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Abstract
The p-value is, possibly, the most used tool in applied statistics, al-

though it has some important shortcomings. The q-value was introduced
by Storey (2003) as a byproduct of the positive false discovery rate. In
this article, it is shown that the q-value could be considered as a good
alternative to the p-value, because the q-value exhibits better properties
than the p-value and, moreover, the q-value is easier to interpret than the
p-value.
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1. Introduction
The p-value is, possibly, the most used tool in applied statistics since 1925,

when R. A. Fisher published his Statistical Methods for Research Workers. The
p-value is automatically given by all the statistical packages, and it is very easy
to use for taking a decision in hypothesis testing. These are the main reasons
for its popularity.

Nevertheless, to the same time, the p-value is one the most seriously crit-
icized notions in statistics. This is because of its shortcomings. Some of the
most important discussion papers on the p-value are Cox (1977), Shafer (1982),
Berger and Delampady (1987), Berger and Sellke (1987) and Casella and Berger
(1987).

The p-value is shortly explained in Section 2, and some of its main short-
comings are shown in Section 3, by means of two simple examples.

The concept of q-value was introduced by Storey (2003) as a byproduct of
the positive false discovery rate, but it is interesting by itself because the q-value
exhibits better properties than the p-value and, moreover, the q-value is easier
to interpret than the p-value. The notion of q-value is explained and analyzed
in Section 4. Finally, the main conclusions are given in Section 5.
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2. The p-value
Let us consider a random sample (X1, ..., Xn) from an amount of interest

in a population, X, with a probability density f(x|θ), where θ ∈ Θ is an un-
known parameter. In the simplest situation, we want to test the null hypothesis
H0 : θ = θ0 versus the alternative hypothesis H1 : θ = θ1. For doing that, we
have to choose a test statistic, T = T (X1, ..., Xn). For the sake of simplicity,
we will assume that this test statistic is measuring (in some suitable way) the
discrepancy between the sample we have obtained, (x1, ..., xn), and the null hy-
pothesis: the larger is the value of the test statistic the larger is the discrepancy
between the sample and the null hypothesis.

When the sampling has been carried out, and a sample (x1, ..., xn) has been
obtained, we will denote by t the current value of the test statistic, that is,
t = T (x1, ..., xn).

The p-value for testing H0 : θ = θ0 versus H1 : θ = θ1, when T = t has been
obtained, is de�ned as

p-valueθ0
(t) = Pr(T ≥ t|θ0).

Of course, the p-value can also be de�ned when we are considering a general
hypothesis testing. So, let us assume that we want to test the null hypothesis
H0 : θ ∈ Θ0 versus the alternative hypothesis H1 : θ ∈ Θ1 = Θ−Θ0.

In this case, the p-value is usually de�ned as

p-valueΘ0
(t) = sup

θ∈Θ0

Pr(T ≥ t|θ).

From a technical viewpoint, the p-value may be meant as �the probability
of obtaining a sampling result less compatible with H0 than the current sample,
given that the null hypothesis is true�. When the concept of signi�cance level
has been previously introduced, the p-value may also be meant as �the smallest
value of the signi�cance level for which the sample we have obtained will lead to
rejection of H0�. The problem with these phrases is that, although technically
correct, they are rather complicated to understand for users. I have always
suspected that, for users, these phrases are like a famous phrase in a �lm by
Marx Brothers: �the party of the �rst part shall be known in this contract as
the party of the �rst part�. Despite this, the p-value is a very popular tool
for users. This generalized use among users has been possible because of three
reasons:

1. First of all, simple interpretations, suitable for users, were given. One
of the most usual interpretations of the p-value is that �it measures the
degree to which the data (x1, ..., xn) support the null hypothesis H0�. See,
for instance, Lehmann (1975; p. 11).
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2. Then, a simple rule for obtaining a decision through the p-value was given.
This rule is as follows.
First, we choose a signi�cance level, say α=0.05, and then:

(a) When the p-value is less than 0.05, we say that a signi�cant sampling
result against H0 has been obtained, and we have found evidence
enough for rejecting H0.

(b) When the p-value is greater than 0.05, we say that the sampling
result is not signi�cant against H0, and we have not found evidence
enough for rejecting H0.

Of course, if you have another favorite value for α, you can use it instead
of 0.05.

