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Abstract

In this paper we make a review of some of the main stochastic orders

that we can find in the literature. We show some of the main relationships

among these orders and properties and we point out applications in several

fields.
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1. Introduction

One of the main objectives of statistics is the comparison of random quanti-

ties. These comparisons are mainly based on the comparison of some measures

associated to these random quantities. For example it is a very common practice

to compare two random variables in terms of their means, medians or variances.

In some situations comparisons based only on two single measures are not very in-

formative. For example let us consider two Weibull distributed random variables

X and Y with distribution functions F (x) = 1− expx3 and G(x) = 1− expx
1
2

for x ≥ 0, respectively. In this case we have that E[X] = 0.89298 < E[Y ] = 2.

If X and Y denote the random lifetimes of two devices or the survival life-

times of patients under two treatments then, if we look only at mean values,

we can say that X has a less expected survival time than Y . However if we

consider the probability to survive for a fixed time point t ≥ 0 we have that

P [X > t] ≥ P [Y > t] for any t ∈ [0, 1] and P [X > t] ≤ P [Y > t] for any

t ∈ [1,+∞). Therefore the comparison of the means does not ensure that the

probabilities to survive any time t are ordered in the same sense. The need

to provide a more detailed comparison of two random quantities has been the

origin of the theory of stochastic orders that has grown significantly during the

last 40 years (see Shaked and Shanthikumar (2007)). The purpose of this review

article is to provide the reader with an introduction to some of the most popular
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stochastic orders including some properties of interest and applications of these

stochastic orders. The organization of this paper is the following, in Section 2

we provide definitions of some stochastic orders. These definitions are based on

some functions associated to the random variables. We will describe some appli-

cations of these functions and therefore several situations where these stochastic

orders can be applied. Some properties of these orders are also described. In

Section 3 we describe some multivariate extensions of stochastic orders and to

finish, in Section 4 we recall further applications and comments of stochastic or-

ders. Some notation that will be used along the paper is the following: Given a

distribution function F , the survival function will be denoted by F (t) = 1−F (t)

and the quantile function will be denoted by F−1(p) = inf{x ∈ R : F (x) ≥ p}
for any p ∈ (0, 1). General references for the theory of stochastic orders are

Shaked and Shanthikumar (1994), Müller and Stoyan (2002) and Shaked and

Shanthikumar (2007).

2. Definitions and properties of some univariate stochastic

orders

As mentioned in the introduction the use of stochastic orders arises when

the comparisons of single measures is not very informative. For example if the

random variable X denotes the random lifetime of a device or a living organism

a function of interest in this context is the survival function F (t), that is, the

probability to survive any fixed time point t ≥ 0. This function has been studied

extensively in the context of reliability and survival analysis. If we have another

random lifetime Y with survival function G then it is of interest to study whether

one of the two survival functions lies above or below the other one. This basic

idea is used to define the usual stochastic order. The formal definition is the

following.

Definition 2.1. Given two random variables X and Y , with survival functions

F and G, respectively, we say that X is smaller than Y in the stochastic order,

denoted by X ≤st Y , if

F (t) ≤ G(t) for all t ∈ R. (2.1)

Clearly this is a partial order in the set of distribution functions and is re-

flexive and transitive. The definition of the stochastic order is a way to formal-

ize the idea that the random variable X is less likely than Y to take on large

values. However, given two distribution functions, they can cross as in the ex-

ample provided in the introduction, and one of the main fields of research in

the area of stochastic orders is to study under which conditions we can ensure

the stochastic order. When considering two samples a first step, for the em-



6 F. Belzunce

Figure 1: Estimation of survival functions for survival times of male mice.

