Conformally Closed Finsler Spaces

Makoto Matsumoto

Abstract

Let S be a set of a special kind of Finsler spaces. If F” € S remains to belong
to S by any conformal change of metric, then S is called conformally closed. The
present paper is devoted mainly to studying conformally closed sets of Berwald
spaces and Douglas spaces.
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1 Introduction

Let us denote by F"™ = (M", L(z,y)) an n-dimensional Finsler space on a smooth
n-manifold M™ with the fundamental metric function L(z,y), z = (z*),y = (v*). In
the present paper we are concerned with the theory of conformal changes of metrics:

(11) F" = (Mn,L(SU,y)) - Fn = (Mnrz’(xay)); Il = eC(w)L’

with the conformal factor ¢(z).

M. Hashiguchi ([5], 1976) has developed the theory based on the new formulation
of Finsler connections initiated by the present author [9]. In the first place he found
conformally invariant tensors

(1.2) Bij = (95 — 2lily)/F, BY = F(g" —21'0%),
where F = L?/2 and (B%) is the inverse of the matrix (B;;).

Secondly he dealt with the quantities Gz (z,y), from which the Berwald connection
BI' = (G;%;,GY;) is constructed; G%; = 9;G* and G} = OyG";. On the conformal
change (1.1) he showed
(1.3) G'=G'— B"¢,, ¢, = 0pc(x).

Then the changed Berwald connection (G, GY;) of F™ is given as

(1.4) Gz] = G’l] - Birjcr, szk = G;k - Birjkcr,
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where B, = d; B and B, = O B,
Thirdly he constructed the change of the Cartan connection CI" = ( Fjik, Gij, Cji X)-
Let us denote by (|;, i) the h- and v-covariant differentiations in CI". Then he showed

F“jik — F]zk _ U"jkcr-
We treat the conformal invariants U, . Putting V7, = U, — B"},, we have
(1.5) Inr9isV" 5 = LThijr,
where the well-known T-tensor appears ([9]; [1], (3.5.3.1)), defined by
Thijk = LChijlx + (IhCijk + @ ).

Here and throughout the following we shall use, as in [14], the abbreviations to avoid
long expressions of the similar terms:

IWCijr + @ = hCijr + 1iChjr + 1iChir + 1xChrij,

heiFjk + ® = hpiFjr + hnjFig + hapFij + hijFpe + higFrj + hjp Fp;-

Then he obtained the relation between the (v)hv-torsion tensors P! ik = Cjik‘o as
(1.6) Pl =P+ V7.

A Finsler space is called a Landsberg space ([1], [9]) if P? ;& vanishes identically. As
a consequence of (1.6) with (1.5) we obtain Hashiguchi’s theorem: A Landsberg space
remains to be a Landsberg space by any conformal change of metric, if and only if
its T-tensor vanishes identically. We should like to define the notion of ”conformally
closed” by expressing this theorem as
Theorem H. A Landsberg space is conformally closed, if and only if its T-tensor
vanishes identically.

Since (1.5) shows Thijk = e4CTh,-jk, the condition 7" = 0 is conformally invariant.
Hence, if we define the two sets:

- L(n) --- Landsberg spaces of dim. n,

- L.(n) --- conformally closed Landsberg spaces of dim. n,
then any F™ € L.(n) remains to belong to L.(n) by any conformal change of metric,
while for any F™ € L(n)\L.(n) we have a function c(z) such that F™ = (M",e°L) ¢
L(n). Thus L.(n) may be said to be closed in L(n) with respect to conformal changes
of metrics.

Further we should like to use ”conformally closed” in a sense as follows: Let us
consider an F™ with the 1-form metric L(a®) where a® = a%(z)y’ are n independent
1-forms of y® [10]. Since L(a®) is assumed to be positively homogeneous in a® of
degree one, the conformal change (1.1) yields L = e°L(a®) = L(e°a®). Consequently
L = L(a®) is still a 1-form metric with @* = e°a®. This property may be said as
follows:

Proposition 1. The notion of the 1-form metric is conformally closed.

As a consequence we may say that the notion of the Riemannian metric is confor-
mally closed and any Riemannian space is conformally closed. It is also obvious that
any conformally flat Finsler space is conformally closed, because if F" is conformal to
a locally Minkowski space, then the conformally changed F™ of F™ is also conformal
to the locally Minkowski space.
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2 Conformally closed Berwald spaces, 1

In Proposition 4 of the paper [13] the present author showed interesting Berwald
spaces of dimension three:

Example 1. Berwald spaces which are respectively conformal to Minkowski spaces
with the cubic metrics L; and Ls:

(L1)? =% +9° + 2% — 3292, (L) = iys.

