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Abstract
This paper deals with the model of multi-choice games, a natural extension of the traditional mo-

del of cooperative games with transferable utility. Cooperative multi-choice game theory is a booming
research topic with many recent developments on which this paper intends to o�er a brief overview.
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1. Solution concepts for arbitrary
multi-choice games

Multi-choice cooperative games are introduced
in Hsiao and Raghavan [10], [11] to allow coope-
rating players to be active at more than one le-
vel, under the assumption that the same number of
participation levels is available for all players. The
model of multi-choice games is considered in a more
general setting in Nouweland [15] and Nouweland,
Potters, Tijs, and Zarzuelo [16], where the number
of participation levels for di�erent players may be
di�erent. Building blocks for multi-choice games
are the so-called multi-choice coalitions which are
players' participation pro�les available when a ma-
ximal participation pro�le is known. A real-valued
characteristic function on the set of multi-choice
coalitions quanti�es the bene�t of cooperation ac-
cording to any participation pro�le; it is assumed
that overall abstention from cooperation (i.e. coo-
peration at level 0) generates worth 0. A multi-
choice game is a triplet 〈N, m, v〉 specifying the set
N = {1, ..., n} of players, their maximal participa-
tion pro�le m = (m1, ...,mn) with mi ∈ Z+ for each
i ∈ N , and the characteristic function v : MN → R,

v(0) = 0, where MN stands for the set of multi-
choice coalitions, that is the set of participation
pro�les s smaller than or equal to m.

Here is an example of a multi-choice game
〈N,m, v〉, where N={1, 2}, m=(2, 1), v((0, 0))=0,

v((1, 0))=5, v((2, 0))=6, v((0, 1))=3, v((1, 1))=9,

v((2, 1)) = 13.

Often, a multi-choice game is identi�ed with its
characteristic function. Let us denote by MCN,m

the set of multi-choice games with a �xed �nite
set of players N and maximal participation pro-
�le m. Examples of application of the multi-choice
game model to various situations can be found in
Nouweland [15], Calvo and Santos [6], Peters and
Zank [17]. Multi-choice cooperative games have
been a useful tool for modeling interaction of players
in economic and operations research situations in
which they may have di�erent options for cooper-
ation, varying from non-cooperation (participation
level 0) to a maximal participation level which is
greater than or equal to 1. In particular, multi-
choice games can be seen as an appropriate ana-
lytical tool for modeling cost allocation situations
in which commodities are indivisible goods that
are only available at certain �nite number of le-
vels. Clearly, when all the players can only abstain
from cooperation or be active at level 1 we obtain
the traditional model of cooperative games. Con-
sequently, solution concepts on MCN,m appear as
natural extensions of well-known solution concepts
on the set GN of traditional cooperative games with
player set N . A basic notion for de�ning various
solutions for multi-choice games is that of (level)
payo� vector. A (level) payo� vector is a func-
tion x : M → R, where M = {(i, j) | i ∈ N,

j ∈ M+
i } with M+

i = {1, ...,mi}, which speci�es
for each player i ∈ N and each of his levels j ∈ M+

i
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the payo� to player i corresponding to a change
of its activity level from j − 1 to j. By conven-
tion, we de�ne xi0 = 0 for all i ∈ N . An example
of a (level) payo� vector for the two-person multi-
choice game previously presented is (5, 1, 7), where
x11 = 5, x12 = 1, x21 = 7 (x10 = x20 = 0). For
each s ∈ MN , the payo� of s according to x is
X(s) =

∑
i∈N

∑si

j=1 xij , and the payo� of player i

for acting at level si is Xisi
=

∑si

j=1 xij . Appealing
properties for (level) payo� vectors are: e�ciency,
i.e. X(m) = v(m); level-increase rationality, i.e.
for each i ∈ N and each j ∈ M+

i , xij is at least the
increase in payo� that player i can obtain working
alone when he changes his activity level from j − 1
to j; coalitional stability, i.e. X(s) ≥ v(s) for each
s ∈MN . Let v ∈ MCN,m.

The imputation set I(v) of v consists of all e�-
cient and level-increase rational (level) payo� vec-
tors, that is

I(v) = {x : M → R | X(m) = v(m);
xij ≥ v(jei)− v((j − 1)ei), i ∈ N, j ∈ M+

i },

where ei is the unitary vector with ei
k = 0 for all

k 6= i and ei
i = 1.

