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Abstract
This work concerns with some probability applications in insurance theory. The problem to

determine the ruin probability of an insurance company is considered. We show that by using
some stochastic models and considering several probabilistic procedures such a probability can be
approached. As illustration, an application to car insurance is provided.
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1. Introduction
Risk analysis in insurance theory is an impor-

tant area for probability and statistical applica-
tions. In particular, the probabilistic modelling of
the surplus evolution in an insurance company has
received some attention in the specialized literature.
In fact, denoting by U(t) the surplus of an insurance
company at time t, the classical model establishes
that:

U(t) = u + ct− S(t), t ≥ 0, (1.1)

where u > 0 is the initial surplus, c is the constant
rate at which the premiums are received per unit
time and S(t) is the aggregate amount concerning
the claims reported in the time interval [0, t]. It is
assumed that {S(t), t ≥ 0} is a compound Poisson
process,

S(t) =
N(t)∑

i=1

Xi, t ≥ 0

{N(t), t ≥ 0} being a Poisson process and {Xn, n =
1, 2, . . .} a sequence of independent and identically
distributed random variables, both assumed to be
independent. The variable N(t) represents the
number of reported claims in [0, t] and Xi is the
amount corresponding to the ith claim.

In general, from model (2.1), some results in risk

theory have been derived but such a model it is not
�exible enough in order to describe the probabilistic
evolution of U(t) in more complex real situations.
In an attempt to contribute some solution to this
problem, several classes of stochastic models have
been introduced and some theory and applications
about them developed. We will quote, for example:

(a) Stochastic models considering claim ar-
rivals governed by non-Poissonian processes.
See e.g. [4] where it is assumed that the num-
ber of claims is described through a Cox pro-
cess.

(b) Stochastic models allowing a rate c(·)
which change through a Markov process. See
e.g. [1] or [6] where it is considered that the
rate changes modulated by an underlying ir-
reducible Markov chain or a premium rate in
a Markovian environment, respectively.

(c) Stochastic models including a di�usion
component which represents uncertainties in
both the premium income and the costs.
Firstly studied by Gerber, such models have
been applied in several risk problems, see e.g.
[2], [3] or [8].

In this work, we will focus our interest in a
class of risk models which allows premium rate and
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di�usion component depending on an underlying
continuous-time Markov chain. Moreover, the oc-
currence of claims is assumed to be well-described
by a Cox process. It is usually referred as the class
of risk models with Markov modulated speed. We
will center our attention in the determination of
the ruin probability for an insurance company. This
problem is an important objective in many research
developed in actuarial risk theory. We will show by
using some classical probabilistic techniques that it
is possible to obtain the ruin probability.

The paper is organized as follow: In Section 2,
we provide the probabilistic descriptions of such a
class of risk models. In Section 3, we develop a
probabilistic procedure to determine the ruin prob-
ability. Finally, Section 4 is devoted to considering
an application in car insurance.

2. Stochastic modelling
Let us consider the following stochastic mod-

elling for U(t), t ≥ 0:

U(t) = u +
∫ t

0

c(I(s))ds−
N(t)∑

i=1

Xi +
∫ t

0

σ(I(s))dWs

(2.1)
where:

(a) {N(t), t ≥ 0}, N(0) = 0, is a Cox point
process. N(t) represents the number of claims
received for the insurance company during the
interval [0, t].

(b) {Xn, n = 0, 1, . . .} is a sequence of inde-
pendent and identically distributed random
variables which represents the amount corre-
sponding to the successive claims received by
the company in [0, t]. Let us write F (x) =
P (X1 ≤ x), x > 0, F (0) = 0, and µ = E[X1].

(c) {W (t), t ≥ 0} is a standard Wiener process
with di�usion coe�cient σ(·). This process
represents the disturbances originated from
several tiny stochastic factors.

(d) {I(t), t ≥ 0} is an underlying continuous-
time homogeneous Markov chain with state
space S = {1, . . . , n} assumed to be irre-
ducible.