These Minkowski spaces (R®,L;) and (R?, Ly) have the remarkable property: Any
conformally changed spaces of these spaces are Berwald spaces.
Definition. A Berwald space is called conformally closed, if it remains to be a Berwald
space by any conformal change of metric. We denote by B.(n) the set of all conformally
closed Berwald spaces of dimension n.
Consequently the Minkowski spaces (R®,L;) and (R?, L,) in Example 1 belong
to B.(3). )
Now (1.4) leads to the conformal change of the hv-curvature tensor G ji w = 0G ji k
of BT

(2.1) éjikl = Gjikl - Big'klcﬁ B’Cm = 6.lBilec-

A Finsler space F™ is called a Berwald space ([1], [9]), if BT is linear, that is, G ji k
are functions of position alone. Therefore F™ is a Berwald space, if and only if G ji Kl
vanishes identically. Hence (2.1) shows
Proposition 2. A Berwald space is conformally closed, if and only if B“;- » vanishes
identically. o

Since B}y, = 0;0,0,B" and B™, defined by (1.2) is written as B = (L*/2)g" —
y'y?, we obtain
Theorem 1. A Berwald space is conformally closed, if and only if L?¢* are homo-
geneous polynomials in (y*) of degree two.
Remark. Compare the expression of Theorem 1 with that of the definition of Douglas
space ([3], p. 388). Both are expressions peculiar to Finsler geometry. Cf. Theorem 7.
Example 2. We deal with a Finsler space F™ with the m-th root metric L:

L™ = apia(x)y"y’ -y,

where the coefficients ap;...;(z) are components of a covariant symmetric m-tensor
([13], [14], [17], [18], [22]). We define covariant (m — r)-tensors

ani.j(2,y) = api-jp-1(@)y* -y L7,
and the inverse (a%/) of the matrix (a;;). Then a’ = a'"a, is equal to ' = y¢/L and
g9 ={a" + (m —2)a'd’}/(m - 1).

Consequently Theorem 1 leads to

Proposition 3. A Berwald space with a m-th root metric is conformally closed, if
and only if L2a% are homogeneous polynomials in (y%) of degree two.

Example 1. (1) We pay attention to the space (R’ L;) again. Putting (y') =
(&,9, ), we get
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(L1)2a11 — (y1)2 _ 4y2y3’ (L1)2(I12 — _y1y2 _ 2(93)2-

Hence Proposition 3 shows that (R®, L;) is conformally closed as a Berwald space.
(2) We consider the space (R™, L), a generalization of (R?, Ls) of Example 1,
where L, given by
" = ’I'L!yly2 . _yn’

is called the Berwald-Modr metric ([9], Proposition 24.2; [22]). H. Shimada shows
L2a11 — —TL(’I’L _ 2)(1111)27 L2a12 — nylyZ_

Hence (R", L) is conformally closed as a Berwald space.
Example 3. The ecological metric L ([1], (5.4.1.2); [22]) is given by

L™= ()™ + -+ (™)™

H. Shimada shows L2%a!! = L™/(y')™~2 and a'? = 0. Hence the Minkowski space
(R", L) is not conformally closed as a Berwald space.
Example 4. We treat a simple quartic metric L:

L4 — 6(3/1)2!}2:1}3-
3

It is easy to show typical L%a;; = 2y%y3, L2%a12 = 2y 93, ass = 0, L2%az3 = (y')?,
and we have

L2a11 — _(yl)27 L2a12 — 2y1y27 L2a22 — _4(y2)27 L2a23 — 2y2y3_

Consequently the Minkowski space (R?, L) is conformally closed as a Berwald space.
Example 5. Let us consider a Minkowski space (R?, L) with another quartic metric
L:
L4:6y1y293Y, Y:yl +y2 +y3
We have typical L?a;; = 2y%y3, L%a;2 = y3(2Y — ¢?), and hence
Da'' = L*(y")*{4y”y® — 2Y —y")’},
Da'? = L%y'y*{(2Y —y")(2Y —¢?) - 2y°(2Y — )},

where D = L*(Y2 —yly? —y%y® —y3y!). Accordingly Proposition 3 shows that (R?, L)
is mot conformally closed as a Berwald space.

