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Abstract

In this paper, a system of differential equations determining timelike and
spacelike ruled surfaces are established in the lines space, using the invariant
quantities of a given geodesic curves on the surface in Lorentz space. The solu-
tion of the system of differential equations are obtained in spacial cases and as
relation of this solutions are given corollaries.
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1 Introduction

Let R3 be endowed with the pseudo scalar product of x and y is defined by

〈x, y〉 = −x1y1 + x2y2 + x3y3, ∀x = (x1, x2, x3), y = (y1, y2, y3) ∈ R3.

(R3, 〈, 〉) is called 3-dimensional Lorentzian space, or Minkowski 3-space denoted by
L3 [6]. Then the Lorentzian vector product is defined by

x×y = (x2y3−x3y2, x1y3−x3y1, x2y1−x1y2), ∀x = (x1, x2, x3), y = (y1, y2, y3) ∈ L3

where e1 × e2 = −e3, e2 × e3 = e1 and e3 × e1 = −e2 [1].
A vector x in L3 is called a spacelike, lightlike, timelike vector if 〈x, x〉 > 0, 〈x, x〉 =

0 or 〈x, 〉x < 0 accordingly. For x ∈ L3, the norm of x defined by ‖ x ‖=
√

| 〈x, x〉 |,
and x is called a unit vector if ‖ x ‖= 1 [8].

Let
α : I ⊂ R −→ L3, s −→ α(s) = (α1(s), α2(s), α3(s))

be a smooth regular curve in L3 (i.e., α
′
(t) > 0 for any t ∈ I), where I is an open

interval. For any t ∈ I, the curve α is called a spacelike, lightlike or timelike curve if
〈α′ , α′〉 > 0, = 0 or > 0, respectively [8].
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Now, we will define the dual Lorentz space under the light of the information given
above. The set D = {x̂ = x + ξx∗|x, x∗ ∈ R} of dual numbers is a commutative ring
with respect to the operations

i) (x + ξx∗) + (y + ξy∗) = (x + y) + ξ(x∗ + y∗)
ii) (x + ξx∗) · (y + ξy∗) = xy + ξ(xy∗ + yx∗).
The division x̂

ŷ is possible and unambiguous if y 6= 0 and it easily see that

x̂
ŷ

=
x + ξx∗

y + ξy∗
=

x
y

+ ξ
x∗y − xy∗

y2 .

The set

D3 = D ×D ×D = {x̂|x̂ = (x1 + ξx∗1, x2 + ξx∗2, x3 + ξx∗3)

= (x1, x2, x3) + ξ(x∗1, x
∗
2, x

∗
3)

= x + ξx∗, x ∈ R3, x∗ ∈ R3}

is a module over the ring D. Let x̂ = x + ξx∗, ŷ = y + ξy∗. The Lorentzian inner
product of x̂ and ŷ is defined by

〈x̂, ŷ〉 = 〈x, y〉+ ξ(〈x, y∗〉+ 〈x∗, y〉).

We call the dual space D3 together with this Lorentzian inner product as dual
Lorentzian space and denote this by D3

1. It is clear that any dual vector x̂ in D3
1,

consists of any two real vectors x and x∗ in L3, which are expressed in the natural
right handed orthonormal frame in the 3−dimensional Lorentzian space L3. We call
the elements of D3

1 the dual vectors. If x 6= 0 the norm ‖x̂‖ of x̂ is defined by ‖x̂‖ =
√

|〈x̂, x̂〉|.
Let x̂ be dual vector. x̂ is said to be spacelike, timelike, lightlike (null) if the vector

x is spacelike, timelike, lightlike (null), respectively. Then

S2
1= { x̂ = x + ξx∗| ‖x̂‖ = (1, 0); x, x∗ ∈ R3

1, x spacelike }

is called the dual Lorentzian unit sphere in D3
1

H2
0= { x̂ = x + ξx∗| ‖x̂‖ = (1, 0); x, x∗ ∈ R3

1, x timelike }

is called the dual hyperbolic unit sphere in D3
1. Oriented timelike and spacelike lines in

L3 may be represented by timelike and spacelike unit vectors with three-components
in the Dual Lorentzian space D3

1, respectively. A differentiable curve on the dual
hyperbolic unit sphere H2

0 corresponds to a timelike ruled surface while a differentiable
curve on the dual Lorentzian unit sphere S2

1 corresponds to any ruled surface [11].
The drall of ruled surface determining of generator line X(t) = x(t) + ξx∗(t) is

defined by

δ =
< x(t), x∗(t) >
< x(t), x∗(t) >

=
p∗

p
.

