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Abstract

We determine a nonholonomic Finsler frame for a class of Generalized La-
grange spaces, for a class of Lagrange spaces with (α, β)-metric and for Finsler
spaces with (α, β)-metric. Then, a special Finsler connection induced by such a
nonholonomic frame is determined. Finally we study the integrability conditions
for Cartan’s structure equations of a Finsler connection.
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Introduction

In [8,9] P.R. Holland studies a unified formalism that uses a nonholonomic Finsler
frame on space-time arising from consideration of a charged particle moving in an
external electromagnetic field. In fact, R.S. Ingarden in [10] was first to point out
that the Lorentz force law, in this case, could be written as geodesic equations on a
Finsler space called Randers space ([16]). In [5,6] a gauge transformation is viewed as
a nonholonomic frame on the tangent bundle of a four dimensional base manifold. The
geometry that follows from these considerations gives a more unified approach to grav-
itation and gauge symmetries. In the above mentioned papers, the common Finsler
idea used by the physicists R.G. Beil and P.R. Holland is the existence of a nonholo-
nomic frame on the vertical subbundle V TM of the tangent bundle of a base manifold
M . This nonholonomic frame relates a semi-Riemannian metric (the Minkowski or
the Lorentz metric) with an induced Finsler metric. In [2,3], with P.L.Antonelli we
found such a nonholonomic frame for two important classes of Finsler spaces that
are dual in the sense of [7]: Randers and Kropina spaces. As Randers and Kropina
spaces are members of a bigger class of Finsler spaces, namely the Finsler spaces with
(α, β)-metric, it appears a natural question: does a Finsler space with (α, β)-metric
have such a nonholonomic frame? As the fundamental tensor of a Finsler space with
(α, β)-metric is not so easy to handle with, we didn’t find so far, a direct method to
determine a nonholonomic frame for these spaces.

In this paper we find a nonholonomic Finsler frame for a class of Generalized
Lagrange spaces introduced and studied by M.Anastasiei and H.Shimada. In [1], the
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metric tensor of such a Generalized Lagrange space has been called the Beil metric.
The Beil metric can be viewed also as a deformation of a Riemannian metric. In this
work we consider the most general case of Beil’s metric and we find a nonholonomic
frame for it. This frame reduces in a particular case to that considered by R.G.Beil in
[5,6]. Then we can use these ideas to find a nonholonomic frame for a class of Lagrange
spaces proposed by R.G. Beil, the so-called Lagrange spaces with (α, β)-metric. We
prove that the fundamental metric tensor of a Finsler space with (α, β)-metric can
be derived from a Riemannian metric using two Beil deformations (1.5). Using these
ideas we can find a nonholonomic frame for a Finsler space with (α, β)-metric. As
Randers and Kropina spaces are Finsler spaces with (α, β)-metric we may use these
techniques to find nonholonomic Finsler frames for these Finsler spaces.

We prove that every nonholonomic frame induces a special linear connection on the
total space of the tangent bundle of the base manifold M . This linear connection has
no curvature and the frame is parallel with respect to it. Using the Cartan’s structure
equations we show that a special linear connection, called a Finsler connection, has
no curvature if and only if it is induced by a nonholonomic Finsler frame. The frame
is holonomic if and only if a set of two forms of torsions vanishes.

R.Miron have been studied nonholonomic Finsler frames and the induced Finsler
connection in [15] for the so-called strongly non-Riemannian Finsler spaces. M. Mat-
sumoto studied these nonholonomic frames also, in [11], where he called such frames
the Miron frames of a strongly non-Riemannian Finsler space. The Miron frame is a
natural generalization of the Berwald frame for a two dimensional Finsler space or
the Moor frame for a Finsler space of dimension three.

1 Finsler spaces and related Finsler objects

As the Finsler geometry is a part of the geometry of the tangent bundle of a manifold
M , we present first some natural geometric objects that live on TM as the vertical
distribution, the almost tangent structure. An important tool in the geometry of the
tangent bundle is the nonlinear connection. Metric structures on TM are defined and
we prove that in some conditions, Lagrange spaces with (α, β)-metric are generalized
Lagrange spaces with Beil metric.

We start with a real n-dimensional manifold M of C∞-class. Denote by (TM, π,M)
the tangent bundle of the base manifold M and by ( ˜TM, π, M), the tangent bundle
with the null cross-section removed. For every point p ∈ M , there exist local charts
(U,ϕ = (xi)) on p ∈ M and (π−1(U), φ = (xi, yi)) on u ∈ π−1(p) ⊂ TM such that
with respect to these the canonical submersion π has the equations π : (xi, yi) ∈
π−1(U) 7→ (xi) ∈ U . The local charts on TM of the form (π−1(U), φ = (xi, yi)) are
called induced local charts, (yi) are coordinates of vectors yi ∂

∂xi |p from TpM , and
∂

∂xi |p is the natural basis of TpM .
Denote by π∗ the linear map induced by the canonical submersion π : TM → M .

