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Abstract

We prove that one characterization for the classical orthogonal polynomials
sequences (Hermite, Laguerre, Jacobi and Bessel) cannot be extended to the
semi-classical ones.

1 Introduction

Recently, in [6] were established new characterizations of the classical monic orthog-

onal polynomials sequences (MOPS). In that work, the authors consider as a starting
point the Pearson’s equation in a distributional sense. It is well known that most
of this characterizations can be extended for semi-classical MOPS (see [2, 4, 11]).
Following another point of view we will prove that:
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• The Proposition 3.3 of [6]:

– Let {Pn} be a MOPS. A necessary and sufficient condition for {Pn} be-
longs to one of the classical families is

Pn =
P ′n+1

n+ 1
+

n∑
k=n−1

an,k
P ′k
k

, n ≥ 2

needs of additional hypothesis on the parameters of the structure formula.

• This result cannot be extended to semi-classical MOPS of class s.

Before proving these results we will study some problems related to them. We will
begin by introducing some algebraic concepts that we will use in this work (see [7,
12]). Let {pn} be a MPS, i.e. pn = xn+. . ., n ∈ N. We can define the dual basis, {αn}
in P?, the algebraic dual space of P, the linear space of polynomials with complex
coefficients, as 〈αn, pm〉 = δn,m, where 〈., .〉 means the duality bracket and δn,m is
the Kronecker symbol. Now, if v ∈ P?, it can be expressed by v =

∑
i∈N〈v, pi〉αi.

Definition 1 For every polynomial φ(x) a new linear functional can be introduced
from v. This functional is called the left product of v by φ:

〈φ(x)v, p(x)〉 = 〈v, φ(x)p(x)〉, ∀p(x) ∈ P.

Definition 2 The usual distributional derivative of v is given by

〈Dv, p(x)〉 = −〈v, p′(x)〉, ∀p(x) ∈ P.

So, we can state (see [12]):

• If v ∈ P? is such that 〈v, pi〉 = 0, i ≥ l then

v =
l−1∑
i=0

〈v, pi〉αi (1)

• If {α′n} is the dual basis associated with the MPS {P
′
n+1

n+1
} then

D(α′n) = −(n+ 1)αn+1, n ∈ N (2)

Definition 3 Let {Pn} be a MPS; we say that {Pn} is orthogonal with respect to
the quasi-definite linear functional u if 〈u, Pn(x)Pm(x)〉 = Knδn,m with Kn 6= 0 for
n,m ∈ N.

We say that u is positive definite if Kn > 0, n ∈ N.
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Furthermore,

• {Pn} satisfies the following three term recurrence relation (TTRR)

xPn(x) = Pn+1(x) + βnPn(x) + γnPn−1(x) for n = 1, 2, . . .
P0(x) = 1, P1(x) = x− β0.

(3)

where (βn) and (γn) are two sequences of complex numbers with γn+1 6= 0 in
the quasi-definite case and γn+1 > 0, (βn) ⊂ R in the positive definite case,
for n ∈ N.

• The elements of the dual basis {αn} associated with {Pn} can be written as

αn =
Pnu

〈u, P 2
n〉

, n ∈ N (4)

Now we state the basic definition which will be used along this paper:

Definition 4 Let {pn} be a MPS and u be a quasi-definite linear functional; we
say that pn is quasi-orthogonal of order s with respect to u if

〈u, pmpn〉 = 0, |n−m| ≥ s+ 1

∃r ≥ s : 〈u, pr−spr〉 6= 0.

Remark A quasi-orthogonal MPS of order 0 is orthogonal in the above sense. In
fact, if 〈u, P 2

r 〉 6= 0 then 〈u, P 2
r 〉 = γr〈u, P 2

r−1〉.

The following definition was given by Ronveaux (see [13]) and Maroni (see [11]):

Definition 5 Let {Pn} be a MOPS with respect to the quasi-definite linear func-
tional u; we say that {Pn} is semi-classical of class s if there exists φ ∈ Ps+2 such

that {P
′
n+1

n+1
} is quasi-orthogonal of order s with respect to φu.

If s = 0 we say that {Pn} is classical.

The canonical expressions of φ, dµ: 〈u, xn〉 =
∫
I x

ndµ(x), n ∈ N, where I is a
complex contour and dµ a complex measure, and the coefficients of the TTRR for
the classical MOPS (Hermite, Hn, Laguerre, Lαn, Jacobi, Pα,β

n and Bessel, Bα
n ) are

presented in the Tables 1, 2 (see Ismail and al. [9]).

Notation In Table 1:

• Ψ is the Tricomi function (see [8, Chapter 6]).

• S(R) = {z ∈ C : |z| = R, exp(−R2) ≤ arg(z) ≤ 2π − exp(−R2)}.

• Xα,β = [Γ(α + β + 2)(z − 1)]−1
2F1

(
1, α+ 1
α+ β + 2

∣∣∣∣∣ 2/1− z
)
.

