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Abstract
Although the classic theory of experimental design is well known, this

is not the case when the word �optimal� is added. A short introduction to
optimal experimental design is made through the consideration of some
typical criticisms to this theory.

Keywords: Approximate design, equivalence theorem, exact design, in-
formation matrix, optimality criteria.
AMS Subject classi�cations: 62K05.

1. Introduction
Everybody knows what the classic experimental design theory is, but it

can be said that the optimal experimental design theory is not well known
even among statisticians. The classic experimental design is looking for good
designs, studying their properties and trying to generate some types of designs.
Meanwhile, the optimal design theory aims the best possible design, mainly
from a regression setup, including somehow classic designs (e.g. Dorta-Guerra,
González-Dávila and Ginebra, 2008). On the other hand there is a number
of criticisms around this theory, some of them coming from practitioners, some
coming from statisticians. The aim of this paper is to o�er a simple introduction
to the topic through these critical views.

The main bases of the theory are being introduced brie�y in what follows.
So far, let the response of an experiment be expressed with a linear model,

E(y) = fT (x)θ, var(y) = σ2, x ∈ χ,

where fT (x) = (f1(x), . . . , fk(x)) is a vector of continuous linearly independent
known functions de�ned in a compact set χ, θT = (θ1, . . . , θk) are the unknown
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parameters to be estimated and σ2 is the constant variance. The responses are
assumed normal and uncorrelated.

If the conditions of the experiment, x, are under the control of the practi-
tioner an experimental design can be built in advance. Thus, an exact design
will be a sequence of experimental conditions, x1, . . . , xn, from a compact set χ.
Assuming that only m of these points are di�erent, a probability measure may
be assigned to the design. If point xi appears ni times then pi = ni/n will be
the probability of xi, that is the proportion of experiments to be made under
these conditions.

Using this idea Kiefer (1959) gave a more general de�nition of design (approx-
imate design) as any probability distribution ξ on the space χ. The information
matrix for a linear model is de�ned as:

M(ξ) =
∫

χ

f(x)fT (x)ξ(dx).

The inverse of the information matrix is proportional to the covariance ma-
trix of the least square estimates. Thus, an experimental design �minimizing�,
in some sense, the inverse of the information matrix, should be found. An
optimality criterion for choosing a design is given by a function Φ : M −→
R ∪ {+∞}, such that Φ is convex, non�increasing (if M − N is non negative
de�nite then Φ(M) ≤ Φ(N)) and positively homogeneous in the sense that
Φ(δM) = δ−1Φ(M), δ > 0. A Φ�optimal design is a design ξ∗ minimizing Φ.

The set of the information matrices, M, is convex and compact. The Cara-
theodory's theorem guarantees that, given an information matrix, there always
exists a design with this information matrix and no more than k(k + 1)/2 + 1
points in its support. This is very convenient from the practical point of view
since the experimentation may be performed just in a �nite number of cases.
Thus, the search for optimal designs may be restricted to designs ξ, with a �nite
support,

ξ =
{

x1 x2 . . . xm

p1 p2 . . . pm

}
,

where ξ(xi) = pi.
The e�ciency of a design ξ with respect to the criterion Φ will be

eff(ξ, Φ) =
Φ(M(ξ∗))
Φ(M(ξ))

.

Thus, if a design has 50% e�ciency then a half of the observations with the
optimal design will produce the same results with respect to the criterion Φ.
This is something a practitioner can understand much better that p-values or
test power.

Computing optimal designs is not an easy task. For approximate designs and
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uncorrelated observations there is the so called equivalence theorem, which is the
basis of most of the algorithms for computing designs as well as checking how
e�cient a particular design is. This theorem, based on checking the directional
derivatives, has been extended to some other cases. There is some current work
trying to do something similar for exact designs.

The most popular criterion is D-optimality, which looks for the maximization
of the determinant of the information matrix. The so called D-optimal design
minimizes the volume of the con�dence ellipsoide of the parameters in the model.
This criterion is invariant for re-parameterizations. Another popular criterion
is A-optimality, which considers the mean of the variances of the estimates,

ΦA(M(ξ)) =
1
k

trM−1(ξ).

There are quite a few more, but there is not space here to de�ne all of them.
All this theory has been formulated in this paper for linear models, but

extensions to nonlinear models can be done through the Fisher Information
Matrix and the asymptotic approximation of its inverse to the covariance matrix.
For an introduction to the topic there is a number of classic books (Fedorov
1972, Silvey 1980, Pázman 1986, Atkinson and Donev 1992, Pukelsheim 1993,
Fedorov and Hackl 1997) as well as more recent books devoted to particular
aspects of the theory, not mentioned here.

2. Some criticisms

2.1. Model dependence
One of the main criticisms to the optimal experimental design theory is that

a model has to be selected a priori without any data yet. This is a deeper
problem than it seems to be at the �rst glance. Frequently there is a strong
dependence between the model and the optimal design. Thus, a design may be
rather good for a particular model and pathetic for a di�erent one, which may
�nally be proved more appropriate for the current data.

Box used to write frequently statements like: �Models, of course, are never
true, but fortunately it is only necessary that they be useful� (Box, 1979). This
idea does not solve the problem mentioned in the last paragraph, but stresses the
truth that this is not only a problem of designing an experiment. In any case, the
experiment needs to be designed before having the observations and the problem
has to be undertaken with the tools at hand at that moment. In practice, there
is always some experience or retrospective data one can trust. There are also
the intuitions of the practitioner. Even some models are analytically derived,
e.g. solving a di�erential equation system.

Moreover there is a particular interest nowadays in developing optimality
criteria to discriminate between rival models (e.g. López-Fidalgo, Tommasi and
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Tranda�r, 2007, 2008) when there are several candidates to be the best model.

