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Abstract

For submanifolds, in a Sasakian space form, which are tangential to the struc-
ture vector field, we establish a basic inequality between squared mean curva-
ture and Ricci curvature. Equality cases are also discussed. Some applications of
these results are given for slant, invariant, anti-invariant and CR-submanifolds.
We also establish an inequality between the shape operator and the sectional
curvature for slant submanifolds in a Sasakian space form. In particular, we give
similar results for invariant and anti-invariant submanifolds.
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1 Introduction

According to B.-Y. Chen, one of the basic problems in submanifold theory is to find
simple relationships between the main extrinsic invariants and the main intrinsic
invariants of a submanifold. In [5], he establishes a relationship between sectional
curvature function K and the shape operator for submanifolds in real space forms. In
[6], he also gives a relationship between Ricci curvature and squared mean curvature.

A contact version of B.-Y. Chen’s inequality and its applications to slant immer-
sions in a Sasakian space form M̃ (c) are given in [4]. In the present paper, we continue
the study of submanifolds in a Sasakian space form, which are tangent to the structure
vector field. Necessary details about Sasakian space forms and slant submanifolds are
reviewed in section 2. In section 3, for those submanifolds in Sasakian space forms
which are tangential to the structure vector field, we establish a basic inequality be-
tween Ricci curvature and squared mean curvature function. We also discuss equality
cases. As applications, we state similar results for slant, invariant, anti-invariant and
CR-submanifolds. In the last section, we establish an inequality between the shape
operator and the sectional curvature for slant submanifolds in a Sasakian space form.
In particular, we give similar results for invariant and anti-invariant submanifolds.
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2 Preliminaries

Let M̃ be a (2m + 1)-dimensional almost contact manifold endowed with an almost
contact structure (ϕ, ξ, η), that is, ϕ is a (1, 1) tensor field, ξ is a vector field and η is
1-form such that ϕ2 = −I + η ⊗ ξ and η (ξ) = 1. Then, ϕ (ξ) = 0 and η ◦ ϕ = 0. The
almost contact structure is said to be normal if in the product manifold M̃ × R the
induced almost complex structure J defined by J (X, λd/dt) = (ϕX − λξ, η (X) d/dt)
is integrable, where X is tangent to M̃ , t is the coordinate of R and λ is a smooth
function on M̃ ×R. The condition for almost contact structure to be normal is equiv-
alent to vanishing of the torsion tensor [ϕ,ϕ] + 2dη ⊗ ξ, where [ϕ, ϕ] is the Nijenhuis
tensor of ϕ.

Let g be a compatible Riemannian metric with the structure (ϕ, ξ, η), that is,
g (ϕX, ϕY ) = g (X, Y ) − η (X) η (Y ) or equivalently, g (X, ϕY ) = −g (ϕX, Y ) and
g (X, ξ) = η (X) for all X, Y ∈ TM̃ . Then, M̃ becomes an almost contact metric
manifold equipped with the almost contact metric structure (ϕ, ξ, η, g). Moreover, if
g (X,ϕY ) = dη (X, Y ), then M̃ is said to have a contact metric structure (ϕ, ξ, η, g),
and M̃ is called a contact metric manifold. A normal contact metric structure in M̃
is a Sasakian structure and M̃ is a Sasakian manifold. A necessary and sufficient
condition for an almost contact metric structure to be a Sasakian structure is

(

∇̃Xϕ
)

Y = g (X, Y ) ξ − η (Y )X, X, Y ∈ TM̃,(1)

where ∇̃ is the Levi-Civita connection of the Riemannian metric g. R2m+1 and S2m+1

are equipped with standard Sasakian structures. For more details, we refer to [2].
The sectional curvature K̃ (X ∧ ϕX) of a plane section spanned by a unit vector

X orthogonal to ξ is called a ϕ-sectional curvature. If M̃ has constant ϕ-sectional
curvature c then it is called a Sasakian space form and is denoted by M̃ (c). The
curvature tensor R̃ of a Sasakian space form M̃ (c) is given by

4R̃ (X, Y )Z = (c + 3) {g (Y, Z)X − g (X, Z) Y }+

+ (c− 1) {g (ϕY, Z)ϕX − g (ϕX, Z) ϕY −
− 2g (ϕX, Y )ϕZ + η (X) η (Z)Y −(2)

− η (Y ) η (Z) X + g (X,Z) η (Y ) ξ − g (Y, Z) η (X) ξ} .