Example 6. Finally we consider a Minkowski space (R®, L) with the quartic metric
L:

L' =6(y")*{(¥*)* + (v*)*}.
We have typical L%a11 = (y?)% + (v°)?, L%a12 = 2y'y?, L%as = (y*)?, a3 = 0, and
hence
L2 = —2(y')?, [2a® = 4y'y?,
L2a22 — 2{3(y3)2 _ (y2)2}, L2a23 — _8y2y3‘

Therefore (R?, L) is conformally closed as a Berwald space.
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3 Conformally closed Berwald spaces, 11

We shall write the condition 9,0;0;(Fg®) = 0, F = L?/2, stated in Theorem 1 in
terms of well-known tensors of F™.
Put Fhi...;, = Op0; -+ - O F. We have Fj; = gn; and hence g®?Fy, = 6%, from which
we obtain .
(0hg"") Fae + g*Fyen = 0,

(Or0:9°Y) Fae + (0n9°") Fici + (059" Fyen + g**Figeni = 0,
(0h0:0;9°") Fae + {(On0:9°Y) Faej + ® } + {(009°Y) Faeij + @ } + 9°Facnij = 0.

Since Fycj = 5jgdc = 2Cy.j, the above three equations give respectively

(3.1) Ang®® = —20%,,
(3.2) On0ig"® = 4(C,C.Y + CiCly) — Fh,
(3.3) On0;0;9%* = 2(F*,,C, + F*.C.5 + ® )

-8{(C,%C/; + Crbhcsai)cr; +0}- Fa[;zija

where F, = g*"g** Fop; and F 0 = g% 9" Frgpij-
Let us transvect these equations with y, = ga,y". (3.1) and (3.2) give respectively
Y.0ng%® = 0 and y,0,0;9*® = F®,, = 2C,%,. Further (3.3) yields

yaéhéiajgab = 2thij - 4(Chricrbj +O® )'

Now we have B2, .. = 0,0;0;(Fg®®) of the form
(3.4) B, = Frijg™ + (Fid;g® + F0;0;9°* + ® ) + F9,0:0;9.
Hence we have
yaBabhij = 2Chiy° + 2L(lhcibj +@®)+ F{2thij - 4(Chricrbj +®)}
In the author’s paper [14] the following equation has been given:
FFhiji = LThiji — WnCijr + @ ) + L*C%p i,

Czh,ijk = Ch.ierTk +0®,

where the tensor C?, defined first in [14], is symmetric. Therefore we obtain y, B, ; =
2LThijrg™, and consequently B*,.. = 0 implies T-tensor = 0.

This fact, T-tensor = 0, is certainly in expectation. In fact, first B, .. = 0 is the
necessary and sufficient condition for F to belong to B.(n), and B.(n) C L.(n) is
clear. Consequently Theorem H shows T-tensor = 0 of F”. We have another reason:
(2.1) gives ' . .

4Gy = €2C(injzkz —yiB" jpcr)-
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As it is well-known ([2], §2), F™ is a Landsberg space, if and only if injikl = 0.
Therefore the above implies that F™ is a conformally closed as a Landsberg space, if
and only if yiB”jkl = 0, and hence Theorem H shows that yiB"jkl = 0 is equivalent
to T-tensor = 0.

Now we shall continue to calculate B, .. = 0 from(3.4) on the assumption ”7-
tensor = 0”. By substituting from(3.1), (3.2) and (3.3), after the long computation,
we conclude

1

(3'5) §Babhij — Chijhab + (LQChriCQaij _ hz’joabh + 0 ) _ LQCGbrCthij _ Tal;”j,
where T“’;”»j = g2 gbs vshij is defined in [14] as
(3.6) 2Thije = LThijrli — (hinCijr + hiChjr + hijChik + haxChij)

+L2(Clrh02rijk + ClriCZrhjk + Czerzrhik + ClrkCZrhij)-
It should be remarked that Tp;;p, Cc? hijk and further T};;z; are completely symmetric
tensors.
Therefore we can conclude
Theorem 2. A Berwald space is conformally closed, if and only if the T-tensor van-
ishes and

(3.7)  Chiih® + (L*CYiC*; — hpiC% + ® ) = L*C"C?,i5 — T%,i5 = 0.

rhij

4 Conformally closed Berwald spaces of dimension
two

The present section is devoted to conformally closed Berwald spaces of dimension
two. Let us apply Berwald’s theory of two-dimensional Finsler spaces in terms of the
Berwald frame field (I,m) ([1], [2]). Then the angular metric tensor h;; is written as
hij = em;m; with the signature e = £1 and the C-tensor is LCh;; = Imy;; with the
main scalar I(z,y), where my;; is the abbreviation of mpm;m;. Cartan’s h-covariant
derivatives Cpj|y, is

LChijik = mnij(Laly, + Iamyg),

where I11l, + Lamy = Iy, = 0pI — (0,1)G".

