Solutions of DEs and PDEs as Potential Maps
Using First Order Lagrangians

Constantin Udrigte

Abstract

Recently we have solved a problem rised for the first time by Poincaré (find
a suitable geometric structure that describes the trajectories of a given vector
field like geodesics), showing that the trajectories of a given vector field are
pregeodesics in a suitable Riemann-Jacobi, Riemann-Jacobi-Lagrange or Finsler-
Jacobi structure [6]-[10]. Continuing to develop similar ideas, the present paper
and [11] show that solutions of DEs or PDEs are potentials maps via first order
Lagrangians or via generalized Lorentz world-force laws.

This paper is organized as follows. Section 1 and Section 3 review the notion
of (single-time respectively multi-time) jet bundle of order one, and establish
second-order derivative operator along a local section (suitable decomposition
of the Laplacian), adapted dual bases, a Sasaki-like metric, a generalized Lorentz
World-Force Law, a suitable second-order prolongation of a first-order (DEs re-
spectively PDEs) system, first-order Lagrangians producing the prolongation,
and Lorentz-Udriste World-Force Law. Section 2 and Section 4 give the Hamil-
tonian and the non-degenerate distinguished symplectic relative 2-form which
permit the changing of the Lagrangian dynamics into covariant Hamilton equa-
tions.

Mathematics Subject Classification: 34C40, 31C12, 53C43, 58E20
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1 Solutions of DEs as potential maps

Unless specifically denied, all manifolds, all objects on them, and all maps from one
manifold into another will be C'*°; however, we sometimes redundantly write "a C*
manifold”, and so on, for emphasis.

Let (T = R,h) and (M, g) be semi-Riemann manifolds of dimensions 1 and n.
Hereafter we shall assume that the manifold T is oriented. Latin letters will be used
for indexing the components of geometrical objects attached to the manifold M.

Local coordinates will be written
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94 C. Udrigte

and the components of the corresponding metric tensors and Christoffel symbols will
be denoted by hii, gij, H{y, G%;. Indices of distinguished objects will be rised and
lowered in the usual fashion.

Let C°(T,M) ={p : T — M | ¢ of class C*}. For any ¢,¢ € C®(T, M), we
define the equivalence relation ¢ ~ 1 at (tg,z9) € T X M by

vto) =) = 2b (1) = W)
Using the factorization
T(to,20) (T, M) = C=(T, M)/ ~
we introduce the jet bundle of order one
JYT, M) = U Jwn (T M).

(to,wo)ETXM
Denoting by [¢](,,20) the equivalence class of the map ¢, we define the projection
m: JHT, M) = T x M, 7[@lt0,00) = (to,$(t0))-

Suppose that the base T' x M is covered by a system of coordinate neighborhoods
(U x V,t*,x%). Then we can define the diffeomorphism

Fyxy :m Y (UxV) = UxV xR'™

i dz!
Fuv[@lite,20) = (to,ﬂfo, %(to)) .

Consequently J(T, M) is a differentiable manifold of dimension 1 +n +1-n =
2n + 1. The coordinates on 7~ (U x V) C JY(T, M) will be

o dat
tlzt, z’z:_ ,
( oy dt)

where

tl([go](to,zo)) = tl(to)ami([w](to,zo)) = mi(mo)a yi([‘p](to,wo)) = dt (tO)'
A local changing of coordinates (t,z¢,y?) — (£, z%,4*) is given by
ozt dt
= ==Y,
oxJ dit

dt oz

1) t=1t(t), &' =2'(2’), '

where
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The expression of the Jacobian matrix of the local diffeomorphism (1) shows that the
jet bundle of order one J(T, M) is always orientable.

Let
dhyy 1, _;dhyy 1 d

dit 2" g T 24t

G;'-k be the components of the connections induced by h and g respectively. If

1
Hi, = §h11 [P,

%

.. dx
t:tl, z, i _
( YT

) are the coordinates of a point in J!(7T', M), then

S o det

dt dt ~ dt> gt ik dt dt

are the components of a distinguished tensor on 7" x M. Also
0 d . 0 0 0 0 0

= Hl i — = ' hok 9 .