If δ = 0, p∗ = 0 then the ruled surface is developable [2, 4].
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2 Preliminaries

Definition 2.1. A symmetric bilinear b on vector space V is
i) positive [negative] definite provided v 6= 0 implies b(v, v) > 0 [< 0],
ii) positive [negative] semidefinite provided b(v, v) ≥ 0 [≤ 0] for all v ∈ V ,
iii) nondegenerate provided b(v, w) = 0 for all w ∈ V implies v = 0 [8].

Definition 2.2. A scalar product g on a vector space V is a nondegenerate symmetric
bilinear form on V [8].
Definition 2.3. The index ν of symmetric bilinear form b on V is the largest integer
that is the dimension of a subspace W ⊂ V on which g|W is negative definite [8].

Lemma 2.1 A scalar product space V 6= 0 has an orthonormal basis [8].

Lemma 2.2 Let {e1, e2, ..., en} be an orthonormal basis for V , with
εi =< ei, ei >. Then each v ∈ V has a uniqe expression [8],

v =
n

∑

i=1

εi < v, ei > ei.

Lemma 2.3 For any orthonormal basis {e1, e2, ..., en} for V , the number of negative
signs in the signature (ε1, ε2, ..., εn) is the index ν of V [8].

Definition 2.4. A metric tensor g on a smooth manifold M is a symmetric nonde-
generate (0, 2) tensor field on M of constant index [8].
Definition 2.5. A semi-Riemannian manifold is a smooth manifold furnished with a
metric tensor g [8].
Definition 2.6. A semi-Riemannian submanifold M with (n − 1)-dimensional of a
semi-Riemannian manifold M with n-dimenisonal is called semi-Riemannian hyper-
surface of M [8].
Definition 2.7. A geodesic in a semi-Riemannian manifold M is a curve
α : I → M whose vector field α′ is parallel. Equivalently, geodesics are the curves of
acceleration zero, α′ = 0 [8].

3 Differential-Geometrical Conditions Between
Geodesic Curves and Timelike-Ruled Surfaces in
Lorentz Space

Given a curve α(s) on a surface M in Lorentz space as arc-lenght parameter. Let
{V1(s), V2(s), V3(s)} be Frenet trihedron at the point α(s) of given curve α(s).

In this situation, equalities relation with covariant derivations curve throughout
of Frenet vectors Vi(s), 1 ≤ i ≤ 3, are written in form





V
′

1 (s)
V
′

2 (s)
V
′

3 (s)



 =





0 κ 0
κ 0 τ
0 −τ 0









V1(s)
V2(s)
V3(s)



 .(1)

Let {η1(s), η2(s), η3(s)} be Darboux trihedron at the point α(s) of surface. Then the
derivatives of Darboux vectors are
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



η
′

1(s)
η
′

2(s)
η
′

3(s)



 =





0 κg κn

κg 0 τg

κn −τg 0









η1(s)
η2(s)
η3(s)



 .(2)

A timelike-ruled surface in lines space such that dual unit vectorel function ~X =
~X(t) depending on a parameter t is written as

~X = ~X(t) = ~x(t) + ξ ~x?(t),

where ξ = (0, 1) is a dual unit.
Now, let

~X1(t) = ~x1(t) + ξ ~x?
1(t),

~X2(t) =
~X′
1(t)

‖ ~X′
1(t)‖

=
~X′
1(t)
P ,

~X3(t) = ~X1(t)× ~X2(t)

be a trihedron depending on timelike-ruled surface. In that case, it is written






~X ′
1(t)
~X ′
2(t)
~X ′
3(t)





 =





0 P 0
P 0 Q
0 −Q 0











~X1(t)
~X2(t)
~X3(t)





 .(3)

In this equation, P = p+ ξp? and Q = q + ξq? are the dual invariants of the timelike-
ruled surface, which are defined as

P =
∥

∥
~X ′
1(t)

∥

∥, Q =< ~X ′
2(t), ~X3(t) > .