F? is a Berwald space if and only if I; =15 =0. Then one of the Ricci formulae
Ii2—121 = —RI>, where Lé,-I = Iomy, yields I,» = 0 or the Gauss curvature R = 0.
It is obvious that [ = I » = I, = 0 show I = const., and a Berwald space with R = 0
is locally Minkowski. Consequently we have Berwald’s theorem ([1], Theorem 3.5.3.1;
[9], Theorem 28.2): We define five sets of Finsler spaces of dimension two such that

- B(2) - - - Berwald spaces,

- B1(2) - - - spaces with I = const. and R # 0,
- B3(2) - - - spaces with I = const. and R =0,
- B3(2) - - - spaces with I, # 0 and R =0,

- M(2)--- locally Minkowski spaces.

Then we have
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(4.1) B(2) = B1(2) N B2(2) N B3(2) (direct sum),

(4.2) M(2) = B»(2) N Bs(2).

The T-tensor is written as LT, = Lompijr ([1], [9]). Hence, if we consider the
set B.(2) of conformally closed Berwald spaces of dimension two, any F? € B.(2) has
I, = 0 and belongs to B;(2) N B(2).

We have to pay attention to the second condition (3.7). As has been shown in [14],
if I = 0 holds, then we have

chlgijk = 3612mh,-jk, LThijkl = (6]3 — 2€I)mh,-jkl.

As a consequence it is observed that (3.7) holds automatically and we obtain
Theorem 3. A Berwald space of dimension two is conformally closed, if and only if
it has the constant main scalar, that is,

(4.3) B.(2) = B1(2) N B»(2).

Remark 1. The main scalar I is conformally invariant. This will suggest Theorem 3.
Remark 2. The condition (3.7) does not give any restriction on the assumption ”7-
tensor = 0” for the two-dimensional case, as it has been shown above. This remarkable
fact is also verified from the ”Reduction theorem of certain Landsberg spaces to
Berwald spaces” ([2], [12]): If F is a Landsberg space with vanishing T-tensor, then
F? is a Berwald space. Thus we get B.(2) = L.(2).

5 Conformally closed spaces with cubic metric

We are concerned with the conformal closedness of Finsler spaces with cubic metric
L: I3 = Qhij (z)y"yty?, where api; are components of a covariant symmetric 3-tensor.
As in Example 2, we put

ani = anij(2)y’ /L, an = ani;(x)y'y’ /L7
Then we get [17]
li=ai, hij =2(aij — aia;), LChi; = anij — (aniai + @ ) + 2anaia;.

Throughout the theory of m-th root metrics ([17], [22]) the regularity of the metric,
det(a;;) # 0, is assumed. By the inverse (a'’) of the matrix (a;;) we define o’ = a'"a,
and a";; = a""a,;;. Then o’ = I* and
2LC’1-’; = ah,-j —d"a; — 5’;-a,~ + a"(2a;a; — aij).
The C2-tensor, defined in (3.5) is written in the form
2L202hijk = (ahi’f‘arjk — apiajr + @ )

(5.1)
— 3(anaijx + @ ) + 4(anaiaj, + ® ) — 12ana;a a4
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_ As has been shown in [17], the characteristic property of the cubic metric is
Op0;0;0, L = 0, from which we obtain the theorem: A Finsler space is equipped
with cubic metric, if and only if its T-tensor has the form

2LThijr = —2L°C%i50, — (hnihjk + ® ).

Therefore Theorem H leads to the theorem: A Landsberg space with cubic metric is
conformally closed, if and only if

(5.2) 2L2C%ij1, + (hnihjr + ® ) = 0.
In the case of the cubic metric we have
hnihjr + @ = 4(aniajr + @ ) — 4(anaiajr + ® ) + 12ana:a;ar.
This together with (5.1) leads (5.2) to the concrete form
(5.2') (ahirarjk + 3aniajr + @ ) - 3(aha,~jk + @ ) =0.