((St a T 50 G T g YR gm0 ayz)

(dt, dz’?, 6y’ = dy’ — Hlllyjdt—}—G;kahdwk)

are dual frames on J(T, M), i.e.,

0
w(2)=1a

8y’ (%) =0, &y’ %) =0, &y’ (6‘;) =4l

Using these frames, we define on J*(T, M) the induced Sasaki-like metric
S1 = hi1dt ® dt + gz']‘d.%'i ® dz? + hngijéyi ® 6yj.

The semi-Riemann geometry of the manifold (J(T, M), S;) was developed recently
in [4].

Now we shall generalize the Lorentz world-force law which was initially stated [5]
for particles in nonquantum relativity.
Definition. Let F = (F}%) and U = (U?) be C* distinguished tensors on T x M,
where wj; = ghith is skew-symmetric with respect to j and 4. Let ¢(t,x) be a C*
real function on 7' x M. A map ¢ : T'— M obeys a Generalized Lorentz World-Force
Law with respect to F,U, c iff

§ dzt .. Oc¢ . dxd .
11__: 11 15 B K hatedll 1
W wa =" (g 927 1 dt+U>‘

Now we remark that a C> distinguished tensor field X¢(t,z), i = 1,...,n on
T x M defines a family of trajectories as solutions of DEs system of order one

(2) W = Xt ().
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The distinguished tensor field X*(¢,z) and semi-Riemann metrics h and g determine
the potential energy density

1 L
f:TxM—=R, f= §hllg,-jX’X’.

The distinguished tensor field (family of trajectories) X¢ on (T x M, hq1 + g) is called:

1) timelike, if f < 0;

2) nonspacelike or causal, if f < 0;

3) null or lightlike, if f = 0;

4) spacelike, if f > 0.

Let X! be a distinguished tensor field of everywhere constant energy. If X¢ (the
system (2)) has no critical point on M, then upon rescaling, it may be supposed
that f € {—1,0,1}. Generally, £ = {zy € M|X(t,z9) = 0,Vt € T} is the set of
critical points of the distinguished tensor field, and this rescaling is possible only on
Tx(M\E).

)
Using the operator (derivative along a solution of (2) via the decomposition 7 E)

6 dat  d’at dxt - dx? dxk

e — _Hl [etediihaiadil
dt dt dt? g Ty T

the Levy-Civita connection D of (R, h) and the Levy-Civita connection V of (M, g),
we obtain the prolongation (DEs system of order two)

d*zt | dat . dx? dzt dx?
~ . _HL,T 4G, S =DXi4 (VX!
3) dt? g TR (ViX )5 dt’
where )
6X’ o0X?

VX' = +GX*, DX'= - gl X"

Oz

The distinguished tensor field X¢, the metric g, and the connection V determine the
external distinguished tensor field

F]t — VJXZ _ gihgkjthk,

which characterizes the helicity of the distinguished tensor field X*®.
The DEs system (3) can be written in the equivalent form

P dzt . dxd dx® dxd dzd
4 - Hl, = L — X* Fii— + DX
( ) dt2 11 dt + G]k dt dt g gk] (Vh ) dt + J dt +
Now we modify this DEs system into
&zt det | odaldat K o dx’
t = =gt . J Z_ i

The system (5) is still a prolongation of the DEs system (2).
Theorem. The kinematic system (2) can be prolonged to the second order dynamical
system (5).
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Corollary. Choosing the metrics h and g such that f € {—1,0,1}, then the kinematic
system (2) can be prolonged to the second order dynamical system

Azt dz’ - dx? dz* dy? .

SR 5 ¢ iy o Wity R Ly ) ¢}

dt? ugr TG I *

We shall show that the dynamical system (5) has a variational structure, being
in fact an Euler-Lagrange system. We identify J* (T x M) with its dual via the semi-
Riemann metrics h and g.

Theorem. 1) The solutions of the DEs system (5) are the extremals of the Lagrangian

1 dz? : dz’ ;
=gt (g ) (G =) Vi -

1 dx® da? dz? _ .
= (500 G 0 G 1) Vil

2) If F;* = 0, then the solutions of the DEs system (5) are the extremals of the

Lagrangian o
1 dx® dx’

L={=httg;—— \/ .