Let M be an (n + 1)-dimensional submanifold immersed in an almost contact
metric manifold M̃(ϕ, ξ, η, g). Let g denote the induced metric on M also. We denote
by σ the second fundamental form of M and by AN the shape operator associated to
any vector N in the normal bundle T⊥M . Then g (σ (X,Y ) , N) = g (ANX, Y ) for all
X, Y ∈ TM and N ∈ T⊥M . The Gauss equation is

R̃ (X,Y, Z,W ) = R (X, Y, Z,W )− g (σ (X,W ) , σ (Y, Z))(3)

+ g (σ (X, Z) , σ (Y,W ))

for all X, Y, Z,W ∈ TM , where R is the induced curvature tensor of M . The relative
null space of M at a point p ∈ M is defined by

Np = {X ∈ TpM |σ(X,Y ) = 0, for all Y ∈ TpM} .
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Let {e1, ..., en+1} be an orthonormal basis of the tangent space TpM . The mean
curvature vector H (p) at p ∈ M is

H (p) ≡ 1
n + 1

n+1
∑

i=1

σ (ei, ei) .(4)

The submanifold M is totally geodesic in M̃ if σ = 0; minimal if H = 0; and totally
umbilical if σ (X, Y ) = g (X, Y )H for all X,Y ∈ TM . We put

σr
ij = g (σ (ei, ej) , er) and ‖σ‖2 =

n+1
∑

i,j=1

g (σ (ei, ej) , σ (ei, ej)) ,

where er belongs to an orthonormal basis {en+2, ..., e2m+1} of the normal space T⊥p M .
The scalar curvature τ (p) at p ∈ M is given by

τ (p) =
∑

i<j

K (ei ∧ ej) ,(5)

where K (ei ∧ ej) is the sectional curvature of the plane section spanned by ei and ej .
For a vector field X in M , we put

ϕX = PX + FX, PX ∈ TM, FX ∈ T⊥M.

Thus, P is an endomorphism of the tangent bundle of M and satisfies g (X, PY ) =
−g (PX, Y ) for all X,Y ∈ TM . The squared norm of P is given by

‖P‖2 =
n+1
∑

i,j=1

g (ei, P ej)
2

for any local orthonormal basis {e1, e2, . . . , en+1} for TpM .
A submanifold M of an almost contact metric manifold with ξ ∈ TM is called a

semi-invariant submanifold ([1]) or a contact CR submanifold ([8]) if there exists two
differentiable distributions D and D⊥ on M such that (i) TM = D ⊕ D⊥ ⊕ E , (ii)
the distribution D is invariant by ϕ, i.e., ϕ(D) = D, and (iii) the distribution D⊥ is
anti-invariant by ϕ, i.e., ϕ(D⊥) ⊆ T⊥M .

The submanifold M tangent to ξ is said to be invariant or anti-invariant ([8])
according as F = 0 or P = 0. Thus, a CR-submanifold is invariant or anti-invariant
according as D⊥ = {0} or D = {0}. A proper CR-submanifold is neither invariant
nor anti-invariant.

For each non zero vector X ∈ TpM , such that X is not proportional to ξp, we
denote the angle between ϕX and TpM by θ (X). Then M is said to be slant ([7],[3])
if the angle θ (X) is constant, that is, it is independent of the choice of p ∈ M and
X ∈ TpM − {ξ}. The angle θ of a slant immersion is called the slant angle of the
immersion. Invariant and anti-invariant immersions are slant immersions with slant
angle θ = 0 and θ = π/2 respectively. A proper slant immersion is neither invariant
nor anti-invariant.
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3 Mean curvature and Ricci curvature

Let M be an (n + 1)-dimensional submanifold in a (2m + 1)-dimensional Sasakian
space form M̃(c) tangential to the structure vector field ξ. In view of (2) and (3), it
implies that

R (X, Y, Z, W ) =
c + 3

4
{g (X, W ) g (Y, Z)− g (X,Z) g (Y,W )}+

+
c− 1

4
{g (X, ϕW ) g (Y, ϕZ)− g (X, ϕZ) g (Y, ϕW ) −

− 2g (X, ϕY ) g (Z,ϕW ) −(6)

− g (X, W ) η (Y ) η (Z) + g (X, Z) η (Y ) η (W ) −
− g (Y,Z) η (X) η (W ) + g (Y, W ) η (X) η (Z)}+
+ g (σ (X,W ) , σ (Y, Z))− g (σ (X, Z) , σ (Y, W ))

for all X, Y, Z, W ∈ TM , where R is the induced curvature tensor of M . Thus, we
have

(n + 1)2 ‖H‖2 = 2τ + ‖σ‖2 − 1
4
n (n + 1) (c + 3)− 1

4

(

3 ‖P‖2 − 2n
)

(c− 1) .(7)

In [6], B.-Y. Chen established a relationship between Ricci curvature and the
squared mean curvature for a submanifold in a real space form as follows.

