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Abstract
Set estimation has to do with the statistical reconstruction of sets

from random set of points. This theory is closely related with nonpara-
metric functional estimation as well as with stochastic geometry. A non-
exhaustive expository overview of set estimation theory is given. The aim
is to present the basic ideas, some typical tools involved in the theory and
a few applications. Most technicalities are omitted or summarized.
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1. Introduction
The use of geometry tools is customary in di�erent areas of statistics (multi-

variate regression, classi�cation, clustering, principal component analysis, spatial
statistics, stereology, study of parametric families, etc.). This paper is devoted
to set estimation, a relatively young chapter of the modern mathematical statis-
tics where geometry plays a essential role, not only as a source of auxiliary tools
but also as a major motivation. Roughly speaking, this theory deals with the
estimation of a set S ⊂ Rd in the Euclidean space from a random sample of
points X1 . . . , Xn.

In a way, set estimation is the geometric counterpart of the classical theory
of nonparametric functional estimation (e.g., Simono�, 1996). In both theories
the estimators typically depend on a sequence of smoothing parameters, the
theoretical results make special emphasis on asymptotic properties, especially
consistency and convergence rates, and the overall aim is to get results as general
as possible in the sense that they typically hold under very general conditions
(for example, no normality assumption is made) for a general dimension d. The
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main di�erences with respect to nonparametric functional estimation are related
to the much stronger geometrical motivation behind set estimation. Since in this
theory the target is estimating sets, rather than functions, it is natural that the
distances between sets, as well as the geometrical conditions concerning their
shapes, play here an important role. As a consequence, set estimation is in
the intersection of nonparametric statistics, stochastic geometry and geometric
measure theory.

The aim of this work. Our purpose here is to provide a short overview, by no
means exhaustive, of the state of the art in set estimation theory. The style will
be mainly expository, in order to convey the main ideas and some applications.
Therefore, most technical aspects are omitted or brie�y summarized and no
attempt is made to give a complete bibliography. For a much more detailed
survey the reader is referred to Cuevas and Fraiman (2009).

2. What is set estimation about?
We will outline here some typical problems of interest in set estimation, in

particular those concerning the estimation of the support, the level sets, the
support boundary and some related functionals.

Some notation. In what follows X1, . . . , Xn will denote a sample of a Rd-valued
random variable X, whose distribution will be denoted by PX . When X is
assumed to be absolutely continuous, f will stand for the corresponding density.
The Lebesgue measure will be represented by µ. The closed ball with center
x and radius r will be denoted by B(x, r) and, for S ⊂ Rd, B(S, ε) will stand
for the parallel set B(S, ε) = ∪x∈SB(x, ε). When convenient, the set of sample
points will be denoted by ℵn.

Support estimation. Some simple estimators. This is perhaps the simplest,
more direct, set estimation problem: Here the target S is the support of the
distribution PX in Rd. We want to approximate S from a sample X1, . . . , Xn of
random observations drawn inside S. The question of how to construct a suitable
estimator of S has a quite natural response if S is assumed to be convex. Then
the convex hull of the sample, Sn = conv(ℵn) provides a simple estimator. This
is just the intersection of all convex sets including ℵn. It provides always an
estimator �from the inside� but this bias is not important from an asymptotical
point of view.

The estimate Sn = conv(ℵn) has received attention in the literature since at
least �fty years ago. See e.g., Schneider (1988) and references therein. See also
Dümbgen and Walther (1996) and Reitzner (2003) for more recent references.
Clearly, the assumption of convexity is very restrictive for many purposes but
still the convex hull is an important set estimator not only for historical reasons.
As we will see below some of the key ideas in set estimation are borrowed from
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the �eld of convex analysis.
If S is not convex there are still several simple estimators which do the job

under very general conditions on S. For example the Devroye and Wise (1980)
estimator (see also Chevalier, 1976, Korostelev and Tsybakov, 1993 and Cuevas
and Rodríguez-Casal, 2004),

Sn =
n⋃

i=1

B(Xi, εn), (2.1)

is just a sort of �dilated� version of the sample ℵn, where εn is a sequence of
smoothing parameters which must tend to zero, but not too quickly (nεd

n →∞)
in order to get a consistent estimation as n →∞ (see Devroye and Wise, 1980).

Figure 1 shows the the convex hull (left) and the Devroye-Wise estimator
for the same random sample of size n = 40. Not surprisingly, both estimators
have very di�erent appearances as the �rst one incorporates the assumption of
convexity.