3. Finally, the p-value is automatically given by all the statistical packages.

3. Some shortcomings of the p-value
All we have said in Section 2 is now applied to the following simple example:

Example 3.1. Let us consider an observation X from a Normal distribution,
N(θ; 1). We want to test H0 : θ = 0 versus H1 : θ = 1. In this case, we usually
take T = X as test statistic. Let us suppose that the value t = x = 1 has been
observed. We can easily compute the p-value:

p-valueθ0
(1) = Pr(T ≥ 1|θ = 0) = Pr(N(0; 1) ≥ 1) = 0.1587 ' 0.16.

A p-value of 0.16 is usually considered as a very large p-value (much larger
than α=0.05). As a consequence, we would say that the degree of support to
H0 is enough, the sampling result is not signi�cant against H0, and there is no
evidence enough for rejecting H0.
Comments on Example 3.1

It is very interesting to point out some aspects of this example:

1. The p-value ranges in the interval [0, 1], because it is a probability. The
value 0.16 is nearer to 0 than to 1. So, why are we saying that 0.16 is
usually considered as a very large p-value? The usual answer is that we
are calibrating the p-value through a comparison to the signi�cance level.
This answer leads to other questions: how to choose the signi�cance level?;
why α = 0.05?

2. If the p-value is 0.16, it is usually considered that the degree of support to
H0 is enough. But, what are we understanding by support to H0? More
on this, later.
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3. Last but not least. If we simply apply our common sense to the example
and we have a look at the two densities, N(θ = 0; 1) and N(θ = 1; 1),
we obviously conclude that the sampling result, t = 1, is much more
compatible with N(θ = 1; 1) (H1) than with N(θ = 0; 1) (H0); see Figure
1. Nevertheless, we have said in the example that there is no evidence
enough for rejecting H0! This conclusion seems astonishing. The usual
explanation is that we want to be conservative with the null hypothesis.
This answer leads to other questions: do we want to be conservative in all
the problems?; how conservative do we want to be?
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Now, let us come back to the question in the second comment above: what
are we understanding by support to H0?

As we have said before, the most usual interpretation of the p-value is that it
measures �the degree to which the data (x1, ..., xn) support the null hypothesis
H0�. There is only a little problem: the p-value is not coherent as measure of
support for the null hypothesis. This was pointed out by Schervish (1996) in a
beautiful paper. His main ideas are next summarized. First of all, we give the
de�nition of coherence as it was stated by Schervish (1996), following the idea
introduced by Gabriel (1969) for multiple comparisons:
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A measure of support for hypotheses is coherent if, when Θ0 ⊂ Θ′0, the
support given to Θ′0 is greater than or equal to the support given to Θ0.

P-values sometimes behave coherently and sometimes do not. A simple
example is given by Schervish (1996):

Example 3.2. Let X be an observation from a Normal distribution N(θ; 1),
where θ ∈ <. Let us assume that the value x = 2.18 is obtained. Now, let us
consider two hypotheses tests:

H0 : θ ∈ Θ0 = (−0.5, 0.5) versus H1 : θ /∈ Θ0 ;
H ′

0 : θ ∈ Θ′0 = (−0.82, 0.52) versus H ′
1 : θ /∈ Θ′0 .

It is easily obtained (see Schervish (1996)) that p-valueΘ0
(2.18) = 0.0502 >

p-valueΘ′0(2.18) = 0.0498, although Θ0 ⊂ Θ′0.

Therefore, the p-value cannot be understood as a measure of support for the
null hypothesis. Of course, as we have said before, the p-value is a very popular
tool in applied statistics, but it must be understood only as a warning: when
the p-value is close to zero, possibly the null hypothesis must be rejected.

The p-value is not the only usual concept that cannot be used as a measure
of support for the null hypothesis. The same shortcoming was found for the
Bayes factor [see Lavine and Schervish (1999)] and for the posterior predictive
p-value [see De la Horra and Rodríguez-Bernal (2001)].

We can now summarize the main shortcomings of the p-value:

1. The exact technical meaning of the p-value is quite complicated for being
understood by users and, by this reason, it is replaced by a simple inter-
pretation, suitable for users: �the p-value measures the degree to which
the data (x1, ..., xn) support the null hypothesis H0�. There is only a little
problem: the p-value is not coherent as measure of support for the null
hypothesis.

2. The p-value must be calibrated for taking a decision about the null hy-
pothesis. This calibration is usually made by comparing the p-value to
the signi�cance level. The main problem with the signi�cance level is that
we have to choose it in an absolutely arbitrary way.

3. As we have seen in Example 3.1, sometimes, the decision we take from the
p-value violates the common sense. The usual explanation is that we want
to be conservative with the null hypothesis and, again, the signi�cance
level is used in a magical way.