Theorem 3.1 Let M be an n-dimensional submanifold in a real space form Rm (c).
Then,
1. For each unit vector X ∈ TpM , we have

‖H‖2 ≥ 4
n2 {Ric (X)− (n− 1) c} .(8)

2. If H(p) = 0, then a unit vector X ∈ TpM satisfies the equality case of (8) if and
only if X lies in the relative null space Np at p.
3. The equality case of (8) holds for all unit vectors X ∈ TpM , if and only if either
p is a totally geodesic point or n = 2 and p is a totally umbilical point.

In this section, we find similar results for different kind of submanifolds in a
Sasakian space form.

Theorem 3.2 Let M be an (n + 1)-dimensional submanifold in a (2m+1)-dimensional
Sasakian space form M̃(c) tangential to the structure vector field ξ. Then,
(i) For each unit vector U ∈ TpM , we have

4Ric (U)≤(n + 1)2 ‖H‖2+n (c+3)+{3 ‖PU‖2−(n−1) η (U)2− 1} (c− 1) .(9)

(ii) If H(p) = 0, a unit vector U ∈ TpM satisfies the equality case of (9) if and only
if U belongs to the relative null space Np.
(iii) The equality case of (9) holds for all unit vectors U ∈ TpM if and only if M is
a totally geodesic submanifold.
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Proof. We choose an orthonormal basis {e1, ..., en+1, en+2, ..., e2m+1} such that
e1, ..., en+1 ∈ TpM . The squared second fundamental form and the squared mean
curvature vector also satisfy

‖σ‖2 =
1
2

(n + 1)2 ‖H‖2 +
1
2

2m+1
∑

r=n+2

(σr
11 − σr

22 − · · · − σr
n+1 n+1)

2 +

+ 2
2m+1
∑

r=n+2

∑

j=2

(σr
1j)

2 − 2
2m+1
∑

r=n+2

∑

2≤i<j≤n+1

(

σr
iiσ

r
jj − (σr

ij)
2) .(10)

From (7) and (10), we get

1
4

(n + 1)2 ‖H‖2 = τ − 1
8
n(n + 1) (c + 3)− 1

8

(

3 ‖P‖2 − 2n
)

(c− 1) +

+
1
4

2m+1
∑

r=n+2

(σr
11 − σr

22 − · · · − σr
n+1 n+1)

2 +
2m+1
∑

r=n+2

n+1
∑

j=2

(σr
1j)

2 −(11)

−
2m+1
∑

r=n+2

∑

2≤i<j≤n+1

(

σr
iiσ

r
jj − (σr

ij)
2) .

From the equation of Gauss we also have

K (ei ∧ ej) =
2m+1
∑

r=n+2

(

σr
iiσ

r
jj − (σr

ij)
2) +

c + 3
4

+

+
c− 1

4

(

3g (ei, P ej)
2 − η (ei)

2 − η (ej)
2
)

,

which gives

∑

2≤i<j≤n+1

K(ei∧ej) =
2m
∑

r=n+2

∑

2≤i<j≤n+1

(σr
iiσ

r
jj − (σr

ij)
2) +

1
8
n(n− 1) (c + 3) +

+
1
8
{3 ‖P‖2−6 ‖Pe1‖2−2(n−1)(1−η(e1)2}(c−1).(12)

From (11) and (12), we get

1
4

(n + 1)2 ‖H‖2 = τ −
∑

2≤i<j≤n+1

K (ei ∧ ej)−

− 1
4
n (c + 3)− 1

4

(

3 ‖Pe1‖2 − (n− 1) η (e1)
2 − 1

)

(c− 1) +

+
1
4

2m+1
∑

r=n+2

(σr
11 − σr

22 − · · · − σr
n+1 n+1)

2 +
2m+1
∑

r=n+2

∑

j=2

(σr
1j)

2.

or

Ric (e1) =
1
4

{

(n + 1)2 ‖H‖2 + n (c + 3) +
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+
(

3 ‖Pe1‖2 − (n− 1) η (e1)
2 − 1

)

(c− 1)
}

−(13)

− 1
4

2m+1
∑

r=n+2

(σr
11 − σr

22 − · · · − σr
n+1 n+1)

2 −
2m+1
∑

r=n+2

∑

j=2

(σr
1j)

2.

