fundamental form of M™ satisfies
n

m[n(n —1)R® —4(n — 1)R + n,

nR < sup|h|* <

then either sup|h|> = nR and M™ is a totally umbilical hypersurface; or

n

m[n(n —1)R®> —4(n — 1)R + n,

sup h|* =

and M™ is isometric to "' (r) x H*(—1/(r? + 1)), for some r > 0.
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1 Introduction

Let R"1(c) be an (n + 1)-dimensional Riemannian manifold with constant sectional
curvature c. We also call it a space form. When ¢ > 0, R"*1(¢c) = S"*1(c) (i.e. (n+1)-
dimensional sphere space); when ¢ = 0, R"*1(c) = R"*! (i.e. (n+1)-dimensional Eu-
clidean space); when ¢ < 0, R"*1(c) = H""1(c) (i.e. (n + 1)-dimensional hyperbolic
space). We simply denote H"*!(—1) by H""!. Let M™ be an n-dimensional hyper-
surface in R"*1(c), and ey, ..., e, a local orthonormal frame field on M™, wy,...,w,
its dual coframe field. Then the second fundamental form of M™ is

(1) h = Z h,jjwi (29 Wi

4,J
Further, near any given point p € M™, we can choose a local frame field ey, ..., e, so
that at p, Z hijw; @ wj = Z kiw; ® wj, then the Gauss equation writes
i, i
(2) Rijij =c+ kik'j, ) 7& ]
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(3) n(n —1)(R —c¢) =n*H? — |h|?,
1

where R is the normalized scalar curvature, H = — Z k; the mean curvature and
n =

|h|? = Z k? the norm square of the second fundamental form of M™.

1

As it is well known, there are many rigidity results for minimal hypersurfaces or
hypersurfaces with constant mean curvature H in R"*1(c) (¢ > 0) by use of J. Simons’
method, for example, see [1], [4], [5], [8], [12] etc., but less were obtained for hyper-
surfaces immersed into a hyperbolic space form. Walter [13] gave a classification for
non-negatively curved compact hypersurfaces in a space form under the assumption
that the rth mean curvature is constant. Morvan-Wu [7], Wu [14] also proved some
rigidity theorems for complete hypersurfaces M™ in a hyperbolic space form H"*1(c)
under the assumption that the mean curvature is constant and the Ricci curvature is
non-negative. Moreover, they proved that M" is a geodesic distance sphere in H"1(c)
provided that it is compact.

On the other hand, Cheng-Yau [3] introduced a new self-adjoint differential opera-
tor O to study the hypersurfaces with constant scalar curvature. Later, Li [6] obtained
interesting rigidity results for compact hypersurfaces with constant scalar curvature
in space-forms using the Cheng-Yau’s self-adjoint operator O.

In the present paper, we use Cheng-Yau’s self-adjoint operator O to study the
complete hypersurfaces in a hyperbolic space form with constant scalar curvature,
and prove the following theorem:

Theorem. Let M™ be an n-dimensional (n > 3) complete hypersurface with constant
normalized scalar curvature R in H"H1. If

(1) R=R+1>0,

(2) the norm square |h|? of the second fundamental form of M™ satisfies

_ n _ _
R < IR — —DR?2—4(n-1R
nR <sup |h]* < (n—2)(nR—2)[n(n ) (n )R + n],
then either
sup |h|? =nR

and M™ is a totally umbilical hypersurface; or

n

o BER-g T DR A DR

sup |h|? =

and M™ is isometric to S"~1(r) x H(=1/(r?> + 1)), for some r > 0.

2 Preliminaries

Let M™ be an n-dimensional hypersurface in H™+!. We choose a local orthonormal
frame ey, ..., e,,1 in H™"! such that at each point of M™, e, ..., e, span the tangent
space of M™ and form an orthonormal frame there. Let wi,...,wyy1 be its dual
coframe. In this paper, we use the following convention on the range of indices:
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1<ABC,...<n+1; 1<4,jk,...<n.

Then the structure equations of H"*! are given by

4) dws = ZWAB Awp, wap+wpa =0,
B
1
(5) dwap =Y wac Nwep — 3 Y Kapopwe Awp,
C c.D
(6) Kapcp = —(0acdBp — 04pdBC).

Restricting these forms to M™, we have
(7) Wn41 = 0.