If the moments of the Darboux vectors at the point α(s) of the curve α(s) are
taken with respect to origin in the (O; x, y, z) coordinate system, the dual unit vectors
which are defined as

Xi(s) = ηi(s) + ξη?
i (s)

= ηi(s) + ξ( ~α(s)Ληi(s)), 1 ≤ i ≤ 3

form the base {X1(s), X2(s), X3(s)} in the lines space. When the point α(s) traces
the curve α(s) in Lorentz space, the dual unit vector X1(s) generates surface in the
lines space. The {X1(s), X2(s), X3(s)} belonging to the generator X1(s) is Blaschke
trihedron of this surface. The vector α(s) is written according to Darboux vectors of
the curve α(s) as

α(s) = m(s)η1(s) + n(s)η2(s) + k(s)η3(s).(4)

Hence, we obtain the relations

X1(s) = η1(s) + ξ[− k(s)η2(s) + n(s)η3(s)]

X2(s) = η2(s) + ξ[− k(s)η1(s)− m(s)η3(s)]

X3(s) = η3(s) + ξ[ n(s)η1(s) + m(s)η2(s)].
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If m(s), n(s) and k(s) coefficients are found, timelike-ruled surfaces X1(s) can be
determined with respect to the invariants of the given curve α(s). If the equation (4)
is differentiated with respect to s and making use of the derivative formulas (2), we
obtain







m
′
(s) + n(s)κg + k(s)κn = 1

m
′
(s)κg + n

′
(s)− k(s)τg = 0

m(s)κn + n(s)τg + k
′
(s) = 0.

(5)

For geodesic curves (κg = 0). This system becomes






m
′
(s) + k(s)κn = 1

n
′
(s)− k(s)τg = 0

k
′
(s) + m(s)κn + n(s)τg = 0.

(6)

Now we solve the system of differential equation (6) for the certain special cases.

3.1. If m(s) = 0, the curve α(s) is located in affine subspace, combined with the
vector space Sp{η2(s), η3(s)} at the point α(s). In this situation, from the system (6)







k(s)κn = 1
n
′
(s)− k(s)τg = 0

k
′
(s) + n(s)τg = 0

(7)

are found. From the last two equations we get

n
′′
(s)−

τ
′

g

τg
n
′
(s) + τ2

g n(s) = 0.

If we make the parameter change as t =
∫ s

0
τgds in this equation we obtain

d2n
dt2

+n =

0, and get the solution of this equation

n(s) = c1 cos
(∫ s

0
τgds

)

+ c2 sin
(∫ s

0
τgds

)

,

where c1 and c2 are real constants. From the first equation of (7), it is clear that

k(s) =
1
κn

.

In this case with the aid of equation (4), α(s) can be written as

α(s) =
[

c1 cos
(∫ s

0
τgds

)

+ c2 sin
(∫ s

0
τgds

)]

η2(s) +
1
κn

η3(s).

Therby, Blaschke vectors of timelike-ruled surface X1(s) are determined by dual unit
vectors such as

X1(s) = η1(s) + ξ
[

− 1
κn

η2(s) + c1 cos
(∫ s

0
τgds

)

+ c2 sin
(∫ s

0
τgds

)

η3(s)
]

X2(s) = η2(s) + ξ
[

− 1
κn

η1(s)
]

X3(s) = η3(s) + ξ
[

c1 cos
(∫ s

0
τgds

)

+ c2 sin
(∫ s

0
τgds

)

η1(s)
]

.
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If c1 = c2 = 0, then n(s) = 0 and k(s) =
1
κn

are found. Therefore,















X1(s) = η1(s) + ξ
[

− 1
κn

η2(s)
]

X2(s) = η2(s) + ξ
[

− 1
κn

η1(s)
]

X3(s) = η3(s).