pirical validation of the stochastic order of the parent populations, is to plot

the empirical survival functions. Given a random sample X1, X2, . . . , Xn, if we

denote by Fn(x) =
∑n

i=1 Ix(Xi)/n the empirical distribution function, where Ix
denotes the indicator function in the set (−∞, x], the empirical survival func-

tion is defined as Fn(x) ≡ 1 − Fn(x). The Glivenko-Cantelli’s theorem shows

the uniform convergence of Fn to F . Let us consider the following example for

two data sets taken from Hoel (1972). The data set consists of two groups of

survival times of male mice. Hoel (1972) considers three main groups depending

on the cause of death. We consider here the group where the cause of death

was different of thymic linfoma and cell sarcoma. The group was labeled ”other

causes”. This group was divided in two subgroups. The first subgroup lived in a

conventional laboratory environment while the second subgroup was in a germ

free environment. Figure 1, provides empirical evidence for the stochastic order

among these two subgroups.

Clearly another alternative is to plot the curve (F (x), G(x)), that is a P-

P plot, and if X ≤st Y , then the points of the P-P plot should lie below the

diagonal x = y. It is interesting to note that the stochastic order is related to

an important measure in risk theory, the value at risk notion. Given a random

variable X with distribution function F the value at risk at a point p ∈ (0, 1)

is given by V aR[X; p] ≡ F−1
X (p), that is, it is the quantile function at point p.

If the random variable is the risk associated to some action, like the potential

loss in a portfolio position, then V aR[X; p] is the larger risk for the 100p% of

the situations. In terms of the VaR notion we have that X ≤st Y , if and only

if, V aR[X; p] ≤ V aR[Y ; p] for all p ∈ (0, 1). In terms of a plot of the points
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(V aR[X; p], V aR[Y ; p]), that is a Q-Q plot, we have that X ≤st Y if the points

of the Q-Q plot lie above the diagonal x = y. A useful characterization of the

stochastic order is the following.

Theorem 2.1. Given two random variables X and Y , then X ≤st Y , if and

only if,

E[φ(X)] ≤ E[φ(Y )],

for all increasing function φ for which previous expectations exist.

This result is of interest from both, a theoretical and an applied point of

view. In some theoretical situations it is easier to provide a comparison for X

and Y rather than a comparison for increasing transformations of the random

variables. On the other hand in some situations we are more interested in some

transformations of the random variables. For example φ(X) can be the benefit

of a mechanism, which depends increasingly on the random lifetime X of the

mechanism. Previous characterization also highlights a way to compare random

variables. The idea is to compare two random variables in terms of expectations

of transformations of the two random variables when the transformations belong

to some specific family of functions of interest in the context we are working. For

a general theory of this approach the reader can look at Müller (1997). Among

the different families of distributions that can be considered one of the most

important families is the family of increasing convex functions which lead to the

consideration of the so called increasing convex order.

Definition 2.2. Given two random variables X and Y , we say that X is smaller

than Y in the increasing convex order, denoted by X ≤icx Y , if

E[φ(X)] ≤ E[φ(Y )],

for all increasing convex function φ for which previous expectations exist.

This partial order can be characterized by the stop-loss function. Given a

random variable X the stop-loss function is defined as

E[(X − t)+] =

∫ +∞

x

F (u)du for all x ∈ R,

where (x)+ = x if x ≥ 0 and (x)+ = 0 if x < 0. The stop-loss function is well

known in the context of actuarial risks. If the random variable X denotes the

random risk for an insurance company, it is very common that the company

pass on pars of it to a reinsurance company. In particular the first company

bears the whole risk, as long as it less than a fixed value t (called retention)

and if X > t the reinsurance company will take over the amount X − t. This

is called a stop-loss contract with fixed retention t. The expected cost for the

reinsurance company E[(X − t)+] is called the net premium. In terms of the
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stop-loss function we have that X ≤icx Y if and only if,

E[(X − t)+] ≤ E[(Y − t)+] for all t ∈ R.

The icx order is of interest not only in risk theory but also in several situations

where the stochastic order does not hold. From the definition it is clear that the

icx order is weaker than the st order. Also if the survival functions cross just

one time and the survival function of X is less than the survival function of Y

after the crossing point, as in the example considered in the introduction, then

we have that X ≤icx Y .