• {z ∈ C : |z − 1| > 2} ⊂ C.



4 A. Branquinho

Pn φ dµ I Restrictions

Hn 1 exp(−x2) R
Lαn x −Ψ(1, 1− α,−z) S(R) α 6= −1,−2, . . .
Pα,β
n 1− x2 2α+β+1Γ(α + 1)Γ(β + 1)Xα,β C α, β 6= −1,−2, . . .

Bα
n x2 xα exp(−2/x) unit circle α 6= −1,−2, . . .

Table 1:

Pn βn γn+1

Hn 0 n+1
2

Lαn 2n + α+ 1 (n+ 1)(n+ α + 1)

Pα,β
n

β2−α2

(2n+α+β)(2n+α+β+2)
4(n+1)(n+α+1)(n+β+1)(n+α+β+1)

(2n+α+β+1)(2n+α+β+2)2(2n+α+β+3)

Bα
n

−2α
(2n+α)(2n+α+2)

−4(n+1)(n+α+1)
(2n+α+1)(2n+α+2)2(2n+α+3)

Table 2:

2 Classical Case

From Definition 5, {Pn} is a classical MOPS if and only if {P
′
n+1

n+1
} is a MOPS. In

[6] we gave another characterization of these MOPS:

Theorem 6 Let {Pn} be a MOPS. A necessary and sufficient condition for {Pn}
belongs to one of the classical families is

Pn =
P ′n+1

n + 1
+

n∑
k=n−1

an,k
P ′k
k

, n ≥ 2

with an,n−1 6= (n− 1)γn for n ≥ 2.

Proof. Since {Pn} is a MOPS

xPn(x) = Pn+1(x) + βnPn(x) + γnPn−1(x) for n = 1, 2, . . .
P0(x) = 1, P1(x) = x− β0.

So, we can take derivatives

Pn = P ′n+1 + βnP
′
n + γnP

′
n−1 − xP ′n

Now, consider

Pn =
P ′n+1

n+ 1
+

n∑
k=1

an,k
P ′k
k

and put this expression into the above

x
P ′n
n

=
P ′n+1

n+ 1
+ (βn −

an,n
n

)
P ′n
n

+
(n− 1)γn − an,n−1

n

P ′n−1

n − 1
− 1

n

n−2∑
k=1

an,k
P ′k
k
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Pn an+1,n+1 an+2,n+1

Hn 0 0
Lαn n+ 1 0

Pα,β
n

2(α−β)(1+n)
(2n+α+β+2)(2n+α+β+4)

4(n+1)(n+2)(n+α+2)(n+β+2)
(2n+α+β+3)(2n+α+β+4)2(2n+α+β+5)

Bα
n

4(n+1)
(2n+α+2)(2n+α+4)

−4(n+1)(n+2)
(2n+α+3)(2n+α+4)2(2n+α+5)

Table 3:

Hence, {P
′
n+1

n+1
} is orthogonal if and only if

an,k = 0, for k = 1, 2, . . . , n− 2

an,n−1 6= (n− 1)γn, for k = 2, . . .

�

Remark This theorem has been established in [6] by the authors without any res-
trictions on the parameters, an,k, of the structure relation. This condition is only
important in the cases of Jacobi and Bessel.

From the last theorem we can state:

Corollary 7 Let {Pn} be a classical MOPS and (βn), (γn) the coefficients of the
TTRR, (3), that this MOPS satisfy. If we denote by (β ′n), (γ

′
n) the coefficients of

the TTRR that {P
′
n+1

n+1
} satisfy, i.e.

x
P ′n+1

n+ 1
=

P ′n+2

n+ 2
+ β ′n

P ′n+1

n+ 1
+ γ′n

P ′n
n

for n = 1, 2, . . .

P ′1
1

= 1,
P ′2
2

= x− β ′0.

then

an+1,n+1 = (n+ 1)(βn+1 − β ′n+1) (5)

an+2,n+1 = (n+ 1)γn+2 − (n + 2)γ′n+1 (6)

for n ∈ N.

Now, because {P
′
n+1

n+1
} is the MOPS with respect to φu, where φ is defined in Ta-

ble 1, we can calculate an+1,n+1, an+2,n+1 from (5), (6) and Table 2, and the result

is sumarized in Table 3.

3 Semi-classical Results

Here, we only state some results of the semi-classical polynomials that are extensions

of the well-known characterizations of the classical polynomials. They have been
stated by Maroni in [11] (see also Bonan and al. [3] and Branquinho and al. [5] for
the last characterization).
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Theorem 8 Let {Pn} be a MOPS with respect to the linear functional u. Then the
following statements are equivalent:

(a) {Pn} is semi-classical of class s;

(b) ∃φ, ψ ∈ P with deg φ ≤ s+ 2, degψ ≤ s+ 1 such that

φP ′n+1 + ψPn+1 =
n+s+2∑
k=n−s

bn,kPk, n ≥ s

and bn,n−s 6= 0, n ≥ s;

(c) ∃φ, ψ ∈ P with deg φ ≤ s+ 2, degψ ≤ s+ 1 such that

D(φu) = ψu

i.e. u is a semi-classical functional of class s;

(d) {P
′
n+1

n+1
} is quasi-orthogonal of order s with respect to φu.