Figure 1.- Support estimation using the convex hull and Devroye-Wise estimator

Other more sophisticated estimators are considered, e.g., in Cuevas and
Fraiman (1997) relying on the use of an auxiliary non-parametric density es-
timator (e.g., of kernel type; see Simono�, 1996). If f is the underlying density,
the support coincides essentially (at least in regular cases) with the set {f > 0}.
So one could think of estimating the support by using a sequence Sn = {fn > cn}
where cn is a suitable numerical sequence cn ↓ 0. Note that if the underlying
support is compact and the auxiliary estimators (as it is often the case) have an
unbounded support the simplest choice cn = 0 would be in general inappropriate.

Level set estimation. The plug-in approach. In many cases the support S of
the underlying density is not of special interest since an important part of S

is �almost empty� from the probability point of view. In other words if the
distribution is absolutely continuous with density f , the areas of the support
where f is very close to zero are usually of lesser interest for many practical
purposes since the probability of �nding points there is extremely low. In these
situations it could make sense to consider c-level sets of type L(c) = {f ≥ c}
(where c > 0 is a given constant) that might be considered as the �substantial
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support�. Thus, the estimation of density level sets (or even regression level sets
where f is replaced for a regression function) is another typical concern in set
estimation.

The estimators of plug-in type are a natural choice in this problem. They
have the general form {fn ≥ c}, where fn is a nonparametric estimator of f . See,
e.g., Cadre (2006) for a recent deep study on this class of estimators. Another
approach, especially suitable for �smooth� level sets is proposed in the interesting
paper by Walther (1997).

Figure 2.- A bivariate density and its level sets.

Boundary estimation. To estimate a set is not exactly the same as estimating its
boundary. This is a more di�cult task. To see this note that, depending on the
considered criterion (see subsection 3.1 below), the sample ℵn = {X1, . . . , Xn}
itself is a consistent estimator of the support S but in general it is not a satisfac-
tory boundary estimator in the sense that the boundary of ℵn will not approach
that of S. However, the estimation of the boundary is perhaps the most interest-
ing task in many instances, for example in problems related to image analysis. It
is intuitively clear that the boundary ∂Sn of the Devroye-Wise estimator (2.1)
could provide a good estimation of ∂S provided that S is not too complicate
and the sequence of smoothing parameters {εn} converges to zero slowly enough.
This problem has been considered in Cuevas and Rodríguez-Casal (2004); see
subsection 3.3 below.

Estimation of support functionals. In some cases the interest is focussed on a
speci�c functional Φ(S) of the support S (e.g., the Lebesgue measure, the gravity
center, the boundary measure of S,...). A recent example is the work by Cuevas,
Fraiman and Rodríguez-Casal (2007) on the estimation of the measure of the
boundary of S, as de�ned by the so-called Minkowski content. See also Cuevas
and Fraiman (2009) for further details and references.

3. The mathematical setup
We brie�y summarize, in a few schematic features, the main mathematical

tools and results involved in set estimation.
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3.1. Distances between sets
So far, most typical results in set estimation are of consistency type:

D(Sn, S) → 0, as n →∞, either in probability or almost surely,

where D is a suitable distance between sets. Even more interesting are the
results on the rate (or speed) of convergence of Sn towards S, of type

D(Sn, S) = OP (Rn), or D(Sn, S) = O(Rn),with probability one,

where Rn is a numerical sequence Rn ↑ ∞ and, as usual, the notation O is used
to represent the convergence order while OP denotes �order in probability�.

There are two main distances used for this type of result. The �rst one is
the distance �in measure� de�ned, for bounded Borelian sets, by

dµ(Sn, S) = µ(Sn∆S),

where the symbol ∆ denotes the usual symmetric di�erence and the Lebesgue
measure could be replaced with another measure of interest in the problem.

Another typical distance is the Hausdor� metric, de�ned by

dH (Sn, S) = inf {ε > 0, S ⊂ B(Sn, ε), Sn ⊂ B(S, ε)}
= max

{
sup

x∈Sn

inf
y∈S

‖x− y‖, sup
y∈S

inf
x∈Sn

‖x− y‖
}

.

This distance re�ects a di�erent, more �visual� notion of closeness between com-
pact sets. It has been often used in image analysis and fractals theory.