Notice that in (2.1) the premium rate c(·) and the
di�usion coe�cient σ(·) depend on the current state
of the Markov chain {I(t), t ≥ 0}. In fact, if at
time t it is veri�ed that I(t) = i then, by simplicity,

c(I(t)) and σ(I(t)) will be denoted, respectively, as
ci and σi, assumed to be positive. On the other
hand, we are considering that the number of re-
ported claims is governed by a Cox process, hence
if I(s) = i, s ∈ [0, t] then the number of claims re-
ceived in [0, t] has a Poisson distribution with mean
λi > 0.

According to [5], we shall denote by qi the rate
at which the Markov chain {I(t), t ≥ 0} leaves the
state i, and by qij and pij , respectively, the transi-
tion intensity and the transition probability that it
leaves the state i for the �rst time and enter into
the state j immediately. Assuming that pii = 0,
i ∈ S, one deduces that qij = qipij for i 6= j and
qii = −qi. Since all the states communicate,

πiqi =
n∑

j=1

πjqjpji. (2.2)

where π1, π2, ..., πn denotes a stationary distribu-
tion corresponding to {I(t), t ≥ 0}.

Also, we will assume that the named safety load-
ing is positive, namely c− λµ > 0 where:

c =
n∑

i=1

πici and λ =
n∑

i=1

πiλi.

3. Ruin probability
In this section we are interested in the determi-

nation of the ruin probability de�ned by:

ψ(u) =
n∑

i=1

πiψi(u) (3.1)

where ψi(u) = P (U(t) ≤ 0 | U(0) = u, I(0) = i) for
some t ≥ 0.

First, by considering the evolution of U(t) in a
short interval [0, h), h > 0, we shall determine a
system of equations for Ri(u) = 1 − ψi(u), i ∈ S.
In fact, assuming that I(0) = i, we can consider the
following possibilities during the interval [0, h):

(a) There is not reported claims and I(s) = i

for s ∈ [0, h).
(b) One claim is produced but the amount to
be paid for such a claim does not cause ruin
and I(s) = i for s ∈ [0, h).

(c) There is not reported claims and, from the
state i a change to other state it is produced.
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(d) At least one claim is reported in and at
least one change of state, from i, is produced.

Consequently, see for more details [2], on has for
t ∈ [0, h),

Ri(u) = (1− λih− qih + o(h))E[Ri(ϕi(u, h)]

+(λih + o(h))(1− qih + o(h))

E[
∫ ϕi(u,h)

0

Ri(ϕi(u, h)− x)dF (x)]

+(1− λih + o(h))(qih + o(h))
n∑

j=1

pijE[Rj(ϕi(u, h))] + o(h).

(3.2)

where ϕi(u, h) = u + cih + σiWh.
By considering the Taylor expression in u of

E[Ri(ϕi(u, h))], dividing by h, and taking limit as
h ↓ 0, it is matter of some straightforward calcula-
tion to deduce,

σ2
i

2
R
′′
i (u) + ciR

′
i(u) = (λi + qi)Ri(u)

− λi

∫ u

0

Ri(u− x)dF (x)

− qi

n∑

j=1

pijRj(u).

(3.3)

By integration of (3.3) on [0, t] and using the fact
that Ri(0) = 0,

σ2
i

2
R
′
i(t) + ciRi(t) =

σ2
i

2
R
′
i(0)

+ (λi + qi)
∫ t

0

Ri(u)du

− λi

∫ t

0

∫ u

0

Ri(u− x)dF (x)du

− qi

n∑

j=1

pij

∫ t

0

Rj(u)du.

and, taking into account that

∫ t

0

∫ u

0

Ri(u− x)dF (x)du =
∫ t

0

Ri(u)du +
∫ t

0

Ri(t− x)F ∗(x)dx.

where F ∗(x) = 1 − F (x), considering the fact that
ψi(t) = 1−Ri(t), i = 1, . . . , n,

σ2
i

2
ψ
′
i(t) + ciψi(t) =

ci +
σ2

i

2
ψ
′
i(0) + λi

∫ t

0

F ∗(x)dx

−λi

∫ t

0

ψi(t− x)F ∗(x)dx

+qi

∫ t

0

ψi(u)du− qi

n∑

j=1

pij

∫ t

0

ψj(u)du.