Since e1 = X can be chosen to be any arbitrary unit vector in TpM , the above
equation implies (9).

In view of (13), the equality case of (9) is valid if and only if

σr
11 = σr

22 + · · ·+ σr
n+1 n+1,

σr
12 = · · · = σr

1 n+1 = 0, r ∈ {n + 2, . . . , 2m + 1} .(14)

If H(p) = 0, (14) implies that e1 = X belongs to the relative null space Np at p.
Conversely, if e1 = X lies in the relative null space, then (14) holds because H(p) = 0
is assumed. This proves statement (ii).

Now, we prove (iii). Assume that the equality case of (9) for all unit tangent
vectors to M at p ∈ M is true. Then, in view of (13), for each r ∈ {n + 2, . . . , 2m + 1},
we have

2σr
ii = σr

11 + · · ·+ σr
n+1 n+1, i ∈ {1, ..., n + 1} ,

σr
ij = 0, i 6= j.(15)

Thus, we have two cases, namely either n = 1 or n 6= 1. In the first case p is a totally
umbilical point, while in the second case p is a totally geodesic point. Since ξ ∈ TM ,
therefore each totally umbilical point is totally geodesic. Thus in both the cases, p is
a totally geodesic point. The proof of converse part is straightforward. 2

The above theorem implies the following three results for slant, invariant and
anti-invariant submanifolds isometrically immersed in a Sasakian space form.

Theorem 3.3 Let M be an (n + 1)-dimensional θ-slant submanifold isometrically
immersed in a (2m + 1)-dimensional Sasakian space form M̃(c) such that ξ ∈ TM .
Then
(i) For each unit vector U ∈ TpM , we have

4Ric (U) ≤ (n + 1)2 ‖H‖2 + n (c + 3)

+ {3 cos2 θ −
(

n− 1 + 3 cos2 θ
)

η (U)2 − 1} (c− 1) .(16)

(ii) If H(p) = 0, a unit vector U ∈ TpM satisfies the equality case of (16) if and only
if U ∈ Np.
(iii) The equality case of (16) holds for all unit vectors U ∈ TpM if and only if M is
a totally geodesic submanifold.

Proof. A θ-slant submanifold M of an almost contact metric manifold satisfies

g (PX, PY ) = cos2 θg (ϕX, ϕY ) , g (FX, FY ) = sin2 θg (ϕX,ϕY )(17)

for all X, Y ∈ TM . In view of (17), for a unit vector U ∈ TpM , we get

‖PU‖2 = g (PU,PU) = cos2 θ
(

1− η (U)2
)

.

Using this in (9), we get (16). Rest of the proof is similar to that of Theorem 3.2. 2
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Theorem 3.4 Let M be an (n + 1)-dimensional invariant submanifold isometrically
immersed in a (2m + 1)-dimensional Sasakian space form M̃(c) such that ξ ∈ TM .
Then,
(i) For each unit vector U ∈ TpM , we have

4Ric (U) ≤ (n + 1)2 ‖H‖2 + n (c + 3) + {2− (n + 2) η (U)2} (c− 1) .(18)

(ii) If H(p) = 0, a unit vector U ∈ TpM satisfies the equality case of (18) if and only
if U ∈ Np.
(iii) The equality case of (18) holds for all unit vectors U ∈ TpM if and only if M is
a totally geodesic submanifold.

Theorem 3.5 Let M be an (n + 1)-dimensional anti-invariant submanifold isomet-
rically immersed in a (2m + 1)-dimensional Sasakian space form M̃(c) such that
ξ ∈ TM . Then,
(i) For each unit vector U ∈ TpM , we have

4Ric (U) ≤ (n + 1)2 ‖H‖2 + n (c + 3)− {(n− 1) η (U)2 + 1} (c− 1) .(19)

(ii) If H(p) = 0, a unit vector U ∈ TpM satisfies the equality case of (19) if and only
if U ∈ Np.
(iii) The equality case of (19) holds for all unit vectors U ∈ TpM if and only if M is
a totally geodesic submanifold.