So far, the conclusion seems to be that the p-value has been very used in
hypothesis testing because, although it has some important shortcomings, it is
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very easy to obtain (through a statistical package) and very easy to use (through
a comparison to the signi�cance level), and these features are very important
for users in applied statistics.

In the next section, we argue that we could give a chance to a related and
easy concept: the q-value.

4. The q-value
The concept of q-value was introduced by Storey (2003) as a byproduct

of the positive false discovery rate. The positive false discovery rate is an al-
ternative concept to the family wise error rate, which is the most commonly
controlled quantity when multiple hypothesis testing is considered. In the last
years, several rates have been introduced and studied for the joint evaluation of
multiple hypothesis testing, when a large (or even huge) number of hypotheses
are simultaneously considered. As we have said above, the q-value arose from
the positive false discovery rate, but it has interest by itself. In fact, the concept
of positive false discovery rate is not needed for de�ning the q-value. The idea
of the q-value is next explained.

Let us consider again a random sample (X1, ..., Xn) from an amount of
interest in a population, X, with a probability density f(x|θ), where θ ∈ Θ
is an unknown parameter. In the simplest situation, we want to test the null
hypothesis H0 : θ = θ0 versus the alternative hypothesis H1 : θ = θ1. For doing
that, we have to choose a test statistic, T = T (X1, ..., Xn). For the sake of
simplicity, we will assume that this test statistic is measuring (in some suitable
way) the discrepancy between the sample we have obtained, (x1, ..., xn), and
the null hypothesis: the larger is the value of the test statistic the larger is
the discrepancy between the sample and the null hypothesis. Now, we need to
give prior probabilities to θ0 and θ1: π0 = Pr(θ0) and π1 = 1 − π0 = Pr(θ1).
These probabilities summarize the con�dence we have on the two values of the
parameter, before the sample has been obtained. One of the easiest possibilities
is to give the same probability to θ0 and θ1: π0 = π1 = 1/2. This would be
suitable when our initial con�dences on θ0 and θ1 are (approximately) similar.

When the sampling has been carried out, and a sample (x1, ..., xn) has been
obtained, we will denote by t the current value of the test statistic, that is,
t = T (x1, ..., xn).

The q-value for testing H0 : θ = θ0 versus H1 : θ = θ1 is de�ned as

q-valueθ0
(t) = Pr(θ0|T ≥ t) =

π0Pr(T ≥ t|θ0)
π0Pr(T ≥ t|θ0) + π1Pr(T ≥ t|θ1)

.

Of course, the q-value can also be de�ned when we are considering a general
hypothesis testing. So, let us assume that we want to test the null hypothesis
H0 : θ ∈ Θ0 versus the alternative hypothesis H1 : θ ∈ Θ1 = Θ − Θ0. In
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this case, we need to give a prior density, π(θ), probability density over Θ.
This prior density summarizes the con�dence we have on the di�erent values
of the parameter, before the sample has been obtained. One of the simplest
possibilities is to use noninformative priors. This would be suitable when our
initial con�dence on the values of the parameter is not very precise.

In this case, the q-value is de�ned as

q-valueΘ0
(t) = Pr(Θ0|T ≥ t) =

Pr(Θ0; T ≥ t)
Pr(T ≥ t)

=

∫
Θ0

[∫
{T≥t} f(t|θ)π(θ)dt

]
dθ

∫
Θ

[∫
{T≥t} f(t|θ)π(θ)dt

]
dθ

=

∫
Θ0

Pr(T ≥ t|θ)π(θ)dθ∫
Θ

Pr(T ≥ t|θ)π(θ)dθ
.

From a technical viewpoint, the q-value may be meant as �the posterior
probability of H0, given that sampling results less compatible with H0 than
the current sample would be obtained�. Of course, this phrase is not easy to
understand for users but, in this case, the solution is very simple and it has two
important advantages:

1. It is not necessary to interpret the de�nition. We only need to shorten
it: the �q-value is an updated probability of the null hypothesis taking
into account the sampling result we have obtained�. This is very easy to
understand for users.

2. A q-value does not need calibration: we may directly determine if this
updated probability of the null hypothesis is su�ciently large. We only
need to calibrate our initial con�dence on the values of the parameter. Of
course, this is not easy to do, but we always may use a noninformative
prior.

Let us consider again Example 3.1.

Example 4.1. (Example 3.1 continued)
Let us consider again an observation X from a Normal distribution, N(θ; 1).

