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Abstract

In this paper, we shall study an optimal control problem governed by a
nonlinear partial differential equation where the system’s state is a differentiable
function of the control parameter.
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Let us consider a membrane which contains a certain enzyme and which sep-
arates two compartments containing solutions of the respective substrate of en-
zyme. In membrane occurs the reaction substrate plus enzyme to product, i.e.,
E + S ⇔ ES → E + P .If S(x, t) is the concentration of the substrate at the mo-
ment t in the point x of the unidimensional membrane then, according to Fick’s law,
the evolution of S in membrane is described by the equation

∂S
∂t

−D
∂2S
∂x2 +

V S
K + S

= 0, x ∈ (a, b), t ∈ [0, T ]

where K is the constant of Michaelis and V is the reaction speed.
If in the two compartments is present an inhibitor by concentration i = i(x, t)

which is free to spread through membrane, then the evolution of system is described
by the normalized equations (see [1], [3])

(1)















∂S
∂t

−D
∂2S
∂x2 +

σS
1 + ai + S

= 0 in (a, b)× (0, T )

∂i
∂t
− C

∂2i
∂x2 = 0 in (a, b)× (0, T )

with the initial conditions

(2) S(x, 0) = 0, i(x, 0) = 0, x ∈ (a, b)

and the boundary conditions
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(3)

{

S(a, t) = α, S(b, t) = β, ∀t ∈ [0, T ]

i(a, t) = u(t), i(b, t) = v(t).

This is a nonlinear parameter distributed system on (a, b) with the boundary
controls u and v which can be manipulated for to modify the concentration S in a
certain aim.

Let us consider an enzymatic membrane M which separates two compartments
I and II. The memebrane is made of an inactive protein and contains an enzyme
E. In the compartments I and II there are a solution which contains a substrate
S (corresponding of enzyme E) and an inhibitor I, respectively, which both will
spread in M . In membrane, S will begin to react (favoured by E which has a catalyst
assignment), reaction which is slown down by the inhibitor I. If we consider that
the membrane has the thickness equal to the unit and denote by (y(x, y), i(x, t)) the
concentration of the substrate and of the inhibitor, respectively, in the point x ∈ [0, 1]
of the membrane at the moment t, we have for (y, i) the system (see Eqs. (1)-(3))

(4)







yt − yxx +
σy

y + i + 1
= 0 in (0, 1)× (0, T )

it − ixx = 0 in (0, 1)× (0, T )

with the initial conditions

(5) y(x, 0) = 0, i(x, 0) = 0, x ∈ (0, 1)

and the boundary conditions

(6)

{

y(0, t) = α, y(1, t) = β, ∀t ∈ [0, T ]

i(0, t) = u1(t), i(1, t) = u2(t)

where α, β, σ are positive constants and u(t) = (u1(t), u2(t)) are the control functions
of the process subject to the constraints u = (u1, u2) ∈ U , where

(7)
U = {(u1, u2) ∈ L2(0, T )× L2(0, T );

0 ≤ u1(t) ≤ L, 0 ≤ u2(t) ≤ L, a.e. t ∈ [0, T ]}.

The experimenter can modify the parameters u1, u2 to his liking (as part of restric-
tion (7)) for to obtain a certain flux substrate entering to membrane. If the desired
flux is defined by the functions (y0

1(t), y0
2(t)) then the problem can be mathematical

formulated in this way

(8) min

{

∫ T

0
((−yx(0, t)− y0

1(t))2 + (yx(1, t)− y0
2(t))2dt; (u1, u2) ∈ U

}

where (y, i) satisfy the state system (4), (5), (6).
By a weak solution of equation

(9)

{

it − ixx in (0, 1)× (0, T )

i(x, 0) = 0
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with the Dirichlet boundary conditions

i(0, t) = u1(t), i(1, t) = u2(t)

we shall mean a function i ∈ L2((0, 1)× (0, T )) such that

(10)
∫ T

0

∫ 1

0
i(zt − zxx)dxdt =

∫ T

0
(u1(t)zx(1, t)− u2(t)zx(0, t))dt, ∀z ∈ Y

where
Y = {z ∈ L2((0, 1)× (0, T )); zt, zx, zxx ∈ L2((0, 1)× (0, T ));

z(0, t) = z(1, t) = 0; z(x, 0) = 0}.