(3.4)

Finally, taking limit as t ↑ ∞, we deduce the fol-
lowing system of equations for ψi(u), i = 1, . . . , n:

ψ
′
i(0) =

2
σ2

i

( −ci − λiµ− qi

∫ ∞

0

ψi(u)du

+qi

n∑

j=1

pij

∫ ∞

0

ψj(u)du ).

(3.5)

Using the numerical solutions of (3.5), from (3.1)
we may determine the corresponding ruin probabil-
ity.

Note that when ci = c and σi = σ, i = 1, . . . , n,
by (3.4) and (3.5), taking into account (2.2) we de-
duce:

σ2

2
ψ
′
(t) + cψ(t) = c +

σ2

2
ψ
′
(0) + λ

∫ t

0

F ∗(x)dx

−
n∑

i=1

πiλi

∫ t

0

ψi(t− x)F ∗(x)dx,

and
ψ
′
(0) =

−2
σ2

(c + λµ)

respectively.

4. Application to car insurance
It is well-known the in�uence that certain fac-

tors, for example the inclemency of the weather, the
conditions of the roads, and so on, have in the oc-
currence of tra�c accidents. Next we shall consider
an application of the model (2.1) in car insurance.

In a �rst approximation, we will assume that
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the underlying Markov chain {I(t), t ≥ 0} has a
two-states space, namely S = {1, 2}, where:

• The state 1 represents the risk under nor-
mal conditions.
• The state 2 represents the risk under bad
conditions (for e.g. slippery roads, foggy days
or high tra�c volume.

We refer the reader to [5] and [7] for more de-
tails. Also, we will consider that the variable Xi

has exponential distribution with mean µ and that
p12 = p21 = 1, p11 = p22 = 0. Then,

q11 = −q1, q22 = −q2, q12 = q1, q21 = q2

and

π1 = q2(q1 + q2)−1, π2 = q1(q1 + q2)−1.

Let us denote by

φi(s) =
∫ ∞

0

e−stψi(t)dt

and
φ∗(s) =

∫ ∞

0

e−stF ∗(t)dt.

Taking into account that
∫ ∞

0

e−stψ
′
i(t)dt = sφi(s)− 1,

and ∫ ∞

0

e−st

∫ t

0

ψi(u)dudt =
1
s
φi(s).

by using the Laplace transformation in (3.4), ones
deduces, for i = 1, 2,

(
ci +

σ2
i

2
s− qi

s
+ λiφ

∗(s)
)

φi(s)+
qi

s

n∑

j=1

pijφj(s) =

σ2
i

2
+

1
s
(ci +

σ2
i

2
ψ
′
i(0)) +

λi

s
φ∗(s)

hence,

(
c1 +

σ2
1

2
s− q1

s
+

λ1µ

sµ + 1

)
φ1(s) +

q1

s
φ2(s) =

σ2
1

2
+

1
s

(
c1 +

σ2
1

2
ψ
′
1(0)

)
+

λ1µ

s(sµ + 1)

and

(
c2 +

σ2
2

2
s− q2

s
+

λ2µ

sµ + 1

)
φ2(s) +

q2

s
φ1(s) =

σ2
2

2
+

1
s

(
c2 +

σ2
2

2
ψ
′
2(0)

)
+

λ2µ

s(sµ + 1)
.

Conclusion:
The surplus evolution corresponding to an insur-
ance company could be suitably described in terms
of the general model given in (2.1). From a prac-
tical point of view, by solving the system given in
(3.5) and taking into account expression (3.1), it is
possible to determine the ruin probability. This pa-
rameter plays a crucial role in research about risk
analysis in insurance theory.
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