The core C(v) of v consists of those imputations
which are coalitional stable, that is

C(v) = {x ∈ I(v) | X(s) ≥ v(s) for all s ∈MN}.

The precore PC(v) of v consists of all e�cient
and coalitional stable (level) payo� vectors, that is

PC(v) = {x : M → R | X(m) = v(m);
X(s) ≥ v(s) for all s ∈MN}.

The minimal core Cmin(v) of v consists of those
core elements x for which do not exist other ele-
ments y ∈ C(v) which are weakly smaller than x in
the sense that Y (s) ≤ X(s) holds for each s ∈MN ,
that is

Cmin(v) = {x ∈ C(v) |6 ∃y ∈ C(v) s.t. y 6= x

and y is weakly smaller than x}.

By considering a domination relation on I(v)
based on players' levels of activity, the notions of
dominance core and stable set are introduced in
Nouweland et al. [16] as natural extensions of their
traditional counterparts.

Let s ∈MN \ {0} and x, y ∈ I(v). We say that

the imputation y dominates the imputation x via
coalition s, denoted by y doms x, if Y (s) ≤ v(s) and
Yisi

> Xisi
for all i ∈ car(s) = {i ∈ N | si > 0}.

Further, we say that the imputation y dominates
the imputation x if there exists s ∈MN \ {0} such
that y doms x.

The dominance core DC(v) of v ∈ MCN,m

consists of all x ∈ I(v) for which there exists no
y ∈ I(v) such that y dominates x, that is

DC(v) = {x ∈ I(v) |6 ∃y ∈ I(v) s.t. y domx}.

A set A ⊂ I(v) is a stable set if it is inter-
nally stable, that is A ∩ D(A) 6= ∅, and it is ex-
ternally stable, that is I(v) \ A ⊂ D(A). Here,
D(A) = {x ∈ I(v) | ∃a ∈ A s.t. a domx}.

Relations among the core, the dominance core
and stable sets in the traditional cooperative game
model still hold in the multi-choice model. In parti-
cular, the core of v is a subset of the dominance core
of v; every stable set contains the dominance core
as a subset; if the dominance core of v is a stable
set, then there are no other stable sets. For additio-
nal results on cores and stable sets for multi-choice
games the reader is referred to Part III in Branzei,
Dimitrov and Tijs [1].

The equal division core EDC(v) of v ∈ MCN,m

is introduced in Branzei, Llorca, Sánchez-Soriano
and Tijs [3] based on the (per-unit level) average
worth, α(s, v) = v(s)/

∑
i∈N si, of a multi-choice

coalition s ∈MN \ {0} for the game v, that is

EDC(v) = {x : M → R | X(m) = v(m);
6 ∃s ∈MN \ {0} s.t. α(s, v) > xij

for all i ∈ car(s), j ∈ M+
i }.

It holds C(v) ⊂ PC(v) ⊂ EDC(v) for each
v ∈ MCN,m.

Another set-valued solution concept on MCN,m

is the equal split-o� set introduced in Branzei, Di-
mitrov and Tijs [2] as a straightforward generaliza-
tion of the equal split-o� set on GN .

The multi-choice version of the Weber set W (v)
of v ∈ GN is de�ned as the convex hull of the (le-
vel) marginal vectors wσ,v corresponding to admis-
sible orderings σ of players in v ∈ MCN,m, i.e. or-
derings which take into account the fact that each
player can reach a higher level of participation only
via one-unit level increases starting from level 0.
Thus, each admissible ordering σ of players gene-
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rates a path from the participation pro�le (0, ..., 0)
to (m1, ...,mn), along which the di�erences in worth
for each one-unit level increase become wσ,v

ij for
i ∈ N and j ∈ M+

i . We notice that marginal vec-
tors wσ,v are not necessarily imputations. Given
v ∈ MCN,m and x ∈ C(v) it is proved by Nouwe-
land et al. [16] that there is a y ∈ W (v) that is
weakly smaller than x. Thus, the relation between
the core and the Weber set in the multi-choice game
theory is di�erent from that existing in the classical
cooperative game theory, where the Weber set is a
core catcher.

On the class of multi-choice games several solu-
tion concepts, which we call here Shapley-like va-
lues, are inspired basically by the Shapley value
(cf. Shapley [19]). We brie�y present here the most
important ones.