As for every u ∈ TM , π∗,u : TuTM → Tπ(u)M is an epimorphism, then its kernel
determines a n-dimensional distribution V : u ∈ TM 7→ VuTM = Kerπ∗,u ⊂ TuTM .
We call it the vertical distribution of the tangent bundle. This is the tangent space
to the natural foliation induced by the submersion π and consequently we have that
the vertical distribution is integrable. If the natural basis of TuTM induced by a local
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chart (π−1(U), φ = (xi, yi)) at u is denoted by { ∂
∂xi |u, ∂

∂yi |u}, then { ∂
∂yi |u} is a basis

of VuTM .
For every u ∈ TM we consider the linear map Ju : TuTM → TuTM , Ju = ∂

∂yi |u⊗
dxi|u1. It is called the almost tangent structure of the tangent bundle (or the vertical
endomorphism) and it has the properties: J2

u = 0 and KerJu = ImJu = VuTM .
We denote by F(TM) the ring of C∞-functions over TM and by X (TM) the

F(TM)-module of vector fields over TM . With respect to the Poisson bracket,
X (TM) is a real Lie algebra. Then the almost tangent structure J may be taught as
an F(TM)-linear map J : X (TM) → X (TM) with the local expression J = ∂

∂yi ⊗dxi.
1.1. Definition We call a nonlinear connection on TM a n-dimensional distribution
HTM : u ∈ TM 7→ HuTM ⊂ TuTM that is supplementary to the vertical distribu-
tion, which means that we have the direct sum:

(1.1) TuTM = HuTM ⊕ VuTM, ∀u ∈ TM.

As π∗,u : TuTM → Tπ(u)M is an epimorphism, ∀u ∈ TM , then the restriction of it
to HuTM gives us an isomorphism between HuTM and Tπ(u)M . The inverse map of
this isomorphism is denoted by lh,u : Tπ(u)M → HuTM and it is called the horizontal
lift induced by the given nonlinear connection HTM . If we fix an induced local chart
(π−1(U), φ = (xi, yi)) at u ∈ TM , because π∗,u ◦ lh,u = IdHuTM we have that

lh,u

(

∂
∂xi

∣

∣

∣

∣

π(u)

)

=
∂

∂xi

∣

∣

∣

∣

u
−N j

i (u)
∂

∂yj

∣

∣

∣

∣

u
= :

δ
δxi

∣

∣

∣

∣

u
.

The functions N i
j are defined over π−1(U) and are called the local coefficients of

the nonlinear connection HTM . For every u ∈ TM and a local chart (π−1(U), φ =
(xi, yi)) at u we have now a basis { δ

δxi |u, ∂
∂yi |u} of TuTM adapted to the decompo-

sition (1.1). We call it the Berwald basis of the given nonlinear connection. We may
remark here that if we change induced local charts from (π−1(U), φ = (xi, yi)) to
(π−1(V ), ψ = (x̃i, ỹi)) then the corresponding Berwald base and the local coefficients
of the nonlinear connection are related as follows:

δ
δxi =

∂x̃j

∂xi

δ
δx̃j ,

∂
∂yi =

∂x̃j

∂xi

∂
∂ỹj , rank(

∂x̃j

∂xi ) = n;

Nk
i

∂x̃j

∂xk =
∂x̃k

∂xi
˜N j

k +
∂ỹj

∂xi .

At every point u ∈ TM we denote by T ∗uTM the cotangent space at u to TM , that
is the dual space of TuTM over IR. Then {dxi|u, δyi|u = dyi|u + N i

j(u)dxj |u} is a
basis of T ∗uTM , that is called the Berwald cobasis of the nonlinear connection (it is
the dual basis of the Berwald basis).

For a nonlinear connection HTM we define the map θ : X (TM) → X (TM) locally
given by

(1.2) θ =
δ

δxi ⊗ δyi.

1In this paper the summation convention on upper and lower repeated indices is implied
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We have that θ is globally defined and it has the properties: θ2 = 0, Kerθ = Imθ =
HTM . The maps hu = θu ◦ Ju and vu = Ju ◦ θu are the horizontal and the vertical
projectors that correspond to the decomposition (1.1).
1.2. Definition A generalized Lagrange metric (or a GL-metric for short) is a metric
g on the vertical subbundle V TM of the tangent space TM . This means that for
every u ∈ TM , gu : VuTM × VuTM → IR is bilinear, symmetric, of rank n and of
constant signature. A pair GLn = (M, g), with g a GL-metric is called a generalized
Lagrange space, or a GL-space for short.