We also have the following

Theorem 3.6 Let M be an (n + 1)-dimensional CR-submanifold in a Sasakian space
form M̃ (c). Then, the following statements are true.
1. For each unit vector U ∈ D, we have

4Ric (U) ≤ (n + 1)2 ‖H‖2 + (n + 2) c + 3n− 2.(20)

2. For each unit vector U ∈ D⊥, we have

4Ric (U) ≤ (n + 1)2 ‖H‖2 + (n− 1) c + 3n + 1.(21)

3. If H(p) = 0, a unit vector U ∈ D (resp. D⊥) satisfies the equality case of (20)
(resp. (21)) if and only if U ∈ Np.

4 Shape operator for slant immersion

Let M be an (n + 1)-dimensional θ-slant submanifold in a (2m + 1)-dimensional
Sasakian space form M̃(c) such that ξ ∈ TM . Let p ∈ M and a number

b >
c + 3

4
+

3 (c− 1)
4

cos2 θ

such that the sectional curvature K ≥ b at p. We choose an orthonormal basis
{e1, . . . , en+1 = ξ, en+2, . . . , e2m+1} at p such that en+2 is parallel to the mean cur-
vature vector H, and e1, . . . , en+1 diagonalize the shape operator An+2. Then we
have
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An+2 =











a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · an+1











,(22)

Ar =
(

σr
ij

)

, trace Ar =
n+1
∑

i=1

σr
ii = 0, i, j = 1, ..., n + 1; r = n + 3, ..., 2m + 1.(23)

For i 6= j, we put
uij ≡ aiaj = uji.(24)

In view of Gauss equation (6), for X = Z = ei, Y = W = ej , we have

uij ≥ b− c + 3
4

− 3 (c− 1)
4

g (ei, Pej)
2 −

2m+1
∑

r=n+3

(

σr
iiσ

r
jj −

(

σr
ij

)2
)

.(25)

Now, we prove the following Lemma.

Lemma 4.1 For uij we have
(1) For any fixed i ∈ {1, ..., n + 1}, we find

∑

i 6=j

uij ≥ n
(

b− c + 3
4

− 3 (c− 1)
4

cos2 θ
)

.

(2) For distinct i, j, k ∈ {1, ..., n + 1} it follows that a2
i = uijuik/ujk.

(3) For a fixed k, 1 ≤ k ≤
[

n + 1
2

]

and for each B ∈ Sk ≡ {B ⊂ {1, ..., n+1} : |B| =

k}, we have

∑

j∈B

∑

t∈B̄

ujt ≥ k (n− k + 1)
(

b− c + 3
4

− 3 (c− 1)
4

cos2 θ
)

,

where B̄ is the complement of B in {1, ..., n + 1}.
(4) For distinct i, j ∈ {1, ..., n + 1}, it follows that uij > 0.

Proof. (1) From (23), (24) and (25), we obtain

∑

i6=j

uij ≥ n
(

b− c + 3
4

− 3 (c− 1)
4

cos2 θ
)

−
2m+1
∑

r=n+3



σr
ii





∑

j 6=i

σr
jj



−
∑

j 6=i

(

σr
ij

)2



 =

= n
(

b− c + 3
4

− 3 (c− 1)
4

cos2 θ
)

−
2m+1
∑

r=n+3



σr
ii (−σr

ii)−
∑

j 6=i

(

σr
ij

)2



 =

= n
(

b− c + 3
4

− 3 (c− 1)
4

cos2 θ
)

+
2m+1
∑

r=n+3

n+1
∑

j=1

(

σr
ij

)2 ≥

≥ n
(

b− c + 3
4

− 3 (c− 1)
4

cos2 θ
)

> 0.
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(2) We have uijuik/ujk = aiajaiak/ajak = a2
i .

(3) Let B = {1, ..., k} and B̄ = {k + 1, ..., n + 1}. Then

∑

j∈B

∑

t∈B̄

ujt ≥ k (n− k + 1)
(

b− c + 3
4

− 3 (c− 1)
4

cos2 θ
)

−

−
2m+1
∑

r=n+3





k
∑

j=1

n+1
∑

t=k+1

[

σr
jjσ

r
tt − (σr

jt)
2]



 =

= k (n− k + 1)
(

b− c + 3
4

− 3 (c− 1)
4

cos2 θ
)

+

+
2m+1
∑

r=n+3





k
∑

j=1

n+1
∑

t=k+1

(

σr
jt

)2
+

k
∑

j=1

(

σr
jj

)



 ≥

≥ k (n− k + 1)
(

b− c + 3
4

− 3 (c− 1)
4

cos2 θ
)

.