For each q ∈ L2((0, 1) × (0, T )) there exists one and only one solution zq ∈ Y to
the equation zt − zxx = q with the initial and Dirichlet conditions equal to zero and
the application q → zq is continuous from L2((0, 1)× (0, T )) to Y . It results from this
that the functional

q →
∫ T

0
(u1(t)zq(1, t)− u2(t)zq(0, t))dt

is continuous on L2((0, 1) × (0, T )) and therefore, for every u ∈ L2(0, T ) × L2(0, T )
there exists an unique i ∈ L2((0, 1) × (0, T )) satisfying (10). Thus, we proved the
existence and uniqueness of a weak solution for the problem (9).

If we redenote the unknown y, we shall can suppose that α = β = 0 in the
boundary conditions (6). The function i = iu being previous determined, the equation
in y of the system (4) with the homogeneous boundary conditions admits an unique
solution yu ∈ L2(0, T ; H1

0 (0, 1)) such that yu
t ∈ L2(0, T ; H−1(Ω)) (see [2], p.140).

In particular, it follows that yu ∈ C([0, T ]; L2(0, 1)). The existence in the problem
(8) results by standard methods.

Now we shall deduce the optimality conditions (the maximum principle). We de-
note by (z, q) = Du(yu, iu)(v) the Gâteaux derivative of the application u → (yu, iu)
from

L2(0, T )× L2(0, T ) to (L2((0, 1)× (0, T )))2

at
v = (v1, v2) ∈ L2(0, T )× L2(0, T ).

Let us observe that z is the solution of the system in variation

(11)















































zt − zxx +
σ(iu + 1)z

(yu + iu + 1)2
= − σyu

(yu + iu + 1)2
q = 0 in (0, 1)× (0, T )

qt − qxx = 0 in (0, 1)× (0, T )

z(x, 0) = 0, q(x, 0) = 0, x ∈ (0, 1)

z(0, t) = 0, z(1, t) = 0, t ∈ [0, T ]

q(0, t) = v1(t), q(1, t) = v2(t), t ∈ [0, T ].

If (u∗ = (u∗1, u
∗
2), y

∗, i∗) is optimal in Problem (8), then obviously we have
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∫ T

0
(z∗x(0, t)(y∗x(0, t) + y0

1(t)) + z∗x(1, t)(y∗x(1, t)− y0
2(t)))dt ≥ 0

where z∗ is the solution of the system (11) with u = u∗, v ∈ TU (u∗). (Here TU (u∗) is
the cone of tangents to U at u∗ ∈ U).

Let us consider the dual system (suggested by the system in variation (11))

(12)


















































p1
t + p1

xx −
σ(i∗ + 1)

(y∗ + i∗ + 1)2
p1 = 0 in (0, 1)× (0, T )

p2
t + p2

xx +
y∗

(y∗ + i∗ + 1)2
p1 = 0 in (0, 1)× (0, T )

p1(x, T ) = 0, p2(x, T ) = 0 in (0, 1)

p1(0, t) = −(y∗x(0, t) + y0
1(t)), p1(1, t) = (y∗x(1, t)− y0

2(t)) in (0, T )

p2(0, t) = 0, p2(1, t) = 0 in (0, T )

which admits an unique solution p1 ∈ L2((0, 1)×(0, T )), p2 ∈ L2(0, T ); H1
0 (0, 1)) with

p2
t ∈ L2((0, 1)× (0, T )).

If we multiply the first equation of (11) (where u = u∗) with p1, the second with
p2 and integrate on (0, 1) × (0, T ), finally, it follows that (the formally integration
by parts is justified by the definition of weak solution p1 ∈ L2((0, 1) × (0, T )) of the
equation (12))

∫ T

0
(z∗x(0, t)(y∗x(0, t) + y0

1(t)) + z∗x(1, t)(y∗x(1, t)− y0
2(t)))dt =

=
∫ T

0
(p2

x(1, t)(v2(t)− p2
x(0, t)v1(t))dt ≥ 0, ∀v ∈ TU (u∗).

Hence
(p2

x(0, t), −p2
x(1, t)) ∈ NU (u∗).

(Here NU (u∗) is the cone of normals to U at u∗ ∈ U). If follows, by definition of
NU (u∗), that

(13) u∗1(t) =

{

0 if p2
x(0, t) > 0

L if p2
x(0, t) < 0

(14) u∗2(t) =

{

0 if p2
x(1, t) < 0

L if p2
x(1, t) > 0.

The system (4)∼(6), (12)∼(14) can be integrated by numerical methods.
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