The comparison of the survival functions can be made in several ways. For

example we can examine the behaviour of the ratio of the two survival functions.

For example we can study whether F (x)/G(x) is decreasing, or equivalently, to

avoid problems with zero values in the denominator, whether

F (x)G(y) ≥ F (y)G(x) for all x ≤ y. (2.2)

This condition leads to the following definition.

Definition 2.3. Given two random variables X and Y , with distribution func-

tions F and G, respectively, we say that X is smaller than Y in the hazard rate

order, denoted by X ≤hr Y , if (2.2) holds.

The hazard rate order can be characterized, in the absolutely continuous

case, in terms of the hazard rate functions. Given a random variable X with

absolutely continuous distribution F and density function f , the hazard rate

function is defined as r(t) = f(t)/F (t) for any t such that F (t) > 0. The hazard

rate measures, in some sense, the “probability” of instant failure at any time t

when X denotes the random lifetime of a unit or a system. Given two random

variables X and Y with hazard rates r and s respectively, then X ≤hr Y if and

only if r(t) ≥ s(t) for all t such that F (t), G(t) > 0.

In some situations it is not possible to provide an explicit expression for the

distribution function and therefore is not possible to check some of the previous

orders. An alternative is to use the density function (or the probability mass

function in the case of discrete random variables) to compare two random vari-

ables. We consider the absolutely continuous case, the discrete case is similar

replacing the density function by the probability mass function.

Definition 2.4. Given two random variables X and Y with density functions f

and g, respectively, we say that X is smaller than Y in the likelihood ratio order,

denoted by X ≤lr Y , if

f(x)g(y) ≥ f(y)g(x) for all x ≤ y.
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For example let us consider two gamma distributed random variables X and

Y , with density functions given by:

f(x) =
ap

Γ(p)
xp−1 exp(−ax) for x > 0 where a, p > 0,

and

g(x) =
bq

Γ(q)
xq−1 exp(−bx) for x > 0 where b, q > 0.

It is not difficult to show that X ≤lr Y if p ≤ q and a ≥ b. However it is not

so easy to check whether the stochastic order, for example, holds for X and Y .

For all the previous orders we have the following chain of implications:

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y ⇒ X ≤icx Y,

therefore the likelihood ratio order is stronger than the other ones and can be

used as a sufficient condition for the rest of the stochastic orders.

Another context where the stochastic orders arise is in the comparison of

variability of two random variables. It is usual to compare the variability in

terms of the variance, the coefficient of variation and related measures. However

it is possible to provide a more detailed comparison of the variability in terms

of some stochastic orders. One of the most important orders in this context is

the dispersive order.

Definition 2.5. Given two random variables X and Y , with distribution func-

tions F and G respectively, we say that X is smaller than Y in the dispersive

order, denoted by X ≤disp Y , if

G−1(q)−G−1(p) ≥ F−1(q)− F−1(p) for all 0 < p < q < 1.

Therefore we compare the distance between any two quantiles, and we require

to the quantiles of X to be less separated than the corresponding quantiles for

Y . A characterization of the dispersive order that reinforces this idea is the

following based on dispersive trasnformations. A real valued function φ is said

to be dispersive if for any x ≤ y then φ(y)− φ(x) ≥ y − x.

Theorem 2.2. Given two random variables X and Y , then X ≤disp Y if and

only if there exists a dispersive function φ, such that Y =st φ(X).

Another important characterization of the dispersive order is the following.

Theorem 2.3. Given two random variables X and Y , then X ≤disp Y if and

only if, (X − F−1(p))+ ≤st (Y −G−1(p))+ for all p ∈ (0, 1).

This characterization provides a useful interpretation in risk theory. As we

can see we compare (X − t)+ and (Y − t)+ when we replace t by V ar[X; p] and
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Figure 2: Q-Q plot for survival times of male mice (reference line at x = y).