From Cartan’s lemma we can write

(8) Wn41i = Z hijwj, hij = hji.
J

From these formulas, we obtain the structure equations of M™:

(9) dwi = Zwi]‘ A Wi, Wij + Wii = 0,
J
1
(10) dwij = Zwik Nwij — 5 ZRijklwk N wy,
2 Kl
(11) Riji = —(6i16j1 — 0:651) + (hiwhji — hathj),

where R;;i,; are the components of the curvature tensor of M™ and

(12) h = Zhijwi ® Wy

4,7
is the second fundamental form of M™. We also have

(13) Rij = 7(71 — 1)613 + TLHhij — Z h‘ikh‘kjy
k

(14) nin—1)(R+1)=n%H? — |n|?,

where R is the normalized scalar curvature, and H the mean curvature.
Define the first and the second covariant derivatives of h;j;, say hsjr and hgjr by

(15) Z hijrwy = dhij + Z hijwii + Z hikwij,
% % %

(16) Z hijriwr = dhijr + Z RmjkWmi + Z NimkWmj + Z RijmWm -
l m m m

Then we have the Codazzi equation
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(17) hijk = hikj,
and the Ricci identity

(18) hijki — hijik = Z P Rkt + Z Rim Ronjki-

For a C?-function f defined on M™, we defined its gradient and Hessian (f;;) by
the following formulas

(19) df:Zfiwi, Zfijwj :dfi+z.fjwji~
i J J

The Laplacian of f is defined by Af =", fi.
Let ¢ = Z ¢ijw; ® wj be a symmetric tensor defined on M", where
ij

(20) Qbij = TLH(Sz'j — th

Following Cheng-Yau [3], we introduce an opertator O associated to ¢ acting on
any C2?-function f by

(21) of = Z¢’ijfij = Z(nH(Sij — hij) fij-

.7 2]

Since ¢;; is divergence-free, it follows [3] that the operator O is self-adjoint relative
to the L? inner product of M™, i.e.

29 — .
(22) Mnng /Iwgﬂf

We can choose a local frame field eq,....e, at any point p € M™, such that
hi; = kid;; at p, by use of (21) and (14), we have

D(nH) = nHAnH) =Y ki(nH); =

(23) = %A(nH)Q =Y (nH); =Y ki(nH);; =

7 [

_ 1 1 2 2 2
= gn(n—DAR+ Z AL —n*|VH| —Zki(nH)ii.

On the other hand, through a standard calculation by use of (17) and (18), we get

1 1
(24) AR = S BG4+ > ki(nH)i + 5 > Rijij (ki — ky)*.
, x

4,9,k A

Putting (24) into (23), we have

1 1
(25) D(’H,H) = 5’”(% —1)AR+ |V]’L|2 — n2|VH|2 + 3 ZRijij(ki — k‘j)2.
4,3
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From (11), we have R;j;; = —1 + k;k;, i # j, and by putting this into (25), we
obtain

1

(26) D(nH) = on(n—1)AR+ IVh|> =n?|VH|?> = n|h|> +n*H? — |h|* + nH > k.
Let u; = k; — H and | Z]? = Z““ we have

(27) > wi=0, |Z]>=|nf —nH?,

(28) Zk3 Z“z +3H|Z|* + nH?,
From (26)-(28), we get

1
(29) D(nH) = Sn(n—D)AR+VAE—n?[VHP+|Z12(—ntnH? - |Z12) +nH 3 i

We need the following algebraic lemma due to M. Okumura [9] (see also [1]).
Lemma 2.1. Let p;, t = 1,...,n, be real numbers such that Zui =0 and Zuf =

4 %

(%, where 8 = constant > 0. Then

n—2 n—2
30 - 3,
(30) N DI by ey

and the equality holds in (30) if and only if at least (n — 1) of the u; are equal.
By use of Lemma 2.1, we have

1
O(nH) > in(n —~1)AR+ |Vh|*> —n?|VH|? +

-2
(31) +  (|n|* =nH?) (—n—|—2nH2—|h|2_n(n)H |h2—nH2>.

3 Umbilical hypersurface in a hyperbolic space form

In this section, we consider some special hypersurfaces in a hyperbolic space form
which we will need in the following discussion.

First we want to give a description of the real hyperbolic space-form H"*1(c) of
constant curvature ¢ (< 0). For any two vectors z and y in R" 2, we set

n+1

g(z,y) = Z ZLiYi — Tn+2Yn+-2-
i=1

(R™*2 g) is the so-called Minkowski space-time. Denote p = y/—1/c. We define
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Hn+l(c) = {{E € Rn+2 | Tpy2 >0, g(xvx) = _P2}.

Then H"*1(c) is a connected simply-connected hypersurface of R"*2. It is not hard to
check that the restriction of g to the tangent space of H"*1(c) yields a complete Rie-
mannian metric of constant curvature c. Here we obtain a model of a real hyperbolic
space form.