The Shapley value Φ, a natural extension of the
Shapley value on GN , is introduced by Nouweland
et al. [16] as the average of (level) marginal vec-
tors, and axiomatically characterized by additivity,
the carrier property and the hierarchical strength
property. This value is further studied in Calvo
and Santos [6] where the focus is on players' total
payo�s instead of (level) payo� vectors. It is shown
that this value corresponds to the discrete Aumann-
Shapley method proposed in Moulin [14].

In Hsiao and Raghavan [11] the Shapley value
Ψw is introduced, where w is a weight vector cor-
responding to players' levels under the assumptions
of equal number of levels for all players and increa-
sing ordering of weights with respect to levels. The
Shapley values Ψw extend ideas of weighted Sha-
pley values (cf. Kalai and Samet [12]). An axioma-
tic characterization of Ψw is provided using additiv-
ity, the carrier property, the minimal e�ort property
and the weight property.

The Shapley value Θ is introduced by Derks and
Peters [7]. In Klijn, Slikker and Zarzuelo [13] it
is proved that Θ can be seen as the (level) payo�
vector of average marginal contributions of the ele-
ments inMN \{0}. The Shapley value Θ is axioma-
tically characterized in Nouweland [15] in the spirit
of Young [22]; other axiomatic characterizations of
it can be found in Klijn, Slikker and Zarzuelo [13].

The Shapley value ε, called the egalitarian
multi-choice solution, is introduced by Peters and
Zank [17] and axiomatically characterized by the
properties of e�ciency, zero-contribution, additiv-

ity and level-symmetry.
We also mention here the multi-choice Shapley

value introduced by Grabisch and Lange [8].
More about the foregoing solution concepts is

known on special classes of multi-choice games.

2. Solution concepts for convex
multi-choice games
Convex multi-choice games are introduced in

Nouweland et al. [16] as games whose characteris-
tic function is supermodular. Formally, a game v ∈
MCN,m is convex if v(s ∧ t)+v(s ∨ t) ≥ v(s)+v(t)
for all s, t ∈ MN , where (s ∧ t)i = min{si, ti} and
(s∨ t)i = max{si, ti} for all i ∈ N . It is shown that
the core of a convex multi-choice game is the unique
stable set of the game, and that a multi-choice game
v is convex if and only if its Weber set equals the
convex hull of the minimal core of the game, i.e.
W (v) = co(Cmin(v)) holds. Consequently, the Sha-
pley value Φ(v) of v belongs to the core C(v) of v, in
case v is convex. In Grabisch and Xie [9] notions re-
lated to the core and the Weber set for multi-choice
games are de�ned in such a way that the equality
between the core of a convex multi-choice game and
the Weber set of that game still holds true.

Convexity of a multi-choice game proved to be
a su�cient condition for the existence of monotonic
allocation schemes (cf. Sprumont [20]) in a multi-
choice setting. Such schemes, called (level-increase)
monotonic allocation schemes (limas), are intro-
duced and studied in Branzei, Tijs and Zarzuelo
[5]. Let v ∈ MCN,m be a convex game.

A scheme a = [at
ij ]

t∈MN\{0}
i∈N, j∈{1,...,ti} is called a

(level-increase) monotonic allocation scheme (li-
mas) for v if it satis�es a stability condition, i.e.
at ∈ C(vt) for each subgame vt of v with t ∈
MN \ {0}, and a (level) monotonicity condition,
i.e. as

ij ≤ at
ij for all s, t ∈ MN \ {0} with s ≤ t,

each i ∈ car(s), and each j ∈ {1, ..., si}. The sub-
game of v ∈ MCN,m with respect to t ∈MN \ {0}
is de�ned by vt(s) := v(s) for each s ∈ MN \ {0}
such that s ≤ t. We denote by MN

t the subset of
MN \{0} consisting of multi-choice coalitions s ≤ t

and by M t
i the set {1, ..., ti}.

In particular, the total Shapley value (cf.
Nouweland et al. [16]) of a convex multi-choice
game, which is the scheme [Φij(vt)]

t∈MN\{0}
i∈N, j∈{1,...,ti}

with the Shapley value of the multi-choice subgame
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t in each row t, is a (level-increase) monotonic al-
location scheme for v. It turns out that each ele-
ment of the Weber set of a convex multi-choice game
is extendable to a limas, that is there exists a li-
mas [at

ij ]
t∈MN\{0}
i∈N, j∈{1,...,ti} such that am

ij = xij for each
i ∈ N and j ∈ M+

i .

