Parameter-dependent solutions of the classical Yang-Baxter equation on sl(n,C).

M. Cahen V. De Smedt

Abstract

For any integers n and m $(m \ge 4)$ such that n+m is odd we exhibit triangular solutions of the classical Yang-Baxter equation on $sl((n+1)(m+2), \mathbb{C})$ parametrized by points of a quotient of complex projective space $\mathbb{P}^{\lfloor \frac{n}{2} \rfloor}(\mathbb{C})$ by the action of the symmetric group $Sym(\lfloor \frac{n+1}{2} \rfloor)$ and we prove that no two of these solutions are isomorphic.

1 Introduction

The motivation for this work is to exhibit solutions of the classical Yang-Baxter equations depending on a large number of parameters, Such solutions lead, by a construction indicated by Drinfeld [1], to quantum groups. We hope that these parameter-dependent quantum groups may have interesting geometrical applications [3].

2 The classical Yang-Baxter equation.

Let \mathcal{G} be a finite-dimensional Lie algebra over \mathbb{K} (= \mathbb{R} or \mathbb{C}); an element $R \in \wedge^2 \mathcal{G}$ is said to be a solution of the classical Yang-Baxter equation iff

$$[R,R]=0$$

where $[\ ,\]: \wedge^2 \mathcal{G} \otimes \wedge^2 \mathcal{G} \to \wedge^3 \mathcal{G}$ is the Schouten bracket, defined on bivectors by

Received by the editors November 1995.

Communicated by Y. Félix.

1991 Mathematics Subject Classification: 16W30, 17Bxx.

Key words and phrases: Classical Yang Baxter equation, Poisson Lie Groups.

$$[X_1 \wedge X_2, Y_1 \wedge Y_2] := [X_1, Y_1] \wedge X_2 \wedge Y_2 - [X_1, Y_2] \wedge X_2 \wedge Y_1 - [X_2, Y_1] \wedge X_1 \wedge Y_2 + [X_2, Y_2] \wedge X_1 \wedge Y_1$$

Lemma 2.1. (see [2] corollary 2.2.4 and proposition 2.2.6). There is a bijective correspondence between the solutions R of the classical Yang-Baxter equation on \mathcal{G} and the symplectic subalgebras (\mathcal{H}, ω) of \mathcal{G} ; i.e. ω belongs to $\wedge^2 \mathcal{H}^*$, the radical of ω is zero and ω is a 2-cocycle of \mathcal{H} with values in \mathbb{K} for the trivial representation of \mathcal{H} on \mathbb{K} .

Let us recall the argument of this well known lemma. Denote by $\underline{R}: \mathcal{G}^* \to \mathcal{G}$ the map defined by $\underline{R}(\alpha) := i(\alpha)R, \forall \alpha \in \mathcal{G}^*$. The condition [R, R] = 0 implies that $\mathcal{H} := Im\underline{R}$ is a subalgebra of \mathcal{G} , and that R is an element of $\wedge^2\mathcal{H}$. Furthermore \underline{R} induces an isomorphism (still denoted \underline{R}) $\mathcal{H}^* \to \mathcal{H}$. The element ω of $\wedge^2\mathcal{H}^*$ defined by

$$\omega(X,Y) = \langle R | \underline{R}^{-1} X \wedge \underline{R}^{-1} Y \rangle$$

is of maximal rank. Finally

$$\oint_{\alpha,\beta,\gamma} \omega([\underline{R}\alpha,\underline{R}\beta],\underline{R}\gamma) = \frac{1}{8} \langle [R,R] | \alpha \wedge \beta \wedge \gamma \rangle \quad \forall \alpha,\beta,\gamma \in \mathcal{H}^*$$

and hence ω is a 2-cocycle.

3 A family of symplectic nilpotent Lie algebras.

Let \mathcal{G} be the complex vector space generated by the elements $x, y, e_{i,j}; 0 \le i \le n, 0 \le j \le m$. We assume that n+m is odd and that $m \ge 4$. Define non vanishing brackets as:

$$[x, e_{i,j}] := e_{i,j+1}$$

 $[y, e_{i,j}] := a_i e_{i,j+3}$

(with the convention $e_{i,m+k} := 0, k > 0$). We assume that at least one of the (n+1) complex numbers a_i is different from zero. Define the element ω of $\wedge^2 \mathcal{G}$ by

$$\omega(x,y) := 1$$
 and $\omega(e_{i,j}, e_{i',j'}) = (-1)^{i+j} \delta_{i',n-i} \delta_{j',m-j}$

The 2-form ω is antisymmetric as n+m is odd; it is a 2-cocycle provided $a_i=a_{n-i}$. The p-th element of the central descending series of \mathcal{G} , $\mathcal{G}^{(p)}(1\leq p\leq m)$ is $\rangle e_{i,j}; 0\leq i\leq n, p\leq j\leq m\langle$, the centralizer of $\mathcal{G}^{(m-3)}$ is $\rangle e_{i,j}; 0\leq i\leq n, 0\leq j\leq m\langle$ and the centralizer of $\mathcal{G}^{(m-2)}$ is $\rangle y, e_{i,j}; 0\leq i\leq n, 0\leq j\leq m\langle$. The linear map ad(y) [resp. $ad(x)^3$] induces a map A(y) [resp. A(x)] from $\mathcal{G}^{(m-3)}/\mathcal{G}^{(m-2)}\to \mathcal{G}^{(m)}$ which is invariantly defined up to a non zero complex multiple. Denote by $\{\lambda_0,\ldots,\lambda_q\}$ the solutions of the equation $rank(\lambda A(x)-A(y))< n+1$ and for each of these solutions λ_i define m_i its multiplicity $m_i:=n+1-rank(\lambda_i A(x)-A(y))$. All λ_i 's have even multiplicity if n is odd and if n is even there is exactly one λ_i which has odd multiplicity; we shall denote it λ_q . The point $[a_0,\ldots,a_n]$ of $\mathbb{P}^{\lfloor \frac{n}{2}\rfloor}(\mathbb{C})$ and the point $[\lambda_0,\ldots,\lambda_0,\ldots,\lambda_q,\ldots,\lambda_q]$ (λ_i appear with multiplicity $\lfloor \frac{m_i+1}{2} \rfloor$) belong to the same orbit of $Sym(\lfloor \frac{n+1}{2} \rfloor)$. The action of an element of $Sym(\lfloor \frac{n+1}{2} \rfloor)$ on a point x

