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Abstract
Transfer function models are widely used in engineering and in eco-

nomics. In this article, an automatic procedure is proposed to identify
such models. The proposed procedure can directly handle nonstationarity,
outliers and other deterministic e�ects such as Trading Day or Easter. The
procedure is applied to one simulated series and one real series.
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1. Introduction
In economics and other disciplines investigators often employ transfer func-

tion models. In its simplest form, a transfer function model can be written
as

yt = C + ν(B)xt + nt, (1.1)

where yt is the output series or endogenous variable, xt is the input series or
exogenous variable, nt is the disturbance series that is uncorrelated with xt, ν(z)
=

∑∞
i=0 νiz

i is a �lter, usually rational, that is applied to the input xt, B is the
backshift operator, Byt = yt−1, and C is a constant. For example, when xt is
a leading indicator, an equation like (1.1) is often used by economists either to
describe the relationship between yt and xt, or to improve the forecasting per-
formance of yt, or both. The improvement in forecasting is particularly relevant
if the turning points of yt can be anticipated from those of xt.

The input variable, xt, in (1.1) is assumed to be strongly exogenous (Har-
vey, 1989, pp. 374�375). This means that xt can be treated as �xed and the
parameters in (1.1) can be estimated independently of the parameters in the
model followed by {xt} if {xt} is stochastic. Thus, even if {xt} is stochastic and
follows a well speci�ed model, the unknown parameters contained in the initial
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conditions to obtain the �ltered series zt = ν(B)xt must be estimated using the
model (1.1) and not the model followed by {xt}.

In this article, a new automatic procedure is proposed to identify transfer
function models. This procedure has been in use at the Ministry of Economics
and Finance of Spain for forecasting purposes for some time. It has been pro-
grammed by the author in MATLAB and the results so far are satisfactory.

The outline of the article is as follows. Section 2 brie�y reviews transfer func-
tion models. Section 3 describes the proposed automatic procedure to identify
transfer function models. In Section 4 we illustrate the proposed procedure with
one simulated and one real example.

2. Brief Review of Identifying Methods for Transfer
Function Models
In this section we brie�y discuss some of the most widely used methods to

identify transfer function models. These are the prewhitening method proposed
by Box and Jenkins (Box et al., 1994), the linear transfer function (LTF) method
proposed by Liu and Hanssens (1982), and the procedure proposed by Tsay
(1985).

Assuming an output variable, yt, and m input variables, x1t, . . . , xmt, a trans-
fer function model can be written as

yt = C +
ω1(B)
δ1(B)

x1t +
ω2(B)
δ2(B)

x2t + · · ·+ ωm(B)
δm(B)

xmt +
θ(B)
φ(B)

at,

where B is the backshift operator, Byt = yt−1,

ωi(B) = (ωi0 + ωi1B + ωi2B
2 + · · ·+ ωihiB

hi)Bbi

δi(B) = 1 + δi1B + · · ·+ δiriB
ri

φ(B) = 1 + φ1B + · · ·+ φpB
p

θ(B) = 1 + θ1B + · · ·+ θqB
q,

{at} is white noise, usually assumed to be i.i.d. and Gaussian with zero mean.
In addition, {at} and the {xit} are assumed to be mutually and serially uncor-
related. The polynomials φ(z) and θ(z) can have multiplicative form in case
seasonality is present.

The prewhitening method to identify transfer function models is described in
Box et al. (1994). This method has several drawbacks. For this reason, we will
consider in this article the identi�cation method proposed by Liu and Hanssens
(1982), known as linear transfer function (LTF), and also the procedure proposed
by Tsay (1985).

The LTF method is based on the following ideas. To simplify the notation,
suppose only one input in the transfer function equation and denote by ν(z) =
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ω(z)/δ(z) its �lter. Then, we can consider the approximation

ν(z) = ν0 + ν1z + ν2z
2 + · · · ,

and we can try to estimate the weights {νj} �rst. The whole procedure is as
follows:

1. Estimate the weights {νj} assuming some model for Nt in the transfer
function equation, yt = ν(z)xt +Nt. The model for Nt is usually an AR(1)
or, if there is seasonality, an AR(1) × AR(s), where s is the number of
seasons.

2. Identify a model for {Nt}.
3. Identify the polynomials ω(z) and δ(z) for the best approximation

ω(z)/δ(z) ' ν(z).

In practice, a �nite approximation for the �lter ν(z) is used, so that a model
of the form

yt = C + (ν0 + ν1B + ν2B
2 + · · ·+ νkBk)xt + Nt (2.1)

is considered. After steps 1 and 2, a generalization of the corner method (Be-
guin et al. 1980) is used to identify the polynomials ω(z) and δ(z) such that
ω(z)/δ(z) ' ν(z).

Tsay (1985) proposed as a �rst step in transfer function identi�cation to �t an
autoregressive vector model to the random vector formed with the output and all
of the inputs. In this way, a test of unidirectional causality can be implemented,
the number of lags in the approximation for the input �lters can be determined,
and the weights of the approximation can be estimated.

Based on the identi�cation and estimation of this autoregressive model, Tsay
(1985) proposed a method to identify the output model and �lters for the inputs.
These last �lters are also identi�ed using the corner method.

3. An Automatic Procedure to Identify Transfer Function
Models
To describe the procedure, suppose for simplicity that there is only one input.