(2h Yii" g " +f> [P

3) Both Lagrangians produce the same Hamiltonian

Theorem (Lorentz-Udriste World-Force Law) see also [6]-[10].
1) Every solution of DEs system
d’z , dot ; da? dz* in P ;
— — T = (Ve X"X? +DX?
a7~ g O =9 o (VaX DX +
is a potential map on the semi-Riemann manifold (T x M, h + g).
2) Every solution of DEs system (5) is a horizontal potential map on the semi-
Riemann-Lagrange manifold

(T x M,h+g, N1); = Guy" = F', M) = —Hiy').

Corollary. Every DE generates a Lagrangian of order one via the associated first
order DEs system and suitable metrics on the manifold of independent variable and
on the manifold of functions. In this sense the solutions of the initial DE are potential
maps produced by a suitable Lagrangian.

Proof. Let t € R denote a real variable, usually referred to as the time. It may be
pointed out that the DE

d’x dx drlz
(6) dt—n_f(taxaaa"wW);

where z is the unknown function, is equivalent to a system (2). For if we set z = 2!,
then (6) is equivalent to
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dz! , dz? 3 dz™1 "
dt T dt T dt

dx™

W: (taxlax27"'a$n)a

which is of type (2). Therefore, the preceding theory applies.

2 Hamiltonian approach

Let (Q,Q) be a symplectic manifold (of even dimension). The Hamiltonian vector
field Xy of the function H € F(Q) is defined by

Xy Q= dH.

We generalize this relation as

X}IJﬂl = 4/ |h11|dH,

using the distinguished objects
Xp, O, H

and the manifold J'(T', M). For another point of view, see also [11] and compare with

[2], [3]-
Theorem. The DEs system

&z dz’ ; dad dz* i ,
Mg G g = 9" os (VXX

transfers in J'(T, M) as a Hamilton DEs system with respect to the Hamiltonian

1 .
H = Sh'giy'y’ — f

and the non-degenerate distinguished symplectic relative 2-form
Q=0 ® dtl, 0 = g,'jda:i A 6yj\/ |h11|.

Proof. Let
=060, xdt', 6, = gijyidmjm
be the distinguished Liouville relative 1-form on J1 (T, M). We find
Qy = —db;.
We introduce 5 5 sull
Xy = X}{E, Xy = UW 3 oy

as the distinguished Hamiltonian object associated to the function H.

The relation
X}{Jﬂl =/ |h11|dH,
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where o o ' ‘
dH = hM gijy8y* — W't g ;(DX ) XIdt — h''g;; XTIV X'da®,
implies
Lie Wi
giju 0y’ — gij Wd:c’ =dH.

Consequently, it appears the PDEs system of Hamilton type

uli = pliyi
dul? ) 4
W — ghzhllgijJ (Vth)

together the condition o
h'g:;;(DX") X7 = 0.

Theorem. The DEs system

d?z’ dxt I . ; dx? .
- —HL = 4+ G, ——— = ¢ (Ve X XT + F—— 4+ DX?
ar ~Hugy Gy 4y = 979 (VaXDXT 4 B +

transfers in J*(T, M) as a Hamilton DEs system with respect to the Hamiltonian

1 A
H=5h"gy'y’ - f

and the non-degenerate distinguished symplectic relative 2-form

Q=0 @dt, Y = (gi;da’ Ay +wijdat Adz? + gi;(DXP)dt A dx?)/|han],

where
wji = gniF3".
Proof. Let o o
0=0,xdt', 6, = (9559'da’ — g;; X"d2? )/ |h1]
be the distinguished Liouville relative 1-form on J'(R, M). We find

Q = —db;.
We denote 5 5 5 sl 5
X = )(1 - Xl = 11— 1l_ u__
#=Xngy Xp =l g+ u s+ T oy

the distinguished Hamiltonian object of the function H. The relation

X}{Jﬂl = 4/ |h11|dH

can be written

o ould . S o ) :
giju'*oy’ — gz’j%dﬁbz + 2w;jutida? — g;; (DX )utidt + bt g;;(DX")dz? = dH,

where o o _ .
dH = —h" g;;(DXH) X7 dt + h'tg;j76y" — h' g;; X7 (Ve X P)dz".

99
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Via these relations we identify a PDEs system of Hamilton type,
wli = pllyi

5u1i
dt

= ghihugijj (Vth) + Zghiwjhulj + pDX?

together the condition . _ '
9ij (DX’)(UIJ - thJ) =0.