3.2. Geometric conditions that de�ne nice sets
From the geometrical point of view, the family of bounded Borelian sets in

Rd is a �monters parade� which includes extremely complicate hard-to-imagine
sets. There is little hope to properly reconstruct most of these strange sets using
statistical methods, unless we are willing to accept very rough approximations
which do not identify many relevant features. So, there is a natural need to
impose some conditions oriented to identify di�erent classes of �nice� sets for
which the statistical approximations are better suited.

In this section we list and brie�y comment some of these properties. All of
them have a clear geometric and intuitive character together with some deep
mathematical implications. All of them have, we think, some independent in-
terest besides its application to set estimation.
Standardness. This restriction typically arises (sometimes under slightly di�erent
versions and names) in set estimation and stochastic geometry. In intuitive terms
it establishes that every ball of small enough radius centered at a point of S has



76 A. Cuevas

at least a �xed proportion of it inside S. Formally, S is µ-standard if there exist
ε0 > 0 and δ > 0 such that for all x ∈ S and ε ≤ ε0

µ(B(x, ε) ∩ S) ≥ δµ(B(x, ε)). (3.1)

There are di�erent versions of this property: For example it can be imposed
�from the outside�, by replacing S with the complement Sc in (3.1); also, the
measure µ in the left-hand side of (3.1) could be replaced with another suitable
measure (e.g., the distribution PX of the random variable which generates the
sample). The �house-shaped� set of Figure 3 (left) is standard; the set shown in
the right is not standard as the condition fails in the sharp �non-linear� peaks.

Figure 3.- The �house� ful�lls standardness assumption, the �spiky� set on the right doesn't

The assumption of standardness appears often in set estimation. For exam-
ple, in order to study the dH -convergence rate at which the d-variate sample
ℵn = {X1, . . . , Xn} tends to the (compact) support S, let us take any ε > 0 and
assume that S is PX -standard. Consider a minimal covering C(ε) = {B1, B2, . . .}
of S (with cardinality N(ε)) by closed balls of radius ε with centers in S. Then,

P{dH(ℵn, S) > 2ε} ≤ P{there is a ball in C(ε) with no sample point inside}
= P

{
∪N(ε)

k=1 ∩n
i=1 {Xi /∈ Bk}

}
≤ N(ε)max

k
(1− P{X1 ∈ Bk})n

= N(ε)(1−min
k
P{X1 ∈ Bk})n

(∗)
≤ N(ε) exp(−nδωdεd)

(∗∗)
≤ Cε−d exp(−nδωdεd). (3.2)

Inequality (*) follows from the standardness property P{X ∈ Bk} = PX(Bk) ≥
δµ(Bk) = δωdε

d, where ωd = µ(B(0, 1)), together with the inequality (1−x)n ≤
exp(−nx), for 0 ≤ x ≤ 1. For (**) we have used the fact that N(ε) ≤ Cε−d,
where C is a constant which depends on the set S.

This conclusion is useful in several aspects. First, it provides a qualitative
assessment for the proximity between ℵn to S. Second (and more importantly), it
helps to get convergence rates, (in probability or almost surely) for dH(ℵn, S). If
we show RndH(ℵn, S) → 0 (either almost surely or in probability) for a numerical
sequence 0 < Rn ↑ ∞ we may ensure that dH(ℵn, S) goes to zero (a.s. or
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in prob.) at a rate faster than R−1
n . Thus, under the assumed standardness

condition, the bound (3.2) allows us to directly show that RndH(ℵn, S) → 0, in
probability, for any Rn = nq with 0 < q < 1/d. Finally, a bound of type (3.2),
based on a similar reasoning, is also involved in the obtention of convergence
rates for the simple estimator (2.1) and other usual set estimators.
Rolling property. This is a smoothness property which is established in purely
geometrical terms, without any explicit use of di�erentiation concepts. A closed
set S is said to ful�ll the (inner) rolling property if �a ball can roll freely along
the boundary, from inside, having contact with all the boundary points�. In
formal terms: There exists r > 0 such that for all x ∈ ∂S there is a ball B(a, r)
such that x ∈ B(a, r) and B(a, r) ⊂ S. Of course, an �outer rolling property�
could be similarly de�ned by imposing the above condition on Sc.

Figure 4.- A set with no rolling property (left) and with the outer rolling property (right).