We are interested in those complete hypersurfaces with at most two distinct con-

stant principal curvatures in H"*1(c). This kind of hypersurfaces was described by
Lawson [5] and completely classified by Ryan [11].
Lemma 3.1 [11]. Let M™ be a complete hypersurface in H"*1(c). Suppose that,
under a suitable choice of a local orthonormal tangent frame field of TM™, the shape
operator over T M™ is expressed as a matriz A. If M™ has at most two distinct constant
principal curvatures, then it is congruent to one of the following:

(1) My = {x € H""1(¢) | 71 = 0}. In this case, A =0, and M is totally geodesic.
Hence M is isometric to H™(c);

1 2
,={z e ¢) | xz1 =r > 0}. In this case, A = ————1,,, where
(2) My = {x € H™(c) | 0}. In th A P g wh
V1/p? 4+ 1/r2

I,, denotes the identity matriz of degree n, and My is isometric to H™(—1/(r%+ p?));

(3) M3 = {z € H""(¢) | Zpy2 = Tns1 + p}. In this case, A = %In, and Ms is
isometric to a Euclidean space E™;
n+1
(4) My = {x € H""(c) | fo =72 > 0}. In this case, A = \/1/r2 +1/p%I,,
i=1
and My is isometric to a round sphere S™(r) of radius r;

k+1 n+1
() My = {w € H™(0) | Yoa? =2 >0, 30 & —adiy =~ — 7).
i=1 j=k+2

1 2
In this case, A = Nl @ vI,_j, where A= +/1/p2+1/r2, and v = ¢, M
V1/r2+1p?

is isometric to S¥(r) x H"k(—1/(r% + p?)).

Remark 3.1. Mi,..., M5 are often called the standard examples of complete hy-
persurfaces in H"*!(c) with at most two distinct constant principal curvatures. It
is obvious that Mj, ..., My are totally umbilical. In the sence of Chen [2], they are
called the hyperspheres of H"*1(c). M3 is called the horosphere and M, the geodesic
distance sphere of H"*1(c).

Remark 3.2. Ryan [11] stated that the shape operator of My is A = \/1/r2 — 1/p?1,,,
and M, is isometric to H"(—1/r?), where r < p. This is incorrect and we have
corrected it here.

4 The proof of Theorem

The following lemma essentially due to Cheng-Yau [3].
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Lemma 4.1. Let M™ be an n-dimensional hypersurface in H"1. Suppose that the
normalized scalar curvature R = constant and R > —1. Then |Vh|? > n?|VH|?.
Proof. From (14),

n?H? — thj =n(n—1)(R+1).
]

Taking the covariant derivative of the above expression, and using the fact R =
constant, we get

HQHHk = Z h”h”k
(%]
By Cauchy-Schwarz inequality, we have
Dt HA(H)? =) (D highie)® < (Q_hE) D e,
k ko 4 0,J .5,k

that is
n*H?|VH|?* < |h]*|Vh|*

On the other hand, from R + 1 > 0, we have n2H? — |h|? > 0. Thus
H?|Vh|*> > n*H?*|VH|?
and Lemma 4.1 follows.

From the assumption of the Theorem that R is constant and R=R+1>0and
Lemma 4.1 we have

2 _ o Y | —naonH? — B2 — n(n —2) —n
(32) d(nH) > (|h] H )( +2nH* — |h| \/mH\/WZ H2>.

By Gauss equation (14) we know that
-1 _
(33) 127 = |hf? = nH? = ———(]h> ~ nR).

From (32) and (33) we have

(34) SnH) > " (P~ nR)om(|hl)
where
¢u(|h]) = —n+2nH? — | — MH\/W
By (33) we can write ¢ (|h|) as
(35) da(lhl) = —n+2(n-1R-""2[p =" "2\ /tn(n ~ )R + [A2)(|h[? ~ nR)

Therefore (34) becomes

(36) AnH) > "L (P~ nR)o(h),
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It is a direct check that our assumption

n — _
is equivalent to
_ —92)2 _ _
(38) (-nt2n-DR-""suplpf?)? > O~ 2 (1) B suplhf?) (suplh|2-n ).

But it is clear from (37) that (38) is equivalent to

- -2 -2 - -
(39) —n+2(n—1)R— o sup|h|? > o - \/(n(n — 1)R + supl|h|?)(sup|h|?> — nR).
So under the hypothesis that
I L — ~1DR?>—4(n— 1R ,
suplhf? < el — DR —d(n — DR+

we

have

(40) 6 (v/5uplP?) > 0.

(41)

On the other hand,

nz H(nH)y; — nz ki(nH)i; < (|H|maw — C)A(nH),

where |H|mpqe is the maximum of the mean curvature H and C = mink; is the
minimum of the principal curvatures of M™.

Now we need the following maximum principle at infinity for complete manifolds

due to Omori [10] and Yau [15]:

Lemma 4.2. Let M"™ be an n-dimensional complete Riemannian manifold whose
Ricci curvature is bounded from below and f: M™ — R a smooth function bounded
from below. Then for each € > 0 there exists a point p. € M™ such that

(i) VAl <e.
(i) Af(p.) > e,
(ifi) inf f < f(pe) <inf f+e.

