An equation z = 2* + p(t) with no 2w-periodic
solutions

Dariusz Miklaszewski

Abstract

The Mawhin conjecture - that there exists a 2w-periodic p : R — C such
that 2 = 22 + p(t) has no 2m-periodic solutions - is confirmed by the use of
Fourier expansions.

In 1992 R.Srzednicki [4], [5] proved that for any 2m-periodic continuous
p : R — C the equation 2 = %%+ p(t) has a 2r-periodic solution. J.Mawhin
[3] conjectured that the similarly looking problem z = 22 + p(t) could have no
2m-periodic solutions for some p. The first example of such p was constructed by
J.Campos and R.Ortega [1]. This work was intended as an attempt to provide with
another example by the use of a quite different method. During the preparation of
this paper J.Campos [2] determined all the possible dynamics of this equation and
found other examples.

Conjecture 1 There exists Ry € [1,2] such that the equation

2 = 224 Re" (1)
has no 2m-periodic solutions for R = Ry.
Let us define the sequence
1 n—1
a =1, a, = — Z Akl (2)
=
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Conjecture 2 V,, ~ 1 a2 < ap_1a,11.
The main result of this paper is the following
Theorem 1 Conjecture 2 implies Conjecture 1.

The proof of this theorem will follow after two lemmas. It is easily seen that
equation (1) is formally solved by

o0

zr(t) = ;(—1)kieiktakRk. (3)

Lemma 1 Let Ry denote the radius of convergence of (3).
Then (i) Ry € [1,2],

(i) VRe(-Ro,ro) 2R 15 a 2m-periodic solution of (1),

(ZZZ) limRHRO ’i_lzR(W) = -+ o0.

Lemma 2 If Conjecture 2 is true then

(i) there is a seqence R, € (0, Ry) convergent to Ry such that the sequence zg, (0)
18 convergent,

(it) there exists limp_g,— S5 (—1)F+a,RF.

The lemmas will be proved later, now we use them to prove Theorem 1.

Proof of Theorem 1. To obtain a contradiction, suppose that there exists
s : R — C which is a 27-periodic solution of equation (1) for R = R;. A
standard argument shows that for R sufficiently close to Ry there exists the so-
lution sp : [0,27] — C of (1) with initial condition sg(0) = s(0). Moreover,
limp_p, sr(t) = s(t), uniformly in [0, 27]. Let R,, be the sequence from Lemma
2 and w = lim, . 25, (0). If s(0) = w then lim, . 2g,(t) = s(t), uniformly in
0, 27], contrary to Lemma 1 (iii). Thus s(0) # w and sg,(0) # zg,(0) for n > ny.
Functions sg,, zg, are two different solutions of Riccati equation (1). The stan-
dard computation shows that the function u, = ! is a solution of the linear

. . SR _ZR
equation © = —2zp,u — 1, so

n

n n

2 ™
Un(27T) = [un(o) _/ €2f0t ZRn(T)det] 6_2f02 2Ry, (T)dT
0
From (3) we obtain
21 t i .
/ zr, (T)dT =0, / 2R, (T)dT = cop + Y Chne™,
0 0 =
where co, = — Y00 Chns Chn = (—1)’“%%]%7’2. Thus

U (0) — up, (27) = 2mwe?eon,

According to Lemma 2 (ii) lim, .o 2me*®n > 0, but lim, .o (u,(0) — u,(27)) =

8(0§_w — 3(273)—w = 0, a contradiction.
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Proof of Lemma 1. Taking b, (R) = a,R" we can rewrite (2) as
1 n—1

bi(R) = R, byl Z bi(R) bu_i(R).

Consider numbers R > 0, n > 1 and suppose that

bn(R) < C;R) , if only (6)
In(n—1)+1 1
0 S0 (7)

Consider R = 1 and take C'(1) = 1. In this case we have (7) for every n > 5,
(4) for n = 5 and (5), (6) for every n > 1, by induction. Consequently the series
>0 1 bu(1) is convergent and Ry > 1. The easy induction shows that b,(2) > 2
for every n, so Ry < 2, which gives (i). Since (ii) is evident, it remains to prove
(iii) -that limp_g, 52, axR* = 4oo. It suffices to show that Y30, bip(Ry) =
+00, because a; > 0. Conversely, suppose that >3, bg(Ro) < +oo. It follows
that (352, bk(Ro)) S, Sr ] b (Ro) b (Ro) = %5 n - by(Ry) < 400. Hence

Vb (Ro) < Choose ng such that M < 1 for n > ng. Take R; > Ry
satisfying bk(Rl) € for every k < no. TLet C(Rl) = C. Then (7) holds for

every n > ng, (4) - for n = ng and (5),(6) hold for every n > 1. This shows
that >0°, b,(R1) is convergent, which contradicts the fact that Ry is the radius of
convergence.

Proof of Lemma 2. By Conjecture 2, the sequence “*** is increasing. Therefore

lzmn_)ooag L — I ,an+1R0+ < a,Ry. If limy,—ocan, R = O then according to the

Abel theorem we have

ol n0) =i lim Stk =30 (-)

The same argument shows (ii). Now assume that lim, . a,Rj > 0. Let

x
2 ont1
r=—a1 Ry + Z (a2nR0n — agp Rg™ ) ,

n=1

o0

= Z (—agn_1R3”_1 + aangn) )
n—1

rr=—a1 R+ Z (agn — agni1Ro) R*™,

n=1
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YR = Z (—agn_1 + ag,Ro) R 1.
n=1
By Abel theorem, limp .p,— g = 2« and limp_.p,—yr = y. Moreover, zp <

S22 (—=1)*apR* < yg for R € (0, Ry), which gives (i).
Remark 1 Ry = 1.445796...

Remark 2 Using a new variable s = zﬂ?ﬁ one can prove that (1) has a 2w-periodic
solution for some R > Ry.
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