We want again to test H0 : θ = 0 versus H1 : θ = 1. Now, we need to elicit
prior probabilities. For instance, let us take π0 = π1 = 0.5. We take again, as
test statistic, T = X. If t = x = 1 has been observed, we have:

q-valueθ0
(1) = Pr(θ0|T ≥ 1) =

π0Pr(T ≥ 1|θ = 0)
π0Pr(T ≥ 1|θ = 0) + π1Pr(T ≥ 1|θ = 1)

=
(0.5)Pr(N(0; 1) ≥ 1)

(0.5)Pr(N(0; 1) ≥ 1) + (0.5)Pr(N(1; 1) ≥ 1)

=
(0.5)(0.1587)

(0.5)(0.1587) + (0.5)(0.5)
= 0.2409 ' 0.24 .
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In fact, we can compute the q-value, in the same way, for any value of π0.
Table 1 shows the q-values for di�erent prior probabilities.

Table 1: q-values for di�erent prior probabilities.

π0 0.4 0.5 0.6 0.7 0.8
q-value 0.17 0.24 0.32 0.43 0.56

Comments on Table 1
It is important to point out some aspects of Table 1:
As we have said before, the q-value is the updated probability of the null

hypothesis, where this probability has been updated taking into account the
sampling result we have obtained. This updated probability may take di�erent
values, depending on the prior probability we give to the null hypothesis. The
prior probability on H0 may be interpreted, in a broad sense, as the initial
con�dence the user has on the null hypothesis. For instance, we can analyze
the two following possibilities:

1. If the initial con�dences the user has on the null and the alternative hy-
potheses are (approximately) equal, we can take π0 = π1 = 0.5. In this
case, the q-value is 0.24 (see Table 1). If this were the case, the updated
probability of H0 would be small and, possibly, the most reasonable de-
cision would be to reject H0 and, therefore, to accept H1. This decision
agrees with our common sense: the sampling result t = 1 is more compat-
ible with H1 than with H0.

2. On the other hand, if the initial con�dence the user has on the null hy-
pothesis is much larger than his/her initial con�dence on the alternative
hypothesis, we could take, for instance, π0 = 0.8. In this case, the q-value
is 0.56 (see Table 1). If this were the case, the updated probability of
H0 would be large and, possibly, the most reasonable decision would be
do not reject H0. This is the practical situation in those cases in which
the user want to be conservative with the null hypothesis: his/her initial
con�dence on H0 is large.

From a more sophisticated viewpoint, we could consider, not only prior
probabilities, but also a loss function. But the point in this paper is that it is
possible to replace the p-value for a similar and better tool: the q-value.

Finally, what about coherence of the q-value? In other words, is it possible
to use the q-value as a measure of support for the null hypothesis?

The answer is very clear: it is really easy to prove that q-values are coherent,
provided that the same test statistic is used. Let us consider the hypotheses
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tests H0 : θ ∈ Θ0 versus H1 : θ /∈ Θ0 and H ′
0 : θ ∈ Θ′0 versus H ′

1 : θ /∈ Θ′0 ,
where Θ0 ⊂ Θ′0. Then:

q-valueΘ0
(t) = Pr(Θ0|T ≥ t) ≤ Pr(Θ′0|T ≥ t) = q-valueΘ′0(t) .

5. Conclusions
1. The technical de�nition of the p-value is rather di�cult to understand for

users. This problem does not arise with the q-value because the q-value
is, simply, an updated probability of the null hypothesis.

2. The q-value do not need calibration because, as we have just said, it is
a posterior probability of the null hypothesis. The initial con�dence of
the user on the null hypothesis can be incorporated through the prior
distribution.

3. Of course, we need to elicit the prior distribution on the values of the
parameter, in a suitable way, and this is not always easy to do, although I
think that it is easier to calibrate the initial con�dence on the values of the
parameter than to calibrate the p-value. Notice that a possible solution
is to use a noninformative prior.

4. Q-values may be used as a measure of support for the null hypothesis (if
you want to do it) because they are coherent, provided that the same test
statistic is used, although this property is less necessary for q-values than
for p-values. Notice that p-values are often interpreted as measures of
support for H0, because its exact meaning is di�cult to understand for
users, and this problem does not arise with q-values.

5. Finally, what about computation? This question is very important be-
cause one of the main advantages of the p-value is that it is given by all
the statistical packages in an automatic way. I am not a consummated
expert in computation, but I am sure that it would be easy to add this
possibility for the most usual sampling models. The user only would have
to choose his/her prior in a menu including the noninformative prior.

6. Final recommendation: I know that several practical problems must be
solved but, please, give q-value a chance.
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