The constrained egalitarian solution is intro-
duced on the class of convex multi-choice games
in Branzei, Llorca, Sánchez-Soriano and Tijs [3]
by using an adjusted version of the Dutta-Ray
algorithm for traditional convex games based on
the (per one-unit level-increase) average worth of
a multi-choice coalition s ∈ MN \ {0}. Here, a
key role is played by a proposition showing that
there exists a unique multi-choice coalition with
the largest aggregate number of levels of players
among all coalitions with the highest (per one-
unit level-increase) average worth. Then, a se-
quence of marginal games, each of which is a con-
vex multi-choice game, is considered, that corre-
sponds to the unique sequence of multi-choice coali-
tions in line with the above mentioned proposi-
tion. The marginal game of v ∈ MCN,m based on
u ∈MN \{0} is de�ned by v−u(s) := v(s+u)−v(u)
for each s ∈MN \ {0} such that s ≤ m− u, that is
for each s ∈MN

m−u. Now, we formulate the Dutta-
Ray algorithm for convex multi-choice games.

Step 1: Consider m1 := m, v1 := v. Select the
unique element in arg maxs∈MN

m1\{0}α(s, v1) with
the maximal aggregate number of levels, say s1.
De�ne dij := α(s1, v1) for each i ∈ car(s1) and
j ∈ Ms1

i . If s1 = m, then stop; otherwise, go on.

Step p: Suppose that s1, s2, ..., sp−1 have been
de�ned recursively and s1 +s2 + ...+sp−1 6= m. De-
�ne a new multi-choice game with player set N and
maximal participation pro�le mp := m−∑p−1

i=1 mi.
For each multi-choice coalition s ∈ MN

mp , de�ne
vp(s) := vp−1(s + sp−1) − vp−1(sp−1). The game
vp ∈ MCN,mp is convex. Denote by sp the (unique)
largest element in arg maxs∈MN

mp\{0}α(s, vp) and
de�ne dij := α(sp, vp) for all i ∈ car(sp) and
j ∈

{∑p−1
k=1 sk

i + 1, ...,
∑p

k=1 sk
i

}
.

In a �nite number of steps, say P , where P≤|M |,
M = {(i, j) | i ∈ N, j ∈ Mi}, and |M | is the car-
dinality of the set M , the algorithm will end, and
the constructed (level) payo� vector (dij)(i,j)∈M+

is called the (Dutta-Ray) constrained egalitarian
solution d(v) of the convex multi-choice game v.
It is proved that the constrained egalitarian so-
lution for convex multi-choice games has similar
properties as the constrained egalitarian solution
for traditional convex games. Speci�cally, the con-
strained egalitarian allocation is a Lorenz undomi-
nated element of the precore, and also belongs to
the equal division core of the game. We notice
that the role of the core for a convex game in GN

is played now by the precore of a convex multi-
choice game. However, it is still an open ques-
tion whether the constrained egalitarian solution
of a convex multi-choice game possesses a popula-
tion monotonicity property regarding players' levels
of participation. It turns out that for each convex
multi-choice game v the equal split-o� set ESOS(v)
consists of a unique equal split-o� allocation which
equals the constrained egalitarian solution of that
game, i.e. ESOS(v) = {d(v)} for each convex game
v ∈ MCN,m.

3. Solution concepts for multi-choice
total clan games
Multi-choice clan games are introduced in

Branzei, Llorca, Sánchez-Soriano and Tijs [4] to ex-
tend the model of traditional clan games (cf. Pot-
ters, Poos, Tijs and Muto [18]). In a multi-choice
clan game the set N of players consists of two dis-
joint groups: a �xed (powerful) clan C with 'yes-
or-no' choices, and a group of (nonpowerful) non-
clan members having more possibilities for being
active. Multi-choice clan games are de�ned using
the veto power of clan members, the monotonicity
property of the characteristic function, and a (level)
union property regarding non-clan members' par-
ticipation in multi-choice coalitions containing at
least all clan members at participation level 1. We
denote by MN,C the set of multi-choice coalitions
with player set N and �xed clan C, and by MN,1C

the set of all multi-choice coalitions containing at
least all clan members at participation level 1. For
each s ∈ MN,C we denote its restrictions to N \ C

and C, by sN\C and sC , respectively. Clearly, the
maximal participation pro�le of players in a multi-
choice clan game with �xed player set N and �xed
clan C is of the form m = (mN\C , 1C). Formally,
a game < N, (mN\C , 1C), v > is a multi-choice clan
game if v satis�es:
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(i) Clan property: v(s) = 0 if sC 6= 1C ;
(ii) Monotonicity property: v(s) ≤ v(t) for all

s, t ∈MN,C with s ≤ t;

(iii) (Level) Union property: For each s ∈
MN,1C , v(m) − v(s) ≥

∑

i∈N\C
(v(m) −

v(m−i, si)), where (m−i, si) is the multi-
choice coalition where all players j ∈ N \ C,
j 6= i, participate at their maximal level mj ,
whereas non-clan member i participates at his
level si in s.