The first and third equalities of this system are differentiated with respect to s and
if the values found are used in (2) and (3), we obtain

p = κg, p? = 0, q = τg, q? = 0.

Corollary 3.1 The ruled surface determining of generator line X3 = X3(s) is a
developable surface.

3.2. If n(s) = 0, then the curve α(s) is located in affine subspace, combined with
vector space Sp{η1(s), η3(s)} at the point α(s). In this case,

m
′
(s) + k(s)κn = 1

−k(s)τg = 0

k
′
(s) + m(s)κn = 0

is obtained from the system (6). The solutions of the first and third equations of this
system are in the form

m(s) = c1e−κns − c2eκns, k(s) = c1e−κns + c2eκns +
1
κn

,

where c1 and c2 are real constants. Thus, the vector α(s) is in the form

α(s) = (c1e−κns − c2eκns)η1(s) + (c1e−κns + c2eκns +
1
κn

)η3(s).

However, Blaschke vectors of timelike-ruled surface X1(s) are derived

X1(s) = η1(s) + ξ
[

−
(

c1e−κns + c2eκns +
1
κn

)

η2(s)
]

X2(s) = η2(s) + ξ
[

−
(

c1e−κns + c2eκns +
1
κn

)

η1(s)−
(

c1e−κns − c2eκns) η3(s)
]

X3(s) = η3(s) + ξ[(c1e−κns − c2eκns)η2(s)].

In this system, the first and third equalities are differentiated in terms of s and if the
values found are used in the equalities (2) and (3), we obtain

p = κg, p? = c1κne−κns − c2κneκns q = τg, q? = c1κne−κns + c2κneκns.

Corollary 3.2 If c1 = c2 = 0 then the ruled surface determining of generator line
X3 = X3(s) is a developable surface.
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3.3. If k(s) = 0, the curve α(s) is located in an affine subspace, combined with vector
space Sp{η1(s), η2(s)} at the point α(s). In this case, the curve α(s) becomes a plane
curve. Because the vector α(s) lies in the osculating plane of the curve. Thus, from
the system (6), we obtain







m
′
(s) = 1

n
′
(s) = 0

m(s)κn + n(s)τg = 0.

and further,
m(s) = s + c1, n(s) = c2.

In this case the vector α(s) by the aid of equation (4) can be written as

α(s) = (s + c1)η1(s) + (c2)η2(s).

So, Blaschke vectors of timelike-ruled surface X1(s) are found






X1(s) = η1(s) + ξ[c2η3(s)]
X2(s) = η2(s) + ξ[−(s + c1)η3(s)]
X3(s) = η3(s) + ξ[c2η1(s) + (s + c1)η2(s)].

The first and third equalities of this system are differentiated in terms of s and if the
values found are used in the equalities (2) and (3), we obtain

p = κg, p? = −c2τg, q = τg, q? = 1 + c2κg,

and hence we state

Corollary 3.3 The ruled surface determining of generator line X3 = X3(s) is not a
developable surface.

4 Differential-Geometrical Conditions Between
Geodesic Curves and Spacelike-Ruled Surfaces

Given a curve α(s) on a surface M in Lorentz space as arc-length parameter.Let
{V1(s), V2(s), V3(s)} be Frenet trihedron at the point α(s) of a curve defined as

α : I ⊂ IR → L3, s → α(s) = (α1(s), α2(s), α3(s)).

In this situation, the Frenet equations satisfied by the Frenet vectors Vi(s), 1 ≤
i ≤ 3, formally given by





V
′

1 (s)
V
′

2 (s)
V
′

3 (s)



 =





0 κ 0
κ 0 τ
0 τ 0









V1(s)
V2(s)
V3(s)



 .(8)

Let {η1(s), η2(s), η3(s)} be Darboux trihedron at the point α(s) of surface. Then the
Darboux equations are
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



η
′

1(s)
η
′

2(s)
η
′

3(s)



 =





0 κg κn

κg 0 τg

κn τg 0









η1(s)
η2(s)
η3(s)



 ,(9)

where κg, κn, τg are the geodesic curvature, normal curvature and geodesic torsion
respectively.