If (π−1(U), φ = (xi, yi)) is an induced local chart at u = (x, y) ∈ TM , we denote by
gij(u) = gu( ∂

∂yi |u, ∂
∂yj |u). Then a GL-metric may be given by a collection of functions

gij(x, y) such that we have:
1o rank(gij) = n, gij(x, y) = gji(x, y);
2o the quadratic form gij(x, y)ξiξj has constant signature on TM ;
3o if another local chart (π−1(V ), ψ = (x̃i, ỹi)) at u ∈ TM is given and g̃kl(x, y) =
gu( ∂

∂ỹk |u, ∂
∂ỹl |u) then gij and g̃kl are related by

(1.3) gij =
∂x̃k

∂xi

∂x̃l

∂xj g̃kl.

A tensor field of (r, s)-type on TM whose components transform under a change of
local coordinates on TM like the components of a tensor field of (r, s)-type on the
base manifold is called a Finsler tensor field. From (1.3) we can see that a GL-metric
is a Finsler tensor field of (0,2)-type.

If a nonlinear connection is given on a GL-space, then we may extend the metric
g to the whole TM by taking:

(1.4) Gu(Xu, Yu) = gu(JuXu, JuYu) + gu(JuθuXu, JuθuYu),∀Xu, Yu ∈ TuTM.

With respect to this metric, the vertical and horizontal distributions are orthogonal.
In general, a GL-space doesn’t have a canonical nonlinear connection.
1.3. Example Consider aij(x) the components of a Riemannian metric on the base
manifold M , a(x, y) > 0 and b(x, y) ≥ 0 two Finsler scalars and B(x, y) = Bi(x, y)dxi

a Finsler 1-form. Then:

(1.5) gij(x, y) = a(x, y)aij(x) + b(x, y)Bi(x, y)Bj(x, y)

is a generalized Lagrange metric ([1]), called the Beil metric. We say also that the
metric tensor gij is a Beil deformation of the Riemannian metric aij . It has been
studied and applied by R.Miron and R.K.Tavakol in General Relativity for a(x, y) =
exp(2σ(x, y)) and b = 0. The case a(x, y) = 1 with various choices of b and Bi was
introduced and studied by R.G.Beil for constructing a new unified field theory in [5].
1.4. Definition A Finsler metric on TM is a function F : TM → IR with the
properties:
1o F is a positive function of C∞-class on ˜TM and only continuous on the null cross-
section of the tangent bundle;
2o F is positively homogeneous of degree one on ˜TM with respect to yi;
3o The matrix with the entries:

(1.6) gij =
1
2

∂2F 2

∂yi∂yj
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has rank n on ˜TM and the quadratic form gij(x, y)ξiξj has constant signature on
˜TM .

A Finsler space is a pair Fn = (M, F ) with F a Finsler metric. The tensor field
with the components given by (1.6) is called the metric tensor of the Finsler space.
We denote by gij the components of the inverse matrix of gij , that is gijgjk = δk

i .
If we do not ask for the homogeneity condition 2o, then F is called a Lagrange

metric. The pair (M, F ) is called a Lagrange space. The geometry of these spaces was
intensively studied by R.Miron in [14].

For a Lagrange space Fn, the metric tensor (1.6) determine a GL-metric. The
converse of this is not true and the Beil metric (1.5) is an example of GL-metric that
is not reducible to a Finsler or Lagrange metric.

It is well known that every Lagrange space induces a canonical nonlinear connec-
tion, namely the Cartan nonlinear connection ([14]). This has the local coefficients
given by:

N i
j =

∂Gi

∂yj , with

4Gi = gik
(

∂2F 2

∂yk∂xm ym − ∂F 2

∂xk

)

.

Then a Lagrange space Fn has a canonical metric G given by formula (1.4).
An important class of Finsler spaces is the class of Finsler spaces with (α, β)-

metrics ([12]). The first Finsler spaces with (α, β)-metric were introduced in forties
by the physicist G.Randers and them are called the Randers spaces, [16]. Recently,
R.G. Beil suggested to consider a more general case, the class of Lagrange spaces with
(α, β)-metric.
1.5. Definition A Finsler space Fn = (M, F (x, y)) is called with (α, β)-metric if
there exists a 2-homogeneous function L of two variables such that the Finsler metric
F : TM → IR is given by:

(1.7) F 2(x, y) = L(α(x, y), β(x, y)), where

α2(x, y) = aij(x)yiyj , aij(x) is a Riemannian metric on M ;
β(x, y) = bi(x)yi, bi(x)dxi is a 1− form on M.

If we do not ask for the function L to be homogeneous of order two with respect to
(α, β) variables, then we have a Lagrange space with (α, β)-metric.
1.6. Example
1o If L(α, β) = (α + β)2, then the Finsler space with Finsler metric
F (x, y) = (aij(x)yiyj)

1
2 + bi(x)yi is called a Randers space.