V aR[Y ; p], respectively, in the previous expressions, and therefore we compare

the so called “shortfalls” of the two random variables.

The comparison of the variability in terms of the dispersive order, is compati-

ble with the comparison of variances, that is, if X ≤disp Y ⇒ V ar[X] ≤ V ar[Y ].

The dispersive order can be verified in terms of the Q-Q plot of the two random

variables. If X ≤disp Y, then the slope of the Q-Q plot should be less than or

equal to one between any pair of points. In some situations the dispersive order

is too restrictive. For example let us consider the empirical Q-Q plot of two

samples taken from the data set from Hoel (1972) considered previously. The

data set consists of two groups of survival times of RFM strain male mice. The

cause of death was thymic lymphoma. The first group lived in a conventional

laboratory environment while the second group was in a germ free environment.

Based on the Q-Q plot (see figure 2) it is not clear that the data are ordered

according the dispersive order (for a discussion see Kuczmarski and Rosenbaum

(1999)).

From Theorem 2.1 and the characterization provided in Theorem 2.3 it is

clear that a more general criteria to compare the variability is to compare the

expected values of (X − F−1(p))+ and (Y − G−1(p))+ for all p ∈ (0, 1). This

condition leads to the so called right-spread order introduced independently by

Fernández-Ponce, Kochar and Muñoz-Pérez (1998) and Shaked and Shanthiku-

mar (1998).

Definition 2.6. Given two random variables X and Y , with distribution func-
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tions F and G respectively, we say that X is smaller than Y in the right-spread

order, denoted by X ≤rs Y , if

E[(X − F−1(p))+] ≤ E[(Y −G−1(p))+] for all p ∈ (0, 1).

From previous comments clearly X ≤disp Y ⇒ X ≤rs Y . Let us study if

the two groups considered previously are ordered according to the more general

right spread order. A first approach, would be to consider nonparametric esti-

mators of E
[(
X − F−1(p)

)+]
and E

[(
Y −G−1(p)

)+]
for all p, and to compare

them. Noting that, for a non negative random variableX, E
[(
X − F−1(p)

)+]
=

E[X]− ∫ F−1
X (p)

0
F (x)dx and following Barlow et al. (1972) (pp. 235-237), a non-

parametric estimator of E
[(
X − F−1(p)

)+]
given a random sample X1, X2,

..., Xn of X (FX(0) = 0), is given by

RSn(p) ≡ X −H−1
n (p),

where X is the sample mean and H−1
n (p) = nX(1)p for 0 ≤ p < 1

n , and

H−1
n (p) =

1

n

i∑

j=1

(n− j + 1)(X(j) −X(j−1)) +

(
p− i

n

)
(n− i)(X(i+1) −X(i))

for i
n ≤ p < i+1

n , where X(i) denotes the i − th order statistic of a sample of

size n from X and X(0) ≡ 0. The plot of the nonparametric estimators of the

right spread functions (see Figure 3) clearly suggests that the survival times in

the germ free environment are more dispersed, in right spread order, than that

of the laboratory environment.

As in the case of the dispersive order the right spread order can be inter-

preted and used in the context of risk theory. The V aR[X; p] only provides local

information about the distribution, but the measure E[(X−F−1(p))+], provides

more information about the thickness of the upper tail.

3. Some multivariate extensions

In this section we recall some multivariate extension of some of the stochastic

orders considered in the previous section. We start considering an extension of

the usual stochastic order.

Definition 3.1. Given two n-dimensional random vectors X and Y , we say

that X is less than Y in the usual multivariate stochastic order, denoted by



12 F. Belzunce

Figure 3: RS estimations for survival times of male mice.

X ≤st Y , if

E[φ(X)] ≤ E[φ(Y )], (3.1)

for all increasing function φ : Rn 7→ R, for which the previous expectations exist.