of $\mathbb{P}^{\lfloor \frac{n}{2} \rfloor}(\mathbb{C})$ with homogeneous coordinates x_i $(o \leq i \leq \lfloor \frac{n}{2} \rfloor)$ is given by the standard action on the $\lfloor \frac{n+1}{2} \rfloor$ first coordinates. Hence

Proposition 3.1. The isomorphism class of the nilpotent algebra $\mathcal{G}_{(a)}$, $(a := (a_0, \ldots, a_n) \in \mathbb{C}^{n+1} \setminus \{0\})$ is determined by a point of complex projective space $\mathbb{P}^{\lfloor \frac{n}{2} \rfloor}(\mathbb{C})$. Two points give rise to isomorphic algebras if and only if they belong to the same orbit of $Sym(\lfloor \frac{n+1}{2} \rfloor)$ on $\mathbb{P}^{\lfloor \frac{n}{2} \rfloor}(\mathbb{C})$.

4 A family of solutions of the classical Yang-Baxter equation for sl((n+1)(m+2),C).

Let $\{f_{i,j}; 0 \leq i \leq n, 0 \leq j \leq m+1\}$ be a basis of $\mathbb{C}^{(n+1)(m+2)}$ and let ρ be the linear, faithful representation of $\mathcal{G}_{(a)}$ on $\mathbb{C}^{(n+1)(m+2)}$ given by

$$\begin{array}{rcl} \rho(x)f_{i,j} & := & f_{i,j+1} \\ \rho(y)f_{i,j} & := & a_i \ f_{i,j+3} \\ \rho(e_{i',j'})f_{i,j} & := & \delta_{i',i} \ \delta_{0,j} \ f_{i,j+j'+1} \end{array}$$

(with the convention $f_{i,m+1+k} := 0, k > 0$). The algebra $\rho(\mathcal{G}_{(a)})$ is a subalgebra of $sl((n+1)(m+2), \mathbb{C})$ isomorphic to $\mathcal{G}_{(a)}$. It is symplectic with respect to the transported symplectic form ω of $\mathcal{G}_{(a)}$. The corresponding solutions of the classical Yang-Baxter equation are given by

$$R_a = \rho(x) \wedge \rho(y) + \sum_{i,j} (-1)^{i+j} \rho(e_{i,j}) \wedge \rho(e_{n-i,m-j})$$
 (1)

Observe that a bialgebra structure on $sl(N,\mathbb{C})$ determines uniquely a element $r \in \Lambda^2(sl(N,\mathbb{C}))$. If r is a solution of the classical Yang-Baxter equation (cf 2) it is well known that there exists a unique minimal subalgebra \mathcal{H} of $sl(N,\mathbb{C})$ such that $r \in \Lambda^2(\mathcal{H})$; we shall call \mathcal{H} the support of r.

Proposition 4.1. Let R_a the solution of the classical Yang Baxter equation given by formula (1)

- 1. Let $K := \lfloor \frac{n+2}{2} \rfloor$. The support of R_a are isomorphic if and only if the projection of $(a_0, \ldots, a_{K-1}) \in \mathbb{C}^K \setminus \{0\}$ on $\mathbb{P}^{K-1}(\mathbb{C})/Sym(K)$ are identical. In particular if the projections are distinct, the corresponding bialgebras are non isomorphic.
- 2. Let Ω be the open dense subset of \mathbb{C}^K defined as follows. If $\phi: \mathbb{C}^K \to \mathbb{C}^{K(K-1)}:$ $(a_0,\ldots,a_{K-1}) \to ((1-\frac{a_i}{a_j}) \mid i \neq j)$ then $\Omega = \phi^{-1}(\mathbb{C}^{K(K-1)} \setminus (\cup_{i,j} \{(z_0,\ldots z_{K-1}) \mid z_i = z_j\} \cup_i \{(z_0,\ldots z_{K-1}) \mid z_i = 0\})$. Let $a,a' \in \Omega$ then the bialgebra structures definied by R_a and $R_{a'}$ are isomorphic if and only if the projection of $(a_0,\ldots,a_{K-1}) \in \mathbb{C}^K \setminus \{0\}$ on $(\mathbb{C}^K \setminus \{0\})/Sym(K)$ are identical.

5 Aknowledgement

We would like to thank S. Gutt for her valuable suggestions and the referee for helping us to state proposition 4.1 more precisely.

References

- [1] Drinfeld, V. G.: On constant quasiclassical solution of the Yang Baxter quantum equation. Soviet. Math. Dokl. 28, pp. 667-671 (1983)
- [2] Chari, V., Pressley, A.: A guide of Quantum Groups. Cambridge: University Press, 1994
- [3] Turaev, V.G., The Yang Baxter equation and invariant of links. Invent. Math. 92 pp. 527-553 (1988)

Département de Mathématique Université Libre de Bruxelles c.p.218 boulevard du Triomphe B 1050 Bruxelles.