From the hypothesis of the Theorem and Gauss equation, we know that the Ricci

curvature is bounded below. So we may apply Lemma 4.2 to the following smooth

fun

ction f on M™ defined by

It is immediate to check that



Hypersurfaces with Constant Scalar Curvature 129

2o _ 1 [V(nH)?P
. MR
and that
(43) Af- L A(nH)? 3 |V(nH)?2?

2 (1+ (nH)?2)3/2 4 (1+ (nH)2)5/2"
By Lemma 4.2 we can find a sequence of points pg, k € IV in M™, such that

(44) T () = inf £, Afpe) > 1. VIP) <

k 3
Using (44) in the equations (42) and (43) and the fact that

(45) i (nH)(pr) = suppen (nH)(p),
we get
(a6 g )+ L (B ()
Hence we obtain
A(nH)? 2 1 3

(47) () < = +3

(1+ (nH)?)? 1+ (nH)?(px) k)
On the other hand, by (36) and (41), we have

n—1

(48) (1n1* = nR)pp(|h]) < O(nH) < n(|Hlmaa — C)A(nH).

n
At points py of the sequence given in (44), this becomes

n—1

- (Ih[*(pk) = nR)¢r(|h|(px)) < O(nH (pr))
(49) < n(|Hlmaz — C)A(nH)(pr)-

Let k — oo and use (47) we have that the right hand side of (49) goes to zero, so we
-1 _ _
(sup|h|* = nR) = 0, i.e. sup|h|?> = nR or ¢z(\/sup|h|?) = 0.
_ 1 _ 1
If sup |h|? = nR, by (33) | Z]? = nT(|h|2—nR) we have sup |Z|? = r (sup|h|*—
nR) =0, then |Z|?> = 0 and M™ is totally umbilical.
If p5(+/sup|h|?) =0, it is easy to prove that

. n
have either

R+ 2 -2
onlR + Com—1)+ n

1
sup H? = — |(n — 1) —3 eyl

n2

then equalities hold in (30) and Lemma 4.1, we follow that k; = constant for all i and
(n — 1) of the k; are equal. After renumberation if necessary, we can assume

ki=ky=-=ku1 ki #Eky.
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Therefore, from Lemma 3.1, we know that M™ is a hypersurface in H"*! with two
distinct principal curvatures, and M™ is isometric to S"~1(r) x H'(—1/(r? 4+ 1)), for
some r > 0. This completes the proof of Theorem.

When M™ is compact, we can prove

Corollary 1. Let M™ be an n-dimensional (n > 3) compact hypersurface with con-
stant normalized scalar curvature R in HrHLIf
(1) R=R+12>0,

(2) the norm square |h|? of the second fundamental form of M™ satisfies

[n(n — 1)R? — 4(n — 1)R + n),

(50) nR < ‘h|2 < m R

then M™ is a totally umbilical hypersurface.
Proof. From (36) we have

n—1 n

O(mH) > (2 = nR)[—n +2(n — 1)R — ;2|m2—

2 Jnln DR+ ) (hf2 — n R

n

(51) -

It is a direct check that our assumption condition (50) is equivalent to

n— 2 n— 2)2 _ _
(52) (n+2(n1)R n2|h|2> 2(71722)(71(7171)R+|h\2)(|h\27nR).

But it is clear from (50) that (52) is equivalent to

() —n+2m-DR- "2 > "2 - DR+ 2R - nR),

therefore the right hand side of (51) is non-negative. Because M™ is compact and the
operator O is self-adjoint, we have [, O(nH)dv = 0. Thus either

(54) |h|? = nR,

that is, |h|? = nH?, M™ is a totally umbilical hypersurface; or

(55) Ihf? = m[n(nf 1)R? — 4(n — 1)R +n).

In the latter case, equalities hold in (30) and Lemma 4.1, and it follows that M™ has
at most two distinct constant principal curvatures. We conclude that M™ is totally
umbilical from the compactness of M™. This completes the proof of Corollary 1.

Corollary 2. Let M™ be an n-dimensional compact hypersurface with constant nor-
malized scalar curvature R and R+ 1> 0 in H" . If M has non-negative sectional
curvature, then M is a totally umbilical hypersurface.

Proof. Because M™ is compact and the operator O is self-adjoint, form (25), we have
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1
(56) || IOhE =P+ 5 Y Ry s~ | =0,
0

If M™ has constant normalized scalar curvature R and R > —1, from Lemma 4.1, we
have |Vh|? > n?|VH|?. So if M has non-negative sectional curvature, form (56) we
have |Vh|* =n?|VH|? and R;;;; =0, when k; # k; on M™. Since R;j;; = —1 + k;k;,
then either M™ is totally umbilical, or M™ has two different principal curvatures,
in the latter case, M™ is still totally umbilical from the compactness of M™. This
completes the proof of Corollary 2.
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