We denote the set of multi-choice clan games
with player set N , �xed clan C and maximal par-
ticipation pro�le m = (mN\C , 1C) by MCN,m

C .
The core of a multi-choice game v ∈ MCN,m

C is
explicitly described as

C(v) = {x : M → R+ | X(m) = v(m);
mi∑

k=j

xik ≤ v(m)− v(m−i, j − 1),

for all i ∈ N \ C, j ∈ M+
i }.

A multi-choice total clan game is a clan game
whose all subgames are also clan games. The sub-
game of v ∈ MCN,m

C with respect to t ∈ MN,1C

is de�ned by vt(s) := v(s) for each s ∈ MN,1C

t ,
where MN,1C

t stands for the subset of MN,1C with
sN\C ≤ tN\C . The structure of the core of a multi-
choice total clan game and that of the core of its
subgames play an important role for the existence
of bi-monotonic allocation schemes for such games.
A (level) total concavity property of multi-choice
total clan games also plays a role for the existence
of bi-monotonic allocation schemes for such games:

For s, t ∈ MN,1C with s ≤ t and for each
i ∈ car(sN\C) such that si = ti it holds

v(t)− v(t− ei) ≤ v(s)− v(s− ei).

This property re�ects the fact that the same one-
unit level decrease of a non-clan member in coali-
tions containing at least all clan members at partici-
pation level 1 and where that non-clan member has
the same participation level, could be more bene�-
cial in smaller such coalitions than in larger ones.
It turns out that, for multi-choice games posses-
sing both the clan property and the monotonicity
property, the total concavity property is equivalent
with the total (level) union property:

For all s, t ∈MN,1C with s ≤ t it holds:

v(t)− v(s) ≥
∑

i∈car(tN\C)

(v(t)− v(t−i, si)).

A scheme b = [bt
ij ]

t∈MN,1C

i∈N, j∈{1,...,ti} is called a bi -
(level-increase) monotonic allocation scheme (bi-
limas) if it satis�es a stability condition, i.e. bt ∈
C(vt) for each subgame vt of v with t ∈MN,1C , and
a (level) bi-monotonicity property regarding the two
types of players, i.e. for all s, t ∈MN,1C with s ≤ t

it holds: (i)bs
i1 ≤ bt

i1 for each i ∈ C, and (ii) bs
ij ≥ bt

ij

for each i ∈ car(sN\C) and each j ∈ {1, ..., si}.
This kind of bi-monotonic allocation schemes

are introduced in Branzei, Llorca, Sánchez-Soriano
and Tijs [4] and studied by means of suitably de-
�ned compensation-sharing rules ψα,β : MCN,m

C →
R|M |, where α ∈ [0, 1]N\C and β ∈ ∆(C), with
∆(C) being the unit simplex whose coordinates cor-
respond to clan members.

The i-th coordinate αi of the compensation vec-
tor α indicates the share, to be given to level 1 of
non-clan member i, of i's contribution to the grand
coalition m, whereas the i-th coordinate βi of the
sharing vector β determines the share of the re-
mainder for the clan given to clan member i. It
turns out that for a subclass of multi-choice total
clan games compensation-sharing rules ψα,β with
α ∈ [0, 1]N\C and β ∈ N(C) generate bi-(level-
increase) monotonic allocation schemes. Further-
more, some elements x in the core of each multi-
choice game in that subclass of total clan games
are extendable to a bi-limas, that is there exists a
bi-limas [bt

ij ]
t∈MN,1C

i∈N, j∈{1,...,ti} such that bm
ij = xij for

each i ∈ N , j ∈ M+
i . Clearly, when sN\C = 1N\C

a bi-limas coincides with a bi-mas (cf. Voorneveld,
Tijs and Grahn [21]), and we obtain as a particular
case that each core element of a total clan game in
GN is extendable to a bi-mas.
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