2o If L(α, β) =
α4

β2 , then the Finsler space with Finsler metric

F (x, y) =
aij(x)yiyj

|bi(x)yi|
is called a Kropina space.

These classes of Finsler spaces play an important role in Finsler geometry and they
are dual in the sense of [7].
3o If L(α, β) = αnβm, then we have a Lagrange space with (α, β)-metric, where the
Lagrange metric is F (x, y) = (aij(x)yiyj)

n
2 (bi(x)yi)m. This Lagrange spaces reduces

to a Finsler spaces with (α, β)-metric if and only if n + m = 2.
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Throughout this paper we shall rise and lower indices only with the Riemannian
metric aij(x), that is yi = aijyj , bi = aijbj , and so on.

For a Lagrange space with (α, β)-metric F 2(x, y) = L(α(x, y), β(x, y)) it is usual
to denote ([11]):

(1.8)

ρ =
1
2α

∂L
∂α

; ρ0 =
1
2

∂2L
∂β2 ;

ρ−1 =
1
2α

∂2L
∂α∂β

; ρ−2 =
1

2α2

(

∂2L
∂α2 −

1
α

∂L
∂α

)

.

For a Finsler space with (α, β)-metric, that is L is homogeneous of degree two with
respect to α and β we have:

(1.8)′ ρ−1β + ρ−2α2 = 0.

With respect to these notations we have that the metric tensor gij of a Lagrange
space with (α, β)-metric is given by ([12]):

(1.9) gij(x, y) = ρaij(x) + ρ0bi(x)bj(x) + ρ−1(bi(x)yj + bj(x)yi) + ρ−2yiyj .

We may remark here that the formula (1.9) was determined in [12] for Finsler spaces
with (α, β)-metric but it works more generally for Lagrange spaces with (α, β)-metric.
The metric tensor gij of a Lagrange space with (α, β)-metric can be arranged into the
form:

(1.9)′ gij = ρaij +
1

ρ−2
(ρ−1bi + ρ−2yi)(ρ−1bj + ρ−2yj) +

1
ρ−2

(ρ0ρ−2 − ρ2
−1)bibj .

If the bibj coefficient vanishes we have:
1.7. Proposition If for a Lagrange space with (α, β)-metric the condition:

(1.10) ρ2
−1 = ρ0ρ−2

holds true, then the metric tensor gij can be written in the equivalent form:

(1.11) gij(x, y) = ρ(x, y)aij(x) +
1

ρ−2
Bi(x, y)Bj(x, y), where

Bi(x, y) = ρ−1(x, y)bi(x) + ρ−2(x, y)yi.

If we compare (1.11) to (1.5) we have the following result:
1.8. Corollary If for a Lagrange space with (α, β)-metric the condition (1.10) holds
true, then its fundamental metric tensor is a Beil metric.
1.9. Remark For the Lagrange space with (α, β)-metric suggested by R.G.Beil,
L(α, β) = αnβm, the condition (1.10) is true if and only if m2n2 = mn(m−1)(n−2).
An example of Lagrange space with (α, β)-metric that satisfies the condition (1.10)
has the Lagrange metric L(α, β) = α4

β .
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2 Nonholonomic Finsler frames for special
metrics

The physicists R.G.Beil in [5,6] and P.R. Holland in [8,9] are using nonholonomic
Finsler frames to develop unified field theories. In this section, we determine a non-
holonomic Finsler frame for a Beil metric (1.5). In the particular case when a(x, y) = 1
and b(x, y) is a constant k we get the frame used by R.G. Beil in [5]. In the previous
section, we found conditions in which the fundamental metric of a Lagrange space
with (α, β)-metric is a Beil metric. Then we can determine a nonholonomic Finsler
frame for a Lagrange space with (α, β)-metric from the nonholonomic Finsler frame
of a Beil metric. From (1.9)’ we can see that the fundamental metric tensor of a
Finsler space with (α, β)-metric can be derived from a Riemannian metric aij using
the Beil deformation (1.5) in two steps. Using this idea we can determine a nonholo-
nomic frame for a Finsler space with (α, β)-metric as a product of two nonholonomic
frames, each of these being determined by a Beil deformation.
Let U be an open set of TM and

Vi : u ∈ U 7→ Vi(u) ∈ VuTM, i ∈ {1, ..., n}

be a vertical frame over U . If Vi(u) = V j
i (u) ∂

∂yj |u, then V j
i (u) are the entries of a

invertible matrix for all u ∈ U . Denote by ˜V j
k (u) the inverse of this matrix. This

means that:
V i

j
˜V j
k = δi

k, ˜V i
j V j

k = δi
k.