It is clear that the rolling property must have an interpretation in terms
of di�erentiability properties. This is done in Walther (1999). As for its use
in set estimation we refer to Walther (1997) which provides fast convergence
rates for the estimation of level sets under a rolling property, and Cuevas and
Rodríguez-Casal (2004) where this property is used to establish an inequality of
type dH(∂S, ∂B(S, ε)) ≤ ε, for ε small enough, which is particularly useful in the
problem of boundary estimation.
Reach condition. The reach of a closed set S ⊂ Rd is de�ned as the largest
(possibly ∞) value r0 such that if x ∈ Rd \ S and the distance from x to S is
smaller than r0, then S contains a unique point nearest to x. Every compact
convex set S ⊂ Rd has positive reach, in fact for these sets reach(S) = ∞. So
the positive reach condition can be seen as a generalization of convexity. This
situation is quite common in set estimation and, more generally, in stochastic
geometry: Although convexity is a too restrictive property for many purposes, it
is also an extremely rich and natural condition which can be useful in di�erent
ways just identifying some key features of convex sets and de�ning the respective
classes of sets which ful�ll these properties. This leads to de�ne di�erent types of
generalizations of convex sets (star-shaped sets, sets with positive reach, etc...)
which are still �intuitive� and easy to handle.

This condition is closely related to the rolling property as well as with the
α-convexity considered below. See Pateiro-López (2008, Appendix A) for details.
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The reach condition was introduced by Federer (1959) to get an interesting
generalization of Steiner's theorem: This result establishes that for a compact
convex set, the �volume function� V (ε) = µ(B(S, ε)) is a polynomial in ε of order
d. Federer (1959) has proved that if S is a bounded closed set with reach(S) =
r0 > 0 then V (ε) is a polynomial of order d for ε ∈ [0, r0). This assumption
on the structure of the parallel set is useful sometimes in set estimation (see
Cuevas, Fraiman and Rodríguez-Casal, 2007).

The set on the left of Figure 4 does not satisfy the positive reach condition
since all the points on an upper vertical half-line with origin in the middle-vertex
have two projections on the set.
α-convexity. As mentioned above, the wealth of interesting properties of the
convex sets is a continuous source of inspiration in order to identify �nice� classes
of sets for di�erent purposes. Thus a useful class of sets is obtained by recalling
that a closed convex set S can be obtained as the intersection of the halfspaces
which contain S. Now, if we replace the halfspaces with the complements of
balls of radius α we get the following de�nition: A closed set A is said to be
α-convex if A = Cα(A), where

Cα(A) =
⋂

int(B(x,α))∩A=∅
(int(B(x, α))c

is called the α-convex hull of A. It can be seen that a closed convex set is α-
convex for all α > 0. The reciprocal is true when A has non-empty interior (see
Walther, 1999).

The interesting fact is that an α-convex support S has a natural hull-type
estimator from a sample ℵn = {X1, . . . , Xn} which is just the α-convex hull of
the sample points, Sn = Cα(ℵn). The properties of this estimator have been
recently studied by Rodríguez-Casal (2007) and Pateiro-López (2008).

Figure 5.- α-convex set (left), α-convex hull of a random sample (right)

3.3. Some results
We will summarize here a few typical results and methods which �t the scope

of this limited survey. They have not been selected according to any hierarchy of
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importance, as other similar results could have been selected instead. The only
purpose is to convey, through a few �ashes, a general idea on the atmosphere in
set estimation. Many technical details will be omitted.
On convergence rates for particular classes. To our knowledge, the �rst mono-
graph on set estimation with a nonparametric approach is the book by Korostelev
and Tsybakov (1993) which includes a survey of the theory and a compilation of
the authors' work on the subject. In particular, the estimator (2.1) is studied in
that book under the title �A simple and rough support estimator� (section 7.2).
It is shown there that if the Xi are uniform on S and S belongs to a certain class
G of sets with piecewise Lipschitz boundaries, a suitable choice of the smoothing
parameters εn gives a uniform convergence rate of type

sup
S∈G

Edµ(Sn, S) = O
(

log n

n

)1/d

. (3.3)

This kind of results are typical in set estimation: If the target set is nice
enough we can guarantee a certain convergence rate. That obtained in (3.3)
is also quite usual: If we ignore the logarithm factor, the rate is essentially
n−1/d, which deteriorates quickly as d increases (this is the so-called �curse of
dimensionality�).
A result of consistency with rates for boundary estimation. The Devroye-Wise es-
timator Sn = ∪iB(Xi, εn) is also studied in Cuevas and Rodríguez-Casal (2004).
This authors consider the natural problem of �nding conditions under which the
boundary of Sn will approximate the boundary of S. It is clear that a condition
on the minimum size of εn is required. The precise answer given in that paper
(Prop. 1 and Th. 4) is as follows:

Assume that S is standard with respect to PX (i.e., PX(B(x, ε)) ≥ δµ(B(x, ε))
for x ∈ S and ε small enough). Assume also that S ful�lls the (outer) rolling
property, and

εn = C

(
log n

n

) 1
d

, for some C >

(
2

δωd

) 1
d

, ωd = µ(B(0, 1)).