Clearly this is an extension based on the characterization provided in Theo-

rem 2.1, for the univariate case. However it is not possible to characterize the

multivariate stochastic order in terms of the comparison of multivariate survival

or distribution functions, like in the univariate case (see (2.1)). In the multivari-

ate case these comparisons lead to the definitions of some orders that compares

the degree of dependence of the random vectors. For the multivariate stochastic

order we have that if X ≤st Y then, for any increasing function φ : Rn 7→ R,
we have that φ(X) ≤st φ(Y ). This is a very interesting property. For exam-

ple let us consider that X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) are vectors of

returns for investments under two different scenarios. In the first case invest-

ing one unit of money into stock i yields a return Xi and in the second case

yields a return Yi. If we invest ai > 0 units in stock i, then the returns, for the

two different scenarios, are
∑n

i=1 aiXi and
∑n

i=1 aiYi. Clearly if X ≤st Y then∑n
i=1 aiXi ≤st

∑n
i=1 aiYi.

The multivariate extension of the stochastic order in terms of comparisons

of expectations can be used to provide multivariate extensions of univariate

stochastic orders based on comparisons of expectations. For example we can

consider the increasing convex order. In the multivariate case there are several

possibilities to extend this concept, depending on the kind of convexity that we

consider.
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Definition 3.2. Given two random vectors X and Y we say that X is less than

Y in the multivariate increasing convex order, denoted by X ≤icx Y , if

E[φ(X)] ≤ E[φ(Y )], (3.2)

for all increasing convex function φ : Rn 7→ R, for which the previous expectations

exist.

If (3.2) holds for all increasing componentwise convex function φ, then we say

that X is less than Y in the increasing componentwise convex order, denoted

by X ≤iccx Y . Some other appropriate classes of functions defined on Rn can

be considered to extend convex orders to the multivariate case, by means of a

difference operator. Let ∆ε
i tbe the ith difference operator defined for a function

φ : Rn → R as

∆ε
iφ(x) = φ(x+ ε1i)− φ(x)

where 1i = (0, . . . , 0,

i︷︸︸︷
1 , 0, . . . , 0). A function φ is said to be directionally

convex if ∆ε
i∆

δ
jφ(x) ≥ 0 for all 1 ≤ i ≤ j ≤ n and ε, δ ≥ 0. Directionally

convex functions are also known as ultramodular functions (see Marinacci and

Montrucchio (2005)). A function φ is said to be supermodular if ∆ε
i∆

δ
jφ(x) ≥ 0

for all 1 ≤ i < j ≤ n and ε, δ ≥ 0. If φ is twice differentiable then, it is

directionally convex if ∂2φ/∂xi∂xj ≥ 0 for every 1 ≤ i ≤ j ≤ n, and it is

supermodular if ∂2φ/∂xi∂xj ≥ 0 for every 1 ≤ i < j ≤ n. Clearly a function φ

is directionally convex if it is supermodular and it is componentwise convex.

When we consider increasing directionally convex functions in (3.2) then we

say that X is less than Y in the increasing directionally convex order, denoted

by X ≤idir-cx Y . If we consider increasing supermodular functions in (3.2) then

we say that X is less than Y in the increasing supermodular order, denoted by

X ≤ism Y .

The supermodular order is a well known tool to compare dependence struc-

tures of random vectors whereas the directionally convex order not only compares

the dependence structure but also the variability of the marginals. Again the

comparison of random vectors under these different criteria can be used for the

comparison of loss or benefits of portfolios.

Now we consider some multivariate stochastic orders in the absolutely con-

tinuous case. We start considering the hazard rate order. In the multivariate

case it is possible to provide several extensions. We first consider the time-

dynamic definition of the multivariate hazard rate order introduced by Shaked

and Shanthikumar (1987).