We call V i
j a nonholonomic Finsler frame.

2.1. Theorem Consider a GL-space with Beil metric (1.5) and denote by B2(x, y) =
aij(x)Bi(x, y)Bj(x, y). Then:

(2.1) V i
j =

√
aδi

j −
1

B2 (
√

a±
√

a + bB2)BiBj

is a nonholonomic Finsler frame. The Beil metric (1.5) and the Riemannian metric
aij(x) are related by:

(2.2) gij(x, y) = V k
i (x, y)V l

j (x, y)akl(x).

Proof. Consider also:

(2.1)′ ˜V j
k =

1√
a
δj
k −

1
B2

(

1√
a
± 1√

a + bB2

)

BjBk.

It is a direct calculation to check that ˜V j
k is the inverse of V i

j , that is V i
j is a nonholo-

nomic frame. Next we have that V k
i V l

j akl = aaij + bBiBj = gij so the formula (2.2)
holds true.
2.2. Corollary The Beil metric (1.5) is positive definite on ˜TM .
Proof. As the Finsler scalars a(x, y) and b(x, y) that define the metric (1.5) are posi-
tive and the metric aij is positive definite from (2.1)’ we can see that ˜V i

k is well defined
on ˜TM . Then V i

j from (2.1) is a nonholonomic Finsler frame on ˜TM . From (2.2) we

have that gij and aij have the same signature, so gij is positive definite on ˜TM .
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2.3. Remark If we take a(x, y) = 1 and b(x, y) = k, the nonholonomic Finsler frame
(2.1) is the frame used by R.G.Beil in [5], formula (5.1).
2.4. Theorem Let F 2(x, y) = L(α(x, y), β(x, y)) be the metric function of a Lagrange
space with (α, β)-metric for which the condition ρ2

−1 = ρ0ρ−2 is true. Then:

(2.3) V i
j =

√
ρδi

j −
1

B2

(

√
ρ±

√

ρ +
B2

ρ−2

)

(ρ−1bi + ρ−2yi)(ρ−1bj + ρ−2yj)

is a nonholonomic Finsler frame, where B2 = ρ2
−1b

2 + ρ2
−2α

2 + 2βρ−1ρ−2, ρ, ρ0, ρ−1

and ρ−2 are the invariants of the Lagrange space with (α, β)-metric defined in (1.8).
For a Lagrange space with (α, β)-metric L = α4

β we have:

ρ =
2α2

β
, ρ0 =

α4

β3 , ρ−1 =
−2α2

β2 , ρ−2 =
4
β

.

We have then that the condition (1.10) is true and B2 = 4α4b2
β4 . Consequently a

nonholonomic frame for the given Lagrange space with (α, β)-metric is given by:

V i
j = α

√

2
β

δi
j −

1
α3b2

(
√

2
β
±

√

2
β

+
α2b2

β3

)

(2βyi − α2bi)(2βyj − α2bj).

Consider now a Finsler space with (α, β)-metric. From (1.9)’ we can see that gij

is the result of two Beil deformations:

(2.4)
aij 7→ hij = ρaij + 1

ρ−2
(ρ−1bi + ρ−2yi)(ρ−1bj + ρ−2yj) and

hij 7→ gij = hij + 1
ρ−2

(ρ0ρ−2 − ρ2
−1)bibj .

The nonholonomic Finsler frame that corresponds to the first deformation (2.4) is,
according to the Theorem 2.1, given by:

(2.5) Xi
j =

√
ρδi

j −
1

B2

(

√
ρ±

√

ρ +
B2

ρ−2

)

(ρ−1bi + ρ−2yi)(ρ−1bj + ρ−2yj),

where B2 = aij(ρ−1bi+ρ−2yi)(ρ−1bj +ρ−2yj) = ρ2
−1b

2+βρ−1ρ−2. The metric tensors
aij and hij are related by:

(2.6) hij = Xk
i X l

jakl.

According to the Theorem 2.1, the nonholonomic Finsler frame that corresponds to
the second deformation (2.4) is given by:

(2.5)′ Y i
j = δi

j −
1

C2

(

1±

√

1 +
ρ−2C2

ρ0ρ−2 − ρ2
−1

)

bibj ,

where C2 = hijbibj = ρb2 + 1
ρ−2

(ρ−1b2 + ρ−2β)2. The metric tensors hij and gij are
related by the formula:



Nonholonomic Frames in Finsler Geometry 21

(2.6)′ gmn = Y i
mY j

n hij .

From (2.6) and (2.6)’ we have that V k
m = Xk

i Y i
m, with Xk

i given by (2.5) and Y i
m given

by (2.5)’, is a nonholonomic Finsler frame of the Finsler space with (α, β)-metric.
For a Randers space with the fundamental function L = (α+β)2 = F 2, the Finsler

invariants (1.8) are given by:

ρ =
α + β

α
=

F
α

, ρ0 = 1, ρ−1 =
1
α

, ρ−2 =
−β
α3 ,

B2 =
b2α2 − β2

α4 .