3 Solutions of PDEs as Potential Maps

All manifolds and maps are C'°°, unless otherwise stated.

Let (T, h) and (M, g) be semi-Riemann manifolds of dimensions p and n. Hereafter
we shall assume that the manifold T is oriented. Greek (Latin) letters will be used for
indexing the components of geometrical objects attached to the manifold T' (manifold

Local coordinates will be written

t=(0t"), a=1,...,p

r= (2%, i=1,...,n,

and the components of the corresponding metric tensors and Christoffel symbols will
be denoted by hag, g5, Hg,, G;k Indices of tensors or distinguished tensors will be
rised and lowered in the usual fashion.

Let C®(T,M) = {p : T — M| ¢ of class C*}. For any ¢,¢ € C®(T, M) we
define the equivalence relation ¢ ~ 1 at (to,z¢) € T X M, by

i i ; Oz Ay’
z'(to) = y*(to) = o, %(to) = %(to)-
Using the factorization
J(lto,wo) (T7 M) =0 (T7 M)/N:

we introduce the jet bundle of order one

JHT,M) = ) T L (T, M).
(to,z0)ETXM

Denoting by [¢],,z0) the equivalence class of the map ¢, we define the projection
T Jl(Ta M) =T x M; W[SO](to,zo) = (to,(p(to))

Suppose that the base T' x M is covered by a systems of coordinate neighborhood
(U x V,t%,2*). Then we can define the diffeomorphism

Fygy :m Y (UxV)—=UxV x R,
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. Oz
Fov el g = (525 G )

Consequently J'(T, M) is a differentiable manifold of dimension p + n + pn. The
coordinates on 7~(U x V) C JY(T, M) will be
(t*,2",25,),
where
P o i i i 0z’
t* ([@ito,20)) = t%(t0), %" ([#l(t0,20)) = = (€0), zly ([Plit0,20)) = a?(to)-

A local changing of coordinates (t%, z%,z¢) — (£*,2%, ) is given by

- D i o 0z otP
a _ Fa(4f3 =i _ =i ~1 J
(7) "=t (t )7 r =2 (mj)a Lo = 6.'13] 85(1:1735

o> ozt

The expression of the Jacobian matrix of the local diffeomorphism (7) shows that the
jet bundle of order one J(T, M) is always orientable.
Let H ng;’k be the components of the connections induced by h and g respec-

tively. If (t*,z¢, z%,) are the coordinates of a point in J(T, M), then

where

i &z —H 3t 4Gl gk
Top = Gragep — asTy T UjkTalp

are the components of a distinguished tensor on T' x M. Also

(5:i+H7ia ézi_ tha 6)}

-~ X, ——, — —_ L T
gt~ ot TPV ol bgt T Ot T 0xh’ Od,

<dtﬁ, da?, 5:1:% = da:g - Hj, o) dt* + Gik:vgdxk)

are dual frames on J(T, M), i.e.,

0 0 0
B0\ _ s B2\ _ 3 _
dt <5t‘1> oy, dt (5:1:") 0, dt (837}1) 0
) ) ; (0
i 2 ) = il 2 ) = s j —
dz ( 6ta> 0, dx ( 6mi) 0}, dx ( 6;%) 0

e e (8 .
oz ((%—Q) =0, Oz} (@) =0, dz3 (8:1:31) = 603.

Using these frames, we define on J*(T, M) the induced Sasaki-like metric

Sy = hopdt® ® dt’ + gijdz’ ® dao? + h*Pg;;6a}, ® 6;1%.

The semi-Riemann geometry of the manifold J (T, M) was developed recently in [4].
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The Lorentz world-force law formulated usually for particles [5] can be generalized
as follows:

Definition. Let F, = (F;%,) and U, = (Uéﬁ) be C* distinguished tensors on
T x M, where wjio = gniF;", is skew-symmetric with respect to j and i. Let c(t, z)
be a C* real function on T x M. Suppose (T, h) is a Riemannian manifold. A C*
map ¢ : T — M obeys a Generalized Lorentz World-Force Law with respect to Fy,
Uqyg, ciff

hPgi g = gt aa_c + WP Fyaal + UL,
i.e., iff it is a potential map of a suitable geometrical structure.