Then, in the �rst stage of the procedure, we also use a model of the form (2.1)
to estimate the weights, {νi}, i = 1, . . . , k. However, instead of using an AR
model for Nt, we use an automatic ARIMA identi�cation procedure to identify
an ARIMA model for Nt. The automatic procedure is similar to the one used in
the program TRAMO (Gómez and Maravall, 1992) and has been programmed
by the author. This allows us to identify and estimate some deterministic e�ects
as well, like Easter e�ect, trading day e�ect, outliers, etc. In this �rst stage,
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the number of the �rst insigni�cant νi parameters is equal to the time delay
parameter, b, so that

ω(B) = (ω0 + ω1B + ω2B
2 + · · ·+ ωhBh)Bb.

In the second stage, we �rst reestimate the model without the �rst b insignif-
icant νi weights. Then, using the newly estimated weights, ν̂i, i = 0, 1, 2, . . . , k,
we use the method proposed by Schank (Schank, 1967) to estimate the coe�-
cients ωi and δi in

ν(z) =
ω0 + ω1z + ω2z

2 + · · ·+ ωhzh

1 + δ1z + · · ·+ δrzr
(3.1)

for several choices of h and r. More speci�cally, equating coe�cients in (3.1)
implies 



ν0

ν1 ν0

ν2 ν1 ν0

...
...

... . . .
νn νn−1 νn−2 · · · ν0

νn+1 νn νn−1 · · · ν1

...
...

...
...

...
νk νk−1 νk−2 · · · νk−n







1
δ1

δ2

...
δn




=




ω0

ω1

ω2

...
ωn

0
...
0




,

where n = max{h, r}, ωi = 0 if i > h and νi = 0 if i > r. To solve the previous
system, we �rst estimate the δi coe�cients by ordinary least squares using the
last part of the system, that is, those equations that have a zero on the right
hand side. Then, replacing in (3.1) the δi coe�cients with the estimated ones,
δ̂i, we set up a new system of linear equations to estimate the ωi coe�cients.
We could use the �rst n + 1 equations of the previous system to estimate the ωi

coe�cients. However, it would be desirable to use all the information contained
in the sample. This is done by expanding �rst

1/(1 + δ̂1z + · · ·+ δ̂rz
r) = 1 + γ1z + γ1z

2 + · · ·

and then equating coe�cients in

ν(z) = (ω0 + ω1z + ω2z
2 + · · ·+ ωhzh)(1 + γ1z + · · · )

until we get k + 1 equations. That is, we solve the linear system in the least
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squares sense



1
γ1 1
γ2 γ1 1
...

...
... . . .

γn γn−1 γn−2 · · · 1
γn+1 γn γn−1 · · · γ1

...
...

...
...

...
γk γk−1 γk−2 · · · γk−n







ω0

ω1

ω2

...
ωn




=




ν0

ν1

ν2

...
νn

νn+1

...
νk




.

Since the ωi and δi coe�cients are estimated by ordinary least squares in
Schank's method, we can identify the optimum h and r using some information
criterion, like AIC or BIC. More speci�cally, assuming 0 ≤ h, r,≤ 2, we compute
ωi and δi for all possible combinations of h and r and, for each combination, we
compute the errors ei = ν̂i − ν̃i, i = 1, 2, . . . , k, where ν̂i and ν̃i are the weights
obtained in the �rst stage of the procedure and the weights computed with the ωi

and δi coe�cients estimated for that combination, respectively. The criterion is
of the form Ch,r = ln(σ̂2) +C(k)(h+1+r), where σ̂2 = (1/k)

∑k
i=1 e2

i and C(k)
is some penalty term. We select h and r that minimize Ch,r. In the proposed
procedure, we use Corrected AIC as criterion because it seems to work better
than AIC or BIC in small samples.

In the third stage, we estimate the transfer function model identi�ed in the
previous two stages using maximum likelihood.

4. Examples
To illustrate the procedure, we �rst use a simulated series that follows the

model
(1−B)Yt = (3− 2B)(1−B)Xt−1 + (1− .7B)at,

where B is the backshift operator, Byt = yt−1, and has 130 observations. The
series is the series tf2, included in a collection of time series for research and
teaching that is distributed with the computer package SCA.

The automatic procedure correctly identi�es both, the model for Nt and the
�lter for the input. The estimated model is

(1−B)Yt = (2.97− 1.97B)(1−B)Xt−1 + (1− .6B)at.

In the second example, the aim is to forecast the Spanish Consumer Price
Index (SCPI), base year 2001, using two exogenous inputs that are believed to
have some information about SCPI. These are the Spanish Import Price Index for
Consumer Goods (base year 2000) and the Spot Prices of Crude Oil in pesetas of
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the Brent barrel. This last series is considered as deterministic and its forecasts
are the corresponding Futures Market Prices.

We �t a transfer function model to the logs of SCPI for the sample 1993:1�
2006:3. We use twelve lags of each input series in the �rst stage of the proposed
procedure. No delay parameter is identi�ed for any of the inputs and the iden-
ti�ed model for Nt is (0, 1, 0)(1, 1, 0)12. This last model is

∇∇12yt = (0.18 + 0.15B)∇∇12x1t +
0.01

1− 0.90B + 0.45B2
∇∇12x2t

+
1

1 + 0.41B12
at,

where x1t and x2t are the Spanish Import Price Index for Consumer Goods and
the Spot Prices of Crude Oil, respectively. The �t is good and there are no signs
of model inadequacy.
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