We have then that the condition (1.10) is not satisfied. If we use the previous idea,
then V k

m = Xk
i Y i

m is a nonholonomic Finsler frame of a Randers space, where:

Xi
j =

√

α + β
α

δi
j −

α2

α2b2 − β2

[
√

α + β
α

±

√

αβ + 2β2 − b2α2

αβ

]

(bi − βyi

α2 )(bj −
βyj

α2 ),

Y i
j = δi

j −
1

C2



1±

√

1 +
βC2

α + β



 bibj , and

C2 =
(α + β)b2

α
− α

β

(

b2 − β2

α2

)2

.

In a similar way we may find a nonholonomic Finsler frame for a Kropina space

with the fundamental function L =
α4

β2 = F 2. In this case, the Finsler invariants are

given by:

ρ =
2α2

β2 , ρ0 = 3
α4

β4 , ρ−1 =
−4α2

β3 , ρ−2 =
4
β2 ,

B2 = 16
α2

β4

(

α2b2

β2 − 1
)

.

2.5. Remark One may use also the two steps deformations (2.4) to determine the
contravariant tensor (gij) of a Finsler space with (α, β)-metric.

3 Finsler connections induced by a nonholonomic
Finsler Frame

Consider now that on the tangent bundle of a manifold M we have a nonlinear con-
nection HTM . Then we consider a special linear connection on TM that preserves by
parallelism the horizontal and the vertical distributions and we call it a Finsler con-
nection. We prove that a nonholonomic Finsler frame determine a Finsler connection
with no curvature. We study the integrability conditions of the Cartan’s structure
equations of a Finsler connection. Using these, we can prove that if a Finsler connec-
tion has no curvature then it is induced by a nonholonomic Finsler frame.
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3.1. Definition A linear connection D on TM is called a Finsler connection if:
1◦ D preserves by parallelism the horizontal distribution HTM ;
2◦ The almost tangent structure J is absolutely parallel with respect to D.

For a Finsler connection D it is immediate that D preserves also the vertical
distribution. With respect to the Berwald basis ( δ

δxi , ∂
∂yi ) of the nonlinear connection

a Finsler connection can be expressed as:

(3.1)



















D δ
δxi

δ
δxj = F k

ji
δ

δxk ; D δ
δxi

∂
∂yj = F k

ji
∂

∂yk ;

D ∂
∂yi

δ
δxj = Ck

ji
δ

δxk ; D ∂
∂yi

∂
∂yj = Ck

ji
∂

∂yk .

Observe that under a change of induced coordinates on TM the functions F k
ji trans-

form like the coefficients of a linear connection on the base manifold M and Ck
ji are

the components of a Finsler tensor field of (1,2)-type.
If (T i1···ir

j1···js
) are the components of a (r, s)-type Finsler tensor field T , then the

absolute differential of T with respect to the Finsler connection D is given by:

DT i1···ir
j1···js

= dT i1···ir
j1···js

+ωi1
p T pi2···ir

j1···js
+ · · ·+ωir

p T i1···ir−1p
j1···js

−ωp
j1T

i1···ir
pj1···js

−· · ·−ωp
js

T i1···ir
j1···js−1p,

where ωi
j = F i

jkdxk + Ci
jkδyk are the connection 1-forms of D.

We can write the previous formula in an equivalent form:

DT i1···ir
j1···js

= T i1···ir
j1···js|kdxk + T i1···ir

j1···js
|kδyk.

Here T i1···ir
j1···js|k and T i1···ir

j1···js
|k stand for horizontal and vertical covariant derivatives of

T i1···ir
j1···js

, ([14]).
For a Finsler connection D one considers typically:

T (X,Y ) = DXY −DY X − [X, Y ],

R(X,Y )Z = DXDY Z −DY DXZ −D[X,Y ]Z

the torsion and the curvature. It is well known ([4], [14]) that with respect to the
Berwald basis { δ

δxi , ∂
∂yi } there are only five nonzero components of torsion and three

components of curvature. The five nonzero components of torsion are:

(3.2)



























































































hT
(

δ
δxi ,

δ
δxj

)

=: T k
ij

δ
δxk = (F k

ji − F k
ij)

δ
δxk ; (h)h−torsion

vT
(

δ
δxi ,

δ
δxj

)

=: Rk
ij

∂
∂yk =

(

δNk
i

δxj −
δNk

j

δxi

)

∂
∂yk ; (v)h−torsion

hT
(

∂
∂yi ,

δ
δxj

)