Let us show that the solutions of a system of PDEs of order one are potential
maps in a suitable geometrical structure of the jet bundle of order one. For that we
remark that any C* distinguished tensor field X{ (¢,z) on T x M defines a family of
p-dimensional sheets as solutions of the PDEs system of order one

(8) o, = X4 (t (1)),
if the complete integrability conditions

oX? aXz X} 6X :

a

J
ots 8$J B ata 63;1 o

are satisfied.
To any distinguished tensor field X' (¢,z) and semi-Riemann metrics h and g we
associate the potential energy density

1 . ,
f:TxM-=R, f=§haﬂgijxgxg.

The distinguished tensor field X (family of p-dimensional sheets) on (T x M, h + g)
is called:

1) timelike, if f < 0O;

2) nonspacelike or causal, if f <0;

3) null or lightlike, if f = 0;

4) spacelike, if f > 0.

Let & = {zo € M| X! (t,z9) = 0, Vt € T} be the set of critical points of the
system (8). If f = constant, upon rescaling on 7' x (M \ &), it may be supposed that
fe{-1,0,1}.

The derivative along a solution of (8),

5 , o2z

IR S S Y
517 % = a0 = gpagys ~ Has® + Cinath

produces the decomposition This operator, the Levy-Civita connection D

50
a8 ot
of (T, h) and the Levy-Civita connection V of (M, g) produce the prolongation (PDEs
system of order two)

9) zhp = DX + (V; X)ah,
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which can be converted into the prolongation
(10) WPty = g h*P g (Vi XE)X] + h*P Fy gal + h*P D XL,
where . . .

Fila =V;X% — gk Vi XE

is the external distinguished tensor field which characterizes the helicity of the distin-

guished tensor field X} .

Theorem. Any solution of PDEs system (8) is a solution of the PDEs system (10).
The first term in the second hand member of the PDEs system (10) is the force

(gradf)!. Therefore, choosing the metrics h and g such that f € {—1,0,1}, the system

(10) reduces to

(10" ho‘ﬁxfw = gthj"axé +h*DgXE.

Now, let us describe the variational structure of the PDEs system (10).
Theorem. The solutions of PDEs system (10) are the extremals of the Lagrangian

1, . . ) .
L = 5hgy(ai - X)), — X5/l =

1 . L
(Eh“ﬂgi]’mfxmé - haﬂgijfU;Xé + f) Vb

If Fja = 0, then this Lagrangian can be replaced by
1 o
L= <§haﬁgi]‘1‘;$é + f) \/| |
2) Both Lagrangians produce the same Hamiltonian
1 o
i = (5h*aseta - 1) VI

Theorem (Lorentz-Udriste World-Force Law). Suppose (T, h) is a Riemannian
manifold. Every solution of the PDEs system (8) is a horizontal potential map of the
semi-Riemann-Lagrange manifold
(T x M,h+g, N(fx)]’ = G;kxlgz - Fjia’ M(fx)ﬁ = _Hgﬁwfy)'
Corollary. Every PDE generates a Lagrangian of order one via the associated first
order PDEs system and suitable metrics on the manifold of independent variables
and on the manifold of functions. In this sense the solutions of the initial PDE are
potential maps produced by o suitable Lagrangian.
Proof. Let gr
r a =(r)
B = F(t*,z,\")

be a PDE of order 7, where Z(") represent the partial derivatives of = with respect to
™

t*, till the order r inclusively, excepting the partial derivative This equation

o0"x
o(tr)r’

is equivalent to a system (8).
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0
For the sake of simplicity, we take r = 2. We denote 6—;‘ =z, = u® and we find

the partial derivatives of the functions (x,u®) using the system

To = u®

ug=ub, a#p

uj = f(t*, x,u)), excepting A = pu = 2.

We shall find a PDEs system of order one with p(1 + p) equations, which is of type
(8). Therefore, the preceding theory applies.

Example. Consider the Monge-Ampere equation det(Hessu) = F, where u : T — R
is the unknown function, Hess means the Hessian with respect to the semi-Riemann
structure of the manifold 7', and F' is a given function of ¢,u,du. This equation is
clasely related to the study of the curvature of a manifold [14]. The Monge-Ampere
equation is equivalent to the first-order system

ou
% = Wa, Dﬂwa = 7B«

with the restriction
det(fas) = F(t, u,w).