Let us consider a random vector X = (X1, . . . , Xn) where the Xi’s can be

considered as the lifetimes of n units. For t ≥ 0 let ht denotes the list of units
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which have failed and their failure times. More explicitly, a history ht will denote

ht = {XI = xI ,XI > te},

where I = {i1, . . . , ik} is a subset of {1, . . . , n}, I is its complement with respect

to {1, . . . , n}, XI will denote the vector formed by the components of X with

index in I and 0 < xij < t for all j = 1, . . . , k and e denotes vectors of 1’s, where

the dimension can be determined from the context.

Now we proceed to give the definition of the multivariate hazard rate order.

Given the history ht, as above, let j ∈ I, its multivariate conditional hazard

rate, at time t, is defined as follows:

ηj(t|ht) = lim
∆t→0+

1

∆t
P [t < Xj ≤ t+∆t|ht]. (3.3)

Clearly ηj(t|ht) is the “probability” of instant failure of component j, given the

history ht.

Definition 3.3. Given two n-dimensional random vectors X and Y with hazard

rate functions η·(·|·) and λ·(·|·), respectively. We say that X is less than Y in

the dynamic multivariate hazard rate order, denoted by X ≤dyn-hr Y , if, for

every t ≥ 0,

ηi(t|ht) ≥ λi(t|h′
t)

where

ht = {XI∪J = xI∪J ,XI∪J > te} (3.4)

and

h′
t = {YI = yI ,YI > te}, (3.5)

whenever I ∩ J = ∅, 0 ≤ xI ≤ yI ≤ te, and 0 ≤ xJ ≤ te, where i ∈ I ∪ J .

Given two histories as above, we say that ht is more severe than h′
t.

The multivariate hazard rate order is not necessarily reflexive. In fact if

a random vector X satisfies X ≤dyn-hr X, then it is said to have the HIF

property (hazard increasing upon failure) and it can be considered as a positive

dependence property. Also the HIF notion can be considered as a mathematical

formalization of the default contagion notion in risk theory. Loosely speaking,

the default contagion notion means that the conditional probability of default

for a non-defaulted firm increases given the information that some other firms

has defaulted. In particular, concerning the HIF notion, we have that if the

information become worst, that is, the number of defaulted firms is larger and

the default times are earlier, then the probability of default for a non-defaulted

firm increases.

Another extension, from a mathematical point of view, is the one provided

by Hu, Khaledi and Shaked (2003).
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Definition 3.4. Given two n-dimensional random vectors with multivariate sur-

vival functions F (x) = P [X > x] and G(x) = P [Y > x] for x ∈ Rn, respec-

tively, we say that X is smaller than Y in the multivariate hazard rate order,

denoted by X ≤hr Y , if

F (x ∧ y)G(x ∨ y) ≥ F (x)G(y) for all x,y ∈ Rn,

where (x∧ y) = (min(x1, y1), . . . ,min(xn, yn)) and (x∨ y) = (max(x1, y1), . . . ,

max(xn, yn)).

As we can see, this definition is based on the Definition 2.3 and the previous

one is based on the characterization, in the univariate case, in terms of the

hazard rate function. In a similar way based on the Definition 2.4 we can define

the following multivariate extension of the likelihood ratio order.

Definition 3.5. Given two n-dimensional random vectors X and Y , with joint

densities f and g, respectively, we say that X is less than Y in the multivariate

likelihood ratio order, denoted by X ≤lr Y , if

f(x∧ y)g(x∨ y) ≥ f(x)g(y), for all x, y ∈ Rn.

Again the multivariate likelihood ratio order is not reflexive. In fact given

an n-dimensional random vector X with density f , we say that X is MTP2

(multivariate totally positive of order 2) if

f(x∧ y)f(x∨ y) ≥ f(x)f(y), for all x, y ∈ Rn, (3.6)

that is, if X ≤lr X.