However the Reduction theorem has been shown in [13]: If F™ with cubic metric
is a Landsberg space, then it is a Berwald space. Therefore we have finally
Theorem 4. A Berwald space with cubic metric is conformally closed, if and only if
its T-tensor = 0, that s, (5.2) or (5.2") holds identically.

Remark. If the T-tensor = 0, then from (5.2) we get the following form of Th;jxi,
defined by (3.6):

2Thije = —(hniCim + @ ).
Then it is easy to show that the condition (3.7) holds automatically.
Example 1. We consider the Minkowski spaces, treated in Example 1 again.

(1) (R, Ly), (L1)® = (") + (¥»)°® + (v°)° — 3y'y?y°.
We have

(L1)2a111 = (y1)2 — 4%y, (L1)2a112 = {y1y3 + 2(1/2)2}/27
(L1)2a122 = _{y1y2 + 2(93)2}7 (L1)2al23 = _{(yl)z - 4?/2?/3}/2-
Consequently (5.2') gives Th111 = T2 = Ti122 = Ti123 = 0, that is, Thie =
0, hoi,j,k=1,2,3.

(2) (R®,Ls), (L2)® =y'y?y°.
We have

a'yy =ay =0, (L)’a'y, =y'y’/2, (L2)2a123 =—(@y")?*/2.
Similarly to (1), we get Thijx = 0.
The space (R?, Ls) has C; = C,". = 0 ([9], Proposition 24.2). Similarly (R, L;)
has C; = 0.
The necessary and sufficient condition for a Finsler space with cubic metric to be

a Berwald space has been discussed in §2 of [13], but it is a difficult problem to write
the condition in terms of the coefficients a;ji(z). Here we write the equation

LahrGiTjk + (ahirGjrk +@® ) = {ijk,h}

where G}, is the hv-curvature tensor of the Berwald connection and {ijk,h} are
generalized Christoffel symbols, defined first in [18].
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6 Conformal closedness of Berwald spaces with
(o, B)-metric

We consider a generalized Randers space F™ [20], which is a Finsler space with (a, 8)-
metric L(a, 8) ([1], [9]). If we deal with a conformal change of metric (1.1), then we
have

L =e‘L(a, f) = L(e‘a, eP),
because L(a, ) is assumed to be positively homogeneous in («,3) of degree one.
Consequently we get L = L(a,f), (@) = (e°a,e’B) [6], and hence the changed
space F™ is still a generalized Randers space. Therefore, similarly to the case of the
1-form metric, we have
Proposition 4. The notion of the generalized Randers space is conformally closed.

We now consider a Randers space F™ with L = a + . Theorem 4 of the paper [8]
states that if F* has the T-tensor = 0, then g should vanish, that is, F" is reduced
to a Riemannian space with the Riemannian metric a. Therefore Theorem 2 leads to
Theorem 5. If a Randers space is conformally closed Berwald space, then it is a
Riemannian space.

Here we shall show a direct proof of this theorem. A Randers space F™ with
L=a+p, o®=a;(@)y'y’, B=>b;(z)y’, is a Berwald space ([7], [8]), if and only if
bi;; = 0 in the Levi-Civita connection {,in x(2)} of the associated Riemannian space
with a. The conformally changed space F™ of F™ has @;; = e®a;; and b; = e°b;. From
ﬁjik = ’yjik + 6%en + 0%¢j — caj, cr = Oke, ¢ =a"c, we have

(61) bi;j = ec(bi;j - Cibj + brc’"a,-j).

If both F™ and F™ are Berwald spaces, then (6.1) gives c.(b"a;; — 8%b;) = 0. If
this is satisfied for any c(z), then we have b"a;; = 6";b;, which implies b; = 0. Thus
we proved Theorem 5.

Secondly we consider a Kropina space F" with L = «?/8. Theorem 2 of C.
Shibata’s paper [21] states that the T-tensor of F™ never vanishes. Therefore we
have
Proposition 5. A Kropina space is not a conformally closed Berwald space.

We shall treat a conformal change of a Kropina space of Berwald type in detail.
A Kropina space F™ is a Berwald space ([7], [10], [21]) if and only if we have function
fi(z) satisfying

(6.2) bi;j = frbraij + bifj - bjfi, b = a”bi.
The conformally changed Kropina space F™ is also assumed to be a Berwald space:
bij = frb7ai; + bif; — bj fi = e°(f-b"as; + bifj — b; fi).