It appears the Lagrangian
1 Ou Ou 1
— af afB 76
L=3h <6ta - wa) (6tﬁ - ‘*’6) + S W (Dywa — 1ya)(Dsws — 1155)

subject to
det(nap) = F(t,u,w),
and the preceding theory applies.
Particularly, the Monge-Ampere equation

Ul 41 Up242 — ufltz = F(tl,t2,u, utl,th)
is equivalent to the first order PDEs system

Ut =V
U2 = W

v = V/F cos h{
Vg2 = VF sin h¢
wy = V/Fsinh(
wyz = VF cos h{

where ( is an arbitrary function of (t!,¢?,u,v,w). Let (M, g;; = §;;) be the Rieman-
nian manifold of coordinates (u,v,w), (T, hag = dap) be the Riemannian manifold of
coordinates (t!,1?) and J'(T x M) be the jet bundle of order one. In this sense, the
solutions of the previous system are extremals (potential maps) of the Lagrangian

L = (ut1 — 'U)2 + (Ut2 — UJ)2 + (Utl — \/FCOS hC)2+

+ (v = VFsinh()? + (wp — VFsinh()? + (w2 — VF cos h()?
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4 Covariant Hamilton Equations

Recall that on a symplectic manifold (@, Q) of even dimension ¢, the Hamiltonian
vector field Xy of a function H € F(Q) is defined by

Xy 1Q=dH.
This relation can be generalized as
X& Qs = +/|h|dH,

using the distinguished objects X g, 2, H on J*(T, M). For another point of view, see
also [11] and compare with [2], [3].
Theorem. The PDEs system

h‘w:cfxﬁ = gihhaﬁgjk(Vth)Xg

transfers in JL (T, M) as a covariant Hamilton PDEs system with respect to the Hamil-
tonian

1 o
H= iho‘ﬁgijw’ax']@ —f
and the non-degenerate distinguished polysymplectic relative 2—form
Q=0Q,@dt* Qu = giydz* Azl \/|hl.

Proof. Let o
0=0,0dt% 6,=gjz,dc’\/|h|
be the distinguished Liouville relative 1-form on J! (7', M). It follows
Qy = —db,.

We denote by
5 R
ath’ ozt Ot® Ol

the distinguished Hamiltonian object of the function H. Imposing

X210, = v/|h|dH,

Xy =X Xp =u

where
dH = h*P g;jaldat, — h*P g;ij(D, X1) X}dt” — h*P g XV, X} da®

we find

gijuaiéa:j — gij(suﬁdmi =dH.
@ ot

Consequently, it appears the Hamilton PDEs system

u® = h“ﬁm%
Syt ) ;
8? = ghzhaﬁgijé(Vth)
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together the condition o
h*fg;;(DyX2) X} = 0.
Theorem. The PDEs system
WPl = g™ hoP gi; (Vi XE) X + h*PFyi gl + h*P D X,
transfers in J' (T, M) as a covariant Hamilton PDEs system with respect to the Hamil-
tonian

1 o
H = ihaﬁgijmflmjﬁ - f
and the non-degenerate distinguished polysymplectic relative 2—form
Q=0Q, ®dt°,
Qo = (gi5dz’ A 623, + wijodzt A da? + gi;(DXL)dt? A da?)+/|h].

Proof. Let
0 =10, xdt*,

Oa = (gijat,dr’ — gij X\ da?)/|h]
be the distinguished Liouville relative 1-form on J(T, M). Tt follows

Oy = —db,.
We denote by
)
Xnr =X g5
) 1) dubl 9
Xﬂ — hB'y_ Bl_~ —
H 57 T 5 T Bee Bal,

the distinguished Hamiltonian object of the function H. Imposing

X% 1Q, = +/|h|dH,
where

dH = —h*Pg;;(D, X)X }dt" + h*P g;;aléai, — h*P gi; X3(Vi X1)dz¥,
we find
. . u®J . . .
giju*toz!, — gijﬁdx’ + 2wijou™'dx’ —
9ij(DpX)uidt? + h*Pg;;(Dp X} )dz? = dH.
Consequently, we obtain the Hamilton PDEs system
u® = h"ﬁmg

at
(5;? = g""h*P g X5 (VaXE) + 20" wjnau™ + h*P Dg X}
together the condition

9i§ (D, X3) (u™ = h*PX}) = 0.
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