Then, with probability one, dH(∂Sn, ∂S) ≤ εn and dH (Sn, S) ≤ εn, eventually.
An image analysis model with auxiliary variables. Mammen and Tsybakov (1995)
consider a model with auxiliary variables for S ⊂ [0, 1]d. The sample data are
of type (Xi, Yi), i = 1, . . . , n with Yi = (21{Xi∈S} − 1)ξi, where the ξi are
i.i.d. random variables, independent from the Xi, taking values 1 and -1 with
probabilities 1/2 + an and 1/2 − an, respectively, an being a sequence with
0 < an < 1/2. The value Yi is interpreted as the image level (in the grayscale)
at the point Xi; the black is codi�ed by Yi = 1 and the white for Yi = −1; 1A

stands for the indicator function of A.



80 A. Cuevas

The paper is mainly concerned with the best attainable rates rather than with
the explicit construction of the optimal estimates. However, the information on
optimal rates is still interesting for practitioners as it sheds some light on the
intrinsic nature of the problem at hand. More speci�cally, assuming that ∂S has
a smooth parametrization, Mammen and Tsybakov (1995) derive the expression
of the asymptotically optimal dµ-rates for the estimation of S, which depend
on the smoothness degree of the boundary parametrization. As these authors
point out, the requirement of smooth parametrization does not entail that the
boundary itself is smooth. So the results are quite general. They extend those
obtained in Korostelev and Tsybakov (1993) for classes of sets de�ned as the
hypograph of a smooth function (these sets are sometimes called �boundary
fragments�).

The excess-mass methodology. This is an important idea in level set estimation,
useful to incorporate into the estimators shape restrictions on the nature of the
target (density) level set L(c) = {f ≥ c}. It relies in the observation (see Har-
tigan, 1987) that the functional Hc(B) =

∫
B

(f(x) − c)dx = P (B) − cµ(B) is
maximized by the level set L(c). Then if B is a given class of sets, a natural
estimator Ln(c) of L(c) under the shape restriction L(c) ∈ B would be the max-
imizer on B of the empirical excess mass Hc,n(B) = Pn(B) − cµ(B). Hartigan
(1987) considered the case where B is the class of convex sets and proposed and
algorithm involving O(n3) steps to obtain Ln(c).

Asymptotic results for the estimator restricted to much more general classes
B are given by Polonik (1995) using the empirical process theory.

4. Some connections with other topics
Set estimation has an �indirect� application in the problem of supervised

classi�cation where the optimal solution is essentially given by a (regression)
level set; see e.g., the survey by Cuevas and Fraiman (2009) for more details
and references. However, we will limit ourselves to some situations in which the
estimation of a set is a �rst natural step in the data analysis.

Exploratory data analysis. Clustering. In some cases, set estimation can be
helpful in the visualization of a large mass of data. For example, in Cuevas,
González-Manteiga and Rodríguez-Casal (2006) it is considered the analysis of
a large data set consisting of more than 11000 double stars identi�ed during the
period 1989�1993 by the satellite Hipparcos of the European Space Agency. The
positions of these stars are projected on the unit sphere of the tri-dimensional
space so that in fact their distances are not considered, only the directions are
relevant. Thus, we deal with a sample of 11749 points on the unit sphere (this is
an example of the so-called �spherical� or �directional� data). Several interesting
questions could be raised in connection with this data set. For example, one
could ask whether the distribution of the stars is similar in both northern and
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southern hemispheres. If we want to have a visual idea of the structure of this
data set, the simple representation of these points projected on the sphere is
not very useful as we only can see a huge mass of points which covers almost
completely the sphere surface. Figure 6 (left) shows such a representation for a
sample of 500 randomly chosen stars. It can be seen that, even for this reduced
data set, such a direct representation does not allow us to draw any precise
idea. Level set estimation provides a reasonable alternative. For example one
could estimate the level sets L(c) = {f ≥ c}, f being the �true� underlying
density on the sphere, for di�erent values of c. The estimates could be of type
Ln(c) = {fn ≥ c} where fn denotes a suitable density estimator for spherical
data. Figure 6 (right) shows such a level set (for c = 0.2). It appears as a
few close small areas in the southern hemisphere. No element is found in the
northern hemisphere for this value of c. This suggests that the distribution
is not identical in both hemispheres (as it is indeed the case). Of course, a
much more complete analysis would be needed for a better understanding of
this phenomenon but these few hints provide an idea of the usefulness of level
set estimation techniques.