To finish we provide some multivariate extensions of variability orders. Recall

that the definitions given in the univariate case are given in terms of the quantile

funciton. In the multivariate case given an n-dimensional random vector X and

u = (u1, · · · , un) in [0, 1]n, a possible definition for the multivariate u-quantile

for X, denoted as x̂(u) = (x̂1(u1), x̂2(u1, u2), . . . , x̂n(u1, . . . , un)), is as follows

x̂1(u1) ≡ F−1
1 (u1)

and

x̂i(u1, . . . , ui) ≡ F−1
i|1,...,i−1(ui) for i = 2, . . . , n,

where F−1
i|1,...,i−1(·) is the quantile function of the r.v. [Xi|X1 = x̂1(u1), . . . , Xi−1

= x̂i−1(u1, . . . , ui−1)].

This transformation is widely used in simulation theory, and it is named

the standard construction, and satisfy most of the important properties of the

quantile function in the univariate case.
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Given two n-dimensional random vectors X and Y, with standard construc-

tions x̂(u) and ŷ(u), respectively, Shaked and Shantikumar (1998) studied the

following condition

ŷ(u)− x̂(u) is increasing in u ∈ (0, 1)n, (3.7)

as a multivariate generalization of the dispersive order, and we will say that X

is smaller than Y in the variability order, denoted by X ≤V ar Y, if (3.7) holds.

Another multivariate generalization based on the standard construction was

given by Fernández-Ponce and Suárez-Llorens (2003). We will say that X is less

than Y in the dispersive order, denoted by X ≤disp Y, if

‖ x̂(v)− x̂(u) ‖≤‖ ŷ(v)− ŷ(u) ‖

for all u,v ∈ [0, 1]n.

Shaked and Shanhtikumar (1998) introduce condition (3.7) to identify pairs

of multivariate functions of random vectors that are ordered in the st:icx order.

Definition 3.6. Given two random variables X and Y , we say that X is smaller

than Y in the st:icx order, denoted by X ≤st:icx Y , if E[h(X)] ≤ E[h(Y )] for all

increasing functions h for which the expectations exists (i.e. if X ≤st Y ), and if

V ar[h(X)] ≤ V ar[h(Y )] for all increasing convex functions h,

provided the variances exist.

The result was given for CIS random vectors. A random vector (X1, ..., Xn)

is said to be conditionally increasing in sequence (CIS) if, for i = 2, 3, . . . , n,

(Xi|X1 = x1, X2 = x2, ..., Xi−1 = xi−1)

≤st (Xi|X1 = x′
1, X2 = x′

2, ..., Xi−1 = x′
i−1)

whenever xj ≤ x′
j , j = 1, 2, . . . , i− 1.

Shaked and Shanthikumar (1998) prove that given two nonnegative n -

dimensional random vectors X and Y, with the CIS property, if X ≤VarY then

φ(X) ≤st:icx φ(Y),

for all increasing directionally convex function φ. Therefore we can apply this

result for the comparisons of portfolios in the sense described previously.

4. Further comments and remarks

In this section I would like to point out some other applications and fields

where stochastic orders can be applied. The main applications that we have
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discussed previously are in the context of failure or survival times, which provides

a lot of applications in reliability theory (see Chapters 15 and 16 in Shaked and

Shanthikumar (1994)) and in the context of risk theory (see Chapter 12 in Shaked

and Shanthikumar (1994) and Denuit et al. (2005)). It is clear that they can

be used also to compare the times at which some event occurs. Therefore the

comparison of stochastic processes are of interest in general, and in particular

in several contexts like epidemiology, ecology, biology (see for example Belzunce

et al. (2001) for general results and Chapter 11 in Shaked and Shanthikumar

(1994) for applications in epidemics). The comparison of ordered data is also

an increasing field of research and the reader can look at Boland, Shaked and

Shanthikumar (1998), Boland et al. (2002), Belzunce, Mercader and Ruiz (2005),

Belzunce et al. (2007) for several results in this direction. Also the stochastic

orders can be used in several contexts in operations research for example can be

used to the scheduling of jobs in machines and in Jackson networks (see Chapter

13 and 14, respectively, in Shaked and Shanthikumar (1994)).
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