A spacelike-ruled surface is given by the dual unit vectorial function ~X = ~X(t)
depending on a parameter t as

~X = ~X(t) = ~x(t) + ξ ~x?(t),

where ξ = (0, 1) is a dual unit.
Now, let us study to conduct a trihedron depending on spacelike-ruled surfaces.

Respectively, let the first, the second and the third axes be

~X1(t) = ~x1(t) + ξ ~x?
1(t),

~X2(t) =
~X′
1(t)

‖ ~X′
1(t)‖

=
~X′
1(t)
P ,

~X3(t) = ~X1(t)× ~X2(t).

In that case, it is written






~X ′
1(t)
~X ′
2(t)
~X ′
3(t)





 =





0 P 0
−P 0 Q
0 Q 0











~X1(t)
~X2(t)
~X3(t)





 .(10)

In this equation, P = p+ξp? and Q = q+ξq? are the dual invariants of the spacelike-
ruled surface, which are defined as

P =
∥

∥
~X ′
1(t)

∥

∥, Q = 〈 ~X ′
2(t), ~X3(t)〉.

If the moments of the Darboux vectors at the point α(s) of the curve α(s) are
taken with respect to origin in the coordinate system {O;x, y, z}, the dual unit vectors
which are defined as

Xi(s) = ηi(s) + ξη?
i (s)

= ηi(s) + ξ( ~α(s)Ληi(s)), 1 ≤ i ≤ 3

form the base {X1(s), X2(s), X3(s)} in the affine space and these vectors have the
following property

〈Xi(s), Xj(s)〉 =
{

ε(Xi), if i = j
0, if i 6= j.

When the point α(s) traces the curve α in Lorentz space, the dual unit vector X1(s)
generates surface in the affine space. The {X1(s), X2(s), X3(s)} belonging to the gen-
erator X1(s) is Blaschke trihedron of this surface. The vector α(s) is written according
to Darboux vectors of the curve α(s) as

α(s) = m(s)η1(s) + n(s)η2(s) + k(s)η3(s).(11)
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Hence,






X1(s) = η1(s) + ξ[− k(s)η2(s)− n(s)η3(s)]
X2(s) = η2(s) + ξ[ k(s)η1(s) + m(s)η3(s)]
X3(s) = η3(s) + ξ[− n(s)η1(s) + m(s)η2(s)].

If are found m(s), n(s) and k(s), then the spacelike-ruled surface X1(s) can be
determined with respect to the invariants of the given curve α(s). If the equation (11)
is differentiated with respect to s, and making use of the derivative formulas (9), we
obtain







m
′
(s) + n(s)κg + k(s)κn = 1

m(s)κg + n
′
(s) + k(s)τg = 0

m(s)κn + n(s)τg + k
′
(s) = 0.

(12)

If the curve be a geodesic curve (κg = 0), the system (12) takes the following form






m
′
(s) + k(s)κn = 1

n
′
(s) + k(s)τg = 0

k
′
(s) + m(s)κn + n(s)τg = 0.

(13)

Now we solve the system of differential equation (13) for certain special cases.

4.1. If m(s) = 0, then the curve α(s) is located in an affine subspace, combined
with vector space Sp{η2(s), η3(s)} at the point α(s). In this situation, from the system
(13) we infer







k(s)κn = 1
n
′
(s) + k(s)τg = 0

k
′
(s) + n(s)τg = 0.

(14)

Hence, from the last two equations, we get

n
′′
(s)−

τ
′

g

τg
n
′
(s)− τ2

g n(s) = 0.

If we make the parameter change as t =
∫ s
0 τgds in this equation, we obtain

d2n
dt2

− n = 0.

The solution of this equation is

n(s) = c1e
−(

∫ s

0
τgds) + c2e

(
∫ s

0
τgds),

where c1 and c2 are real constants. From (14) it is clear that

k(s) =
1
κn

.