= Ck
ji

δ
δxk ; (h)hv−torsion

vT
(

∂
∂yi ,

δ
δxj

)

=: P k
ij

∂
∂yk =

(

∂Nk
j

∂yi − F k
ij

)

∂
∂yk ; (v)hv−torsion

vT
(

∂
∂yi ,

∂
∂yj

)

=: Sk
ij

∂
∂yk = (Ck

ji − Ck
ij)

∂
∂yk ; (v)v−torsion.
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The three components of curvature are given by:

(3.3)

R i
j kh =

δF i
jk

δxh − δF i
jh

δxk + Fm
jkF i

mh − Fm
jhF i

mk + Ci
jmRm

kh;

P i
j kh =

∂F i
jk

∂yh − Ci
jk|h + Ci

jmPm
kh;

S i
j kh =

∂Ci
jk

∂yh − ∂Ci
jh

∂yk + Cm
jkCi

mh − Cm
jhCi

mk.

For a Finsler connection D we have the following Ricci identities:

(3.4)



















Xi
|k|r −Xi

|r|k = XmR i
m kr −Xi

|mTm
kr −Xi|mRm

kr;

Xi
|k|r −Xi|r|k = XmP i

m kr −Xi
|mCm

kr −Xi|mPm
kr ;

Xi|k|r −Xi|r|k = XmS i
m kr −Xi|mSm

kr.

Consider now a nonholonomic Finsler frame Vj = V i
j

∂
∂yi on a open set U of TM .

That is V i
j (u) are the entries of a nonsingular matrices over U . We denote by ˜V j

k the
inverse matrix of V i

j .
3.2. Theorem There exists a unique Finsler connection D on TM such that the
absolute differential of the given nonholonomic frame Vj = V i

j
∂

∂yi with respect to D,
is zero. For this Finsler connection D all components of curvature are zero.
Proof. The absolute differential of the given nonholonomic frame Vj with respect to
D is given by DV i

j = V i
j|kdxk + V i

j |kδyk for every fixed j ∈ {1, 2, ..., n}. So, DV i
j = 0

if and only if the frame is h− and v−covariant constant with respect to D.
The nonholonomic frame Vj = V i

j
∂

∂yi is h-covariant constant if for all j ∈ {1, ..., n}

we have V i
j|k = 0. This is equivalent to

δV i
j

δxk +F i
mkV m

j = 0. If we solve this for F i
mk we

have

F i
mk = −

δV i
j

δxk
˜V j
m = V i

j
δ˜V j

m

δxk .

Similarly, the nonholonomic frame Vj is v-covariant constant if for all j ∈ {1, ..., n}
we have V i

j |k = 0. This is equivalent to
∂V i

j

∂yk + Ci
mkV m

j = 0. If we solve this for Ci
mk

we have

Ci
mk = −

∂V i
j

∂yk
˜V j
m = V i

j
∂ ˜V j

m

∂yk .

If we use the Ricci identities (3.4) for Vj , we have: R i
m kjV

m
j = 0, P i

m kjV
m
j = 0,

and S i
m kjV

m
j = 0, ∀j ∈ {1, ..., n}. As V m

j is invertible one obtain: R i
m kj = P i

m kj =
S i

m kj = 0.
The Finsler connection we have defined in Theorem 3.1 is called the Crystallo-

graphic connection of the nonholonomic frame V i
j ([2]).

Next we denote by {Xa}a=1,2n the vector fields of the Berwald basis { δ
δxi , ∂

∂yi }
induced by a nonlinear connection HTM and by {θa}a=1,2n the dual basis {dxi, δyi}.
For a Finsler connection D, the connection 1-forms (ωa

b ) corresponding to these base
are defined as follows:

ωa
b (X) = θa(DXXb), ∀X ∈ χ(TM).
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It is a straightforward calculation to check that the connection 1-forms are given by

ωa
b =

(

ωi
j 0

0 ωi
j

)

, where ωi
j = F i

jkdxk + Ci
jkδyk. For a vector field W = W aXa ∈

χ(TM) we have that

DV W = (V (W a) + W bωa
b (V ))Xa, that is

θa(DV W ) = V (θa(W )) + θb(W )ωa
b (V ).

3.3. Theorem The Cartan’s first structure equations of a Finsler connection D are
given by:

(3.5)







−dxh ∧ ωi
h = −Θi,

d(δyi) −δyh ∧ ωi
h = −˜Θi,

where the 2-forms of torsions Θa = (Θi, ˜Θi) are defined by:

Θa(X,Y ) = θa(T (X, Y )), and are given by :

(3.6)







Θi = 1
2T i

jkdxj ∧ dxk + Ci
jkdxj ∧ δyk,

˜Θi = 1
2Ri

jkdxj ∧ dxk + P i
jkdxj ∧ δyk + 1

2Si
jkδyj ∧ δyk.