2.2. Information matrix for nonlinear models

The optimal design theory is clean for linear models, but most of the models
used in practice are not linear. The theory, including the equivalence theorem,
still applies for a variety of nonlinear models, but the information matrix will
depend on the �no yet� estimated parameters. This is not a negligible objection
at all, but there are several reasonable ways to deal with the problem:

• Locally Φ�optimal designs may be computed depending on nominal values
of the parameters. Some times explicit optimal designs may be given
depending on generic values of the parameters, but most in the cases
numerical calculus is performed and some explicit numerical values of the
parameters have to be used in the computations. In any case, a sensitivity
analysis should be carried out to be sure the design is not going to change
much with possible errors in the choice of the parameters.

• Going further with the last idea minimax designs may be computed to be
safer.

• An approach of increasing interest is the adaptive design idea (e.g Moler,
Plo and San Miguel, 2006), were at each step the designs used the obser-
vations obtained previously. The parameters are estimated in each step
and thus the dependence on the nominal values of the parameters becomes
less and less important.

• Another typical approach to this problem is the use of some kind of
Bayesian designs.

2.3. Criterion selection

As mentioned in the Introduction, there is a number of di�erent crite-
ria, sometimes even parametric classes of them (see e.g. López-Fidalgo and
Rodríguez�Díaz, 2004) pursuing di�erent aims. In practice, a few optimality
criteria are really used and the choice of one of them is not a big deal. More-
over, the original equivalence theorem, much more restricted than the general
one, proved the equivalence (so the name) of D-optimality and a criterion to
minimize the variance of the predictions (G�optimality). This means the opti-
mal designs are not always so far for di�erent criteria. Even more, sometimes
there exist designs universally optimal (Harman, 2008). Nevertheless, if there
is interest in di�erent criteria producing di�erent optimal designs, compound
criteria may be used in order to come to a compromise for the optimality (Cook
and Wong, 1994).
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2.4. Controversy exact versus approximate designs
Approximate designs are quite convenient from a theoretical and computa-

tional point of view. But to be implemented in practice rounding o� is needed
with the corresponding loss of e�ciency of the design. On the contrary, exact de-
signs are practicable but of very di�cult computation. Box has never accepted
the use of approximate designs of Kiefer (1959). This controversy should not af-
fect the development of the theory. After years of experience in the area it may
be said that exact designs are needed, and less di�cult to compute, for small
sample sizes (Pukelsheim and Rieder 1992, Imhof, López�Fidalgo and Wong,
2001). For large samples the approximate designs may be rounded o� in an
e�cient way.

2.5. Frequently, optimal designs demand extreme conditions
A typical situation in statistics is that extreme conditions in the experiments

o�er, �theoretically�, more information to make decisions. But this may be
una�ordable, toxic, dangerous or just awful for the practitioners. Even more,
if the optimal design reduces to a few points, less than what they would like,
they would reject any use of it. This is absolutely true and the statistician has
to be very careful with this aspect. Frequently, the optimal design has to be
considered as a reference to measure the e�ciency of the designs they use in
practice or to choose the best among a class of designs they like. On the other
hand, the criteria used may restrict the search to a class of designs in order to
preserve the requirements of the experimentalists.

2.6. Di�cult computation
Computation of optimal designs is not an easy task in general. As a matter of

fact, the search for optimal designs frequently restricts to one-dimensional mod-
els, although some work has been performed with more complex models (e.g.
López�Fidalgo and Garcet�Rodríguez, 2004). There is an increasing interest
in developing good algorithms to compute designs, either exact or approximate
designs (see e.g. López�Fidalgo and Rodríguez�Díaz, 2004 or Martín�Martín,
Torsney and López�Fidalgo, 2007). One may think the people working on op-
timal design must be good in optimization. They are not bad, but they are not
experts in the topic. At the same time, people in optimization are sometimes
far from statistics and even more from experimental designs. Therefore, there
is a need of more cooperation between them.

2.7. Scale problem
Some criteria are not invariant with respecto to re-parameterizations. This

means that the scale of a parameter may be much bigger than the scale of an-
other parameter in the model, causing di�erent magnitudes of the variances of
their estimators. Therefore, the criterion may not pay attention enough to the
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small variance in magnitude, but equally important in the inference. This is the
case of A�optimality, among other criteria. This problem requires special care
and some standardization. Di�erent solutions have been given to this problem.
For instance, standardized optimality criteria by the e�ciencies of each parame-
ter (Dette, 1997) produce similar �nal e�ciencies for estimating each parameter
of the model regardless the magnitude of the variances of the estimators. An-
other possible standardization is by the coe�cient of variation (López�Fidalgo
and Rivas-López, 2007; López�Fidalgo, Rivas-López and Fernández-Garzón,
2007). This last approach adds a dependence on the parameters, that for non-
linear models is already there.

3. Concluding remarks
One of the main advantages for an optimal design research fellow is that

he or she walks around many di�erent topics in Statistics and even in other
areas of Mathematics. Thus, optimal designs may be an objective for any
kind of model such as survival analysis or reliability, models with correlated
observations, kinetics and compartmental models, mixed models, mixture of
distributions, models of mixtures, censoring and potential missing data, model
discrimination, mathematical programming, even algebraic geometry,... This
means one is frequently introduced in a new area without changing the main area
of research. Even if the optimal designs are not �nally used this theory helps in
understanding more deeply the estimation errors and correlations between them.
But one of the main tasks of the statisticians is to convince the practitioner they
need to design their experimentation correctly and e�ciently apart from doing
the correct statistical analysis.
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