Figure 6.- Positions of 500 double stars in the unit sphere (left) and estimated level set in
the southern hemisphere (right).

Another related more speci�c application is cluster analysis. The purpose
of this wide methodology is to classify a (usually large) data set into several
subsets (clusters) which are relatively di�erent from each other but internally
�homogeneous� in the sense that they are made of �similar� observations. The
most popular clustering procedure is maybe the k-means algorithm which is
based in a distance criterion which tends to provide �globular� clusters de�ned
around suitably chosen �centroids�.

Sometimes the nature of the data under study leads to consider clusters of
very di�erent shapes, not necessarily globular. This is the case, for example,
in astronomy where the analysis of clusters of galaxies is an interesting subject
and the shape of the clusters is a relevant fact. Set estimation appears in some
�shape oriented� cluster techniques where the starting point is Hartigan's de�ni-
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tion of the (population) c-clusters as the connected components of the level set
L(c) = {f ≥ c}. These population clusters can be estimated with their empirical
counterparts in Ln(c) = {fn ≥ c}. Finally, the data could be grouped accord-
ing to the empirical clusters they belong. See Cuevas, Febrero and Fraiman
(2000) for a development of these ideas. See also Jang and Hendry (2007) for
an interesting application in astronomy.
An application in economics: The e�cient frontier problem. One can think that
a company transforms some inputs x (capital investments, human resources, etc.)
into an output y (capital gains). The e�ciency of this company can be measured
by the di�erence g(x)− y between y and the �best attainable output� associated
with the input x, which is de�ned by some function g(x). In practice, g(x) is not
exactly known so that it must be estimated from a sample (x1, y1), . . . , (xn, yn)
corresponding to the performances of n randomly selected companies.

This problem amounts to the estimation of the �upper boundary� of the
hypograph set

S = {(x, y) : x ∈ S0, y ≤ g(x)} ,

where S0 is the set of all possible inputs. Note that the sample data are taken
in S.

This is a relevant problem in the �eld of productivity analysis which has mo-
tivated a considerable amount of literature since the pioneering paper by Farrell
(1957). It is often tackled assuming di�erent monotonicity-type or concavity
assumptions on g or convexity on S. See e.g., Simar and Wilson (2000) for more
details and references.
Statistical Quality Control. The basic idea is as follows: Assume that we se-
quentially get independent observations X1, X2, . . . from a d-dimensional ran-
dom variable X, for example, certain quality characteristics of a manufactured
item. This process will be monitored in order to detect a potential change in
the distribution of X.

Typically the process is �in control� along a initial period where the observa-
tions follow a distribution F , with density f . So we may assume that we have a
�pilot� sample X1, . . . , Xn of F from a monitoring (in control) period. At some
stage, the process may run out of control and the distribution of the Xi's changes
to G. The aim is to detect a real change in the distribution of subsequent ob-
servations Xn+k, k ≥ 1, as quickly as possible. This is a relevant problem in
applied statistics which has received constant attention in the literature. Many
tools have been developed for this and related problems, starting from the well-
known Shewhart charts. The possible usefulness of set estimation in these quality
control or detection problems was �rst pointed out in Devroye and Wise (1980).
In short the idea is to use a level set estimator Sn = {fn ≥ cn}, based on the ob-
servations X1, . . . , Xn and to raise an alarm for Xn+k when Xn+k /∈ {fn ≥ cn}.
The constant cn can be chosen in order to approximately get a given probability



Set estimation: Another bridge between statistics and geometry 83

of false alarm α. Thus, set estimation o�ers a sort of nonparametric multivariate
alternative to the classical Shewhart charts.

Further references and details can be found in Baíllo and Cuevas (2006).

Image analysis. The reconstruction of a set from a random sample of points has
some obvious reminiscences from image analysis. For example, one could think
of estimating the habitat of a plant or animal species from a sample of elements;
see, e.g., De Haan and Resnick (1994). A more recent reference with an image
analysis motivation is Ray Chaudhuri et al. (2004).
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