The Cartan’s second structure equations of a Finsler connection D are given by:

(3.7) dωi
j − ωh

j ∧ ωi
h = −Ωi

j ,

where the curvature 2-forms (Ωa
b ) =

(

Ωi
j 0

0 Ωi
j

)

, are defined by:

Ωa
b (X, Y ) = θa(R(X,Y )Xb), and are given by :

(3.8) Ωi
j =

1
2
R i

j khdxk ∧ dxh + P i
j khdxk ∧ δyh +

1
2
S i

j khδyk ∧ δyh.

Proof. We have that

Θa(X, Y ) = θa(T (X, Y )) = θa(DXY )− θa(DY X)− θa([X, Y ]) =
= X(θa(Y )) + θb(Y )ωa

b (X)− Y (θa(X))− θb(X)ωa
b (Y )− θa([X,Y ]) =

= dθa(X,Y ) + (ωa
b ∧ θb)(X, Y ).

If we take θa to be dxi and δyi, respectively, then we get the Cartan’s first structure
equations (3.5).

From Ωa
b (X,Y ) = θa(R(X, Y )Xb) = dωa

b (X, Y ) + (ωa
c ∧ ωc

b)(X, Y ) we have the
Cartan’s second structure equations (3.7).
3.4. Theorem If for a Finsler connection D on TM the curvature 2-forms Ωi

j vanish,
then there exists a nonholonomic Finsler frame V i

j such that the local coefficients of
the connection D are given by:
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(3.9)























F i
jk = −δV i

m

δxk
˜V m
j = V i

m
δ˜V m

j

δxk

Ci
jk = −∂V i

m

∂yk
˜V m
j = V i

m
∂ ˜V m

j

∂yk .

Proof. If the curvature two-forms of D vanish, then the Cartan’s second structure
equations are:

dωa
b + ωa

c ∧ ωc
b = 0.

Then there exists a frame V a
b (x, y) on the tangent space TM such that

(3.10) dV a
b + ωa

c V c
b = 0.

As ωa
b =

(

ωi
j 0

0 ωi
j

)

and if we denote V a
b =

(

V i
j V i

j

V i
j V i

j

)

then, the equations (3.10)

are equivalent to:

(3.10)′







































dV i
j + ωi

kV k
j = 0,

dV i
j

+ ωi
kV k

j
= 0,

dV i
j + ωi

kV k
j = 0,

dV i
j

+ ωi
kV k

j
= 0.

As (V a
b ) are the entries of a non-singular matrix of order 2n, whose blocks are solutions

of (3.10)’ we have that at least two of these blocks are invertible. Suppose (V i
j ) is one

of them and ˜V i
j := (V i

j )−1. Then ωi
j = −˜V i

kdV k
j = d˜V i

kV k
j and consequently we have

that the local coefficients of D are given by (3.9).
The Theorems 3.2 and 3.4 say that the only Finsler connections that have zero

curvature are induced by nonholonomic Finsler frames.
The frame {Hj = V i

j
δ

δxi , Vj = V i
j

∂
∂yi } is said to be holonomic if there exist n

functions φj on the base manifold M such that ˜V j
i = ∂φj

∂xi , that is equivalent to say
that the one-forms ηj = V j

i dxi are exact.
3.5. Proposition A frame V i

j is holonomic if and only if the torsion two-forms Θi,
defined by (3.6)1 of the Crystallographic connection induced by V i

j , vanish.
Proof. From (3.6)1 we have that Θi = 0 if and only if T i

jk = 0 and Ci
jk = 0, where

T i
jk = F i

kj − F i
jk, and F i

jk and Ci
jk are given by (3.9). However Ci

jk = 0 if and only

if V i
j are functions of (x) only. Then T i

jk = 0 if and only if
∂Ṽ i

j

∂xk = ∂Ṽ i
k

∂xj and this is
equivalent to the fact that ˜V j

i are the gradient of n functions φj on the base manifold
M .
3.6. Proposition If for a Finsler connection D on TM the torsion two-forms Θi

and the curvature two-forms Ωi
j vanish, then local coordinates may be found on the

base manifold M such that with respect to the induced coordinates on TM we have
F i

jk = Ci
jk = 0.
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Proof. If the curvature two-forms Ωi
j of the Finsler connection D vanish then ac-

cording to the Theorem 3.4 there is a frame V i
j such that the local coefficients of the

Finsler connection D are given by (3.9). From Proposition 3.5 we have that the frame

V j
i is holonomic, that is there exist n functions φj such that ˜V j

i =
∂φj

∂xi . Then, φj are
coordinate functions on M and with respect to the induced coordinates on TM , the
local coefficients of the Finsler connection D, vanish.
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