In this case with the aid of equation (11) α(s) can be written as

α(s) = [c1e
−(

∫ s

0
τgds) + c2e

(
∫ s

0
τgds)]η2(s) +

1
κn

η3(s).
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Therby, Blaschke vectors of the spacelike-ruled surface X1(s) are determined by the
dual unit vectors



























X1(s) = η1(s) + ξ
[

− 1
κn

η2(s)−
(

c1e
−(

∫ s

0
τgds) + c2e

∫ s

0
τgds

)

η3(s)
]

X2(s) = η2(s) + ξ
[

1
κn

η1(s)
]

X3(s) = η3(s) + ξ
[

−
(

c1e
−(

∫ s

0
τgds) + c2e

∫ s

0
τgds

)

η1(s)
]

If c1 = c2 = 0, then n(s) = 0 and k(s) = 1
κn

are found. Therefore,














X1(s) = η1(s) + ξ
[

− 1
κn

η2(s)
]

X2(s) = η2(s) + ξ
[

1
κn

η1(s)
]

X3(s) = η3(s).

The first and third equalities of this system are differentiated with respect to s and
if the values found are used in the (9) and (10), we obtain

p = κg, p? = 0 q = τg, q? = 0.

Corollary 4.1 The spacelike-ruled surfaces X3 = X3(s) is a developable surface.

4.2. If n(s) = 0, the curve α(s) is located in an affine subspace, combined with
the vector space Sp{η1(s), η3(s)} at the point α(s). In this case,







m
′
(s) + k(s)κn = 1

k(s)τg = 0
k
′
(s) + m(s)κn = 0

are obtained from the system (13). The solutions of the first and third equations of
this system are in the form

m(s) = c1e−κns − c2eκns, k(s) = c1e−κns + c2eκns + 1
κn

where c1 and c2 are real constants. Thus, the vector α(s) has the shape

α(s) = (c1e−κns − c2eκns)η1(s) + (c1e−κns + c2eκns + 1
κn

)η3(s).

However, Blaschke vectors of the spacelike-ruled surface X1(s) hence














X1(s) = η1(s) + ξ
[

−
(

c1e−κns + c2eκns + 1
κn

)

η2(s)
]

X2(s) = η2(s) + ξ
[(

c1e−κns + c2eκns + 1
κn

)

η1(s) + (c1e−κns − c2eκns)η3(s)
]

X3(s) = η3(s) + ξ[(c1e−κns − c2eκns)η2(s)].

In this system, the first and third equalities are differentiated in terms of s and if the
values found are used in the equalities (9) and (10), we obtain

p = κg, p? = c1κne−κns − c2κneκns q = τg, q? = −c1κne−κns − c2κneκns.
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Corollary 4.2 If c1 = c2 = 0 then the spacelike-ruled surface X3 = X3(s) is a
developable surface.

4.3. If k(s) = 0, the curve α(s) is located in affine subspace, combined with the
vector space Sp{η1(s), η2(s)} at the point α(s). In this case, the curve α(s) becomes
a plane curve, since the vector α(s) lies in the osculating plane of the curve. Thus,
from the (13), we obtain







m
′
(s) = 1

n
′
(s) = 0

m(s)κn + n(s)τg = 0.

whence
m(s) = s + c1, n(s) = c2.

In this case, using (11), the vector α(s) can be written as

α(s) = (s + c1)η1(s) + (c2)η2(s).

Then, Blaschke vectors of the spacelike-ruled surface X1(s) are






X1(s) = η1(s) + ξ[−c2η3(s)]
X2(s) = η2(s) + ξ[(s + c1)η3(s)]
X3(s) = η3(s) + ξ[−c2η1(s) + (s + c1)η2(s)].

The first and third equations in this system differentiated in terms of s and if the
values found and used in the equalities (9) and (10), lead to

p = κg, p? = −c2τg, q = τg, q? = 1− c2κg.

Hence we infer

Corollary 4.3 The ruled surface determined by the generator line X3 = X3(s) is not
a developable surface.
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