(4) For i 6= j, if uij = 0 then ai = 0 or aj = 0. The statement ai = 0 implies that
uil = aial = 0 for all l ∈ {1, ..., n + 1}, l 6= i. Then, we get

∑

j 6=i

uij = 0,

which is a contradiction with (1). Thus, for i 6= j, it follows that uij 6= 0. We assume
that u1 n+1 < 0. From (2), for 1 < i < n + 1, we get u1iui n+1 < 0. Without loss of
generality, we may assume

u12, . . . , u1l, , ul+1 n+1, . . . , un n+1 > 0,

u1 l+1, . . . , u1 n+1, u2 n+1, . . . , ul n+1 < 0,
(26)

for some
[n

2 + 1
]

≤ l ≤ n. If l = n, then u1 n+1 + u2 n+1 + · · · + un n+1 < 0, which
contradicts to (1). Thus, l < n. From (2), we get:

a2
n+1 =

ui n+1ut n+1

ui t
> 0,(27)

where 2 ≤ i ≤ l, l + 1 ≤ t ≤ n. By (26) and (27), we obtain uit < 0, which implies
that

l
∑

i=1

n+1
∑

t=l+1

uit =
l

∑

i=2

n
∑

t=l+1

uit +
l

∑

i=1

ui n+1 +
n+1
∑

t=l+1

u1t < 0,

which is a contradiction to (3). Thus (4) is proved. 2

B.-Y. Chen establishes a sharp relationship between the shape operator and the
sectional curvature for submanifolds in real space forms [5]. In the following theo-
rem, we establish a similar inequality between the shape operator and the sectional
curvature for slant submanifolds in a Sasakian space form.
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Theorem 4.2 Let M be an (n + 1)-dimensional slant submanifold isometrically im-
mersed in a (2m+1)-dimensional Sasakian space form M̃(c). If at a point p ∈ M there
exists a number b > (c + 3) /4 + (3/4) (c− 1) cos2 θ such that the sectional curvature
K ≥ b at p, then the shape operator AH at the mean curvature vector satisfies

AH >
n

n + 1

(

b− c + 3
4

− 3 (c− 1)
4

cos2 θ
)

In, at p,(28)

where In is the identity map.

Proof. Let p ∈ M and a number b > (c + 3) /4 + (3/4) (c− 1) cos2 θ such that
the sectional curvature K ≥ b at p. We choose an orthonormal basis {e1, . . . , en+1,
en+2, . . . , e2m+1} at p such that en+2 is parallel to the mean curvature vector H, and
e1, . . . , en+1 diagonalize the shape operator An+2. Now, from Lemma 4.1 it follows
that a1, ..., an+1 have the same sign. We assume that aj > 0 for all j ∈ {1, . . . , n + 1}.
Then

∑

j 6=i

uij = ai (a1 + · · ·+ an+1)− a2
i ≥ n

(

b− c + 3
4

− 3 (c− 1)
4

cos2 θ
)

.(29)

From (29) and (22), we obtain

ai (n + 1) ‖H‖ ≥ n
(

b− c + 3
4

− 3 (c− 1)
4

cos2 θ
)

+ a2
i

> n
(

b− c + 3
4

− 3 (c− 1)
4

cos2 θ
)

,

which implies that

ai ‖H‖ >
n

n + 1

(

b− c + 3
4

− 3 (c− 1)
4

cos2 θ
)

.

Hence, we get (28). 2

In particular, the above theorem implies the following two theorems.

Theorem 4.3 Let M be an (n + 1)-dimensional anti-invariant submanifold isomet-
rically immersed in a (2m + 1)-dimensional Sasakian space form M̃(c) such that
ξ ∈ TM . If at a point p ∈ M there exists a number b > (c + 3) /4 such that the
sectional curvature K ≥ b at p, then the shape operator AH at the mean curvature
vector satisfies

AH >
n

n + 1

(

b− c + 3
4

)

In, at p.(30)

Theorem 4.4 Let M be an (n + 1)-dimensional invariant submanifold isometrically
immersed in a (2m+1)-dimensional Sasakian space form M̃(c) such that ξ ∈ TM . If
at a point p ∈ M there exists a number b > c such that the sectional curvature K ≥ b
at p, then the shape operator AH at the mean curvature vector satisfies

AH >
n

n + 1
(b− c) In, at p.(31)

The above equation is same as equation (5.1) of Theorem 4.1 in the paper of B.-Y.
Chen [5].
Acknowledgement. Postdoctoral Researcher at Chonnam National University, Ko-
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