We have (6.1) and (6.2), and hence the above gives

(fr = fr — )b as; = (fi — fi — ci)bj — (f; — f;)bi-

This yields @f, —2fi —¢i)bj = (2f; — 2f; — ¢;)bi, so that we have a function x(z)
satisfying 2f; — 2f; — ¢; = 2kb;. Hence (¢, — 2kb,)b"ai; = bicj + bjc;, and n = 2 is
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necessary, provided (¢, — 2kb,.)b" # 0. In the case of n > 2 we have ¢; = 0. Therefore
we have

Theorem 6. Let a Kropina space F", n > 2, be a Berwald space. The confor-
mally changed Kropina space F™ is still a Berwald space, if and only if the change is
homothetic.

7 Conformal change of Douglas spaces

A Tinsler space is by definition a Douglas space ([3], [4]), if D¥ = Gyl — G'y* are
homogeneous polynomials in (y?) of degree three.
Definition. A Douglas space is called conformally closed, if it remains to be a Douglas
space by any conformal change of metric.

For a conformal change (1.1) we have (1.3). Thus, for DY we get D¥ = D% —
Diir¢,, where D¥™ = Byl — BiTyt. From (1.2) we have

(7.1) DT =F(g"y’ —¢'"y"), F=L?/2.

Therefore we have
Theorem 7. A Douglas space is conformally closed, if and only if DY of (7.1) are
homogeneous polynomials in (y?) of degree three.

It is shown [3] that a Finsler space is a Douglas space, if and only if the projective
invariants Q' = G* — G".y'/(n + 1) are homogeneous polynomials in (y¢) of degree
two. (1.3) and (1.4) show

Qz- — Qz _ {Bzr _ BTssyi/(n + 1)}67--

Consequently we have
Proposition 6. A Douglas space is conformally closed, if and only if BY — BI" y¢/(n+
1) are homogeneous polynomials in (y¢) of degree two.
We treat a Kropina space with L = o?/f again. Since a two-dimensional Kropina
space is Douglas space without any restriction [3], we have immediately
Theorem 8. A two-dimensional Kropina space is a conformally closed Douglas space.
For a Kropina space of arbitrary dimension we have ([9], [21])

2(a/B)%g" = a¥ — b7 /b + (2B/b%a2) (b'y’ + biy') + (2/b%at)(bPa® — 28%)yiy’.
Hence we have
2D%* = {a®a®™ /2 — (? /20°)b'VF + (B/6*)biy* Yy —[i, ],

where [i, j] denotes the interchange of ¢, j. Thus Theorem 7 yields
Theorem 9. If a Kropina space F™, n > 2, is Douglas space, then it is a conformally
closed Douglas space.
If we consider a conformal change of an («, 3)-metric, then we get L = e°L(a, §) =
L(a, ), where
a=e‘a ((_lij = ecaij); B =e°f (l_), = e°b;).
For Sij = (6jb,’ — 6,1)])/2 we get

(7.2) 5ij = e“{sij + (bic; — bjci) [2}.
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We are concerned with the conformal change of a Randers space F™ with L = a+p.
F™ is a Douglas space [3], if and only if s;; = 0, that is, there exists locally a function
b(x) such that b; = 9;b. Then (7.2) is reduced to 5;; = e°(b;c; — bjc;) /2. Hence we get
5;; = 0, that is, F™ is still a Douglas space, if and only if bic; — bjc; = 0, that is, ¢; is
proportional to b;. Therefore we have
Theorem 10. Let F™ be a Randers space of Douglas type with L = a + 3, provided
that B = (0;b(z))y® # 0.

(1) The conformally changed F™ is not of Douglas type in general.

(2) F™ is also of Douglas type, if and only if the conformal factor c(x) is such that
0;c is proportional to Ob;.

From (7.2) it is follows that if we put s; = b"s,;, then we get
8; = 8; + (bQCi — brcrb,’)/2, b = brbr,
8ij — (bi5; — 0;8:) /b = e{sj — (bisj — bjs:) [V}

Consequently, if F™ has s;; — (bis; — b;s;)/b? = 0, so is the conformally changed F™.
The condition s;; — (b;s; — bjs;)/b® = 0 is necessary and sufficient for a Kropina space
F™, n > 2, to be a Douglas space [16]. Therefore we could obtain another proof of
Theorem 9 not due to Theorem 7.
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