(e) There exists a MOPS {Rn} with respect to a linear functional v such that

φR′n+1 =
n+p∑
k=n−s

λn,kPk, n ≥ s (7)

and λn,n−s 6= 0, n ≥ s.

Remark • This φ, ψ must satisfy the condition∏
c∈Zφ

(|rc|+ |〈ψcu, 1〉|) 6= 0

where Zφ is the set of zeros of φ and

φ(x) = (x− c)φc(x)
ψ(x) + φc(x) = (x− c)ψc(x) + rc(x)

like it was shown in [2].

• In [3] the authors prove that in (7) we can take R
(i)
n+1 with i ≥ 1 instead of

R′n+1. There they want to generalize the semi-classical definition of MOPS.

• In [5] the authors prove that if we have (7), {Rn} is also semi-classical and
there exists h ∈ P such that φ(x)u = h(x)v with

h(x) = 〈uy, φ(y)
[
P1(y)K

(0,1)
s+2 (x, y)− P1(x)K

(0,1)
s+1 (x, y)

]
〉

where K(r,s)
n (x, y) =

n∑
j=0

R
(r)
j (x)R

(s)
j (y)

〈v, R2
j〉

and by uy we mean the action of u over

the variable y for polynomials in two variables.
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First of all we try to explain why we have conjectured that the Theorem 6 could
be generalized to the semi-classical case. From now, we suppose that s ≥ 1.

Theorem 9 If {Pn} is a MOPS with respect to the linear functional u and verifies

Pn =
P ′n+1

n + 1
+

n∑
k=n−(s+1)

an,k
P ′k
k

, n ≥ s+ 2 (8)

with an,n−(s+1) 6= 0 then there exists φs+2 ∈ P with degφs+2 = s+ 2 such that

D(φs+2u) = P1u (9)

i.e. u is semi-classical of class s.

Proof. Let {αn} and {α′n} be the dual bases associated with {Pn} and {P
′
n+1

n+1
},

respectively. We can write

α′n =
∑
k≥n

λn,kαk

where

λn,k = 〈α′n, Pk〉 = 〈α′n,
P ′k+1

k + 1
+

n∑
j=k−(s+1)

ak,j
P ′j
j
〉

=


1 , k = n

ak,n+1 , k = n+ 1, n + 2, . . . , n+ s+ 2

0 , k = 0, . . . , n− 1

Hence, by (1)

α′n = αn +
s+2∑
k=1

an+k,n+1αn+k, n ∈ N

Put n = 0 in this expression and take derivatives we get after applying (2) and (4)

− P1

〈u, P 2
1 〉
u = D

(
(

1

〈u, 1〉 +
s+2∑
k=1

ak,1
Pk
〈u, P 2

k 〉
)u

)

so we have (9) where φs+2(x) = −〈u, P
2
1 〉

〈u, 1〉

(
1 +

s+2∑
k=1

ak,1∏k
j=1 γj

Pk

)
. �

Remark • We are tempted to search our MOPS, between the semi-classical
MOPS that the corresponding linear functionals verify (9). Belmehdi (see [1])
gave some examples of semi-classical MOPS, {Pn} associated with a linear
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functional, u, which verify (9) with s = 1. The linear functional u is defined
in terms of the classical linear functionals v by

(x− c)u = v

for some c ∈ C. In this case {Pn} can be written in terms of the MOPS
associated with v, {Rn}, by

Pn+1 = Rn+1 − an+1Rn, n ∈ N (10)

P0 = R0

where an+1 =
Rn+1(c;−u−1

0 )

Rn(c;−u−1
0 )

, u0 = 〈u, 1〉 and {Rn(x; d)} is the co-recursive

MOPS.

• Belmehdi has shown that in this case {Rn} cannot be the Hermite polynomials.

• The cases studied by Belmehdi are particular cases of (10).

Now, we can state the following result:

Theorem 10 If {Rn} is a classical MOPS, then the MOPS {Pn} with respect to
u defined by (10) are semi-classical of class ≤ 1 but cannot be expressed by a finite

linear combination of consecutives derivatives of elements of this family.

Proof. The semi-classical character has been proved by Belmehdi in [1].

From theorem 6

Rn =
R′n+1

n+ 1
+

n∑
k=n−1

an,k
R′k
k

, n ≥ 2

with an,n−1 6= (n − 1)γn for n ≥ 2; then, put this into (10) and get after some
calculations

Pn+1 =
P ′n+2

n+ 2
+ sn+1

P ′n+1

n+ 1
+ tn+1

P ′n
n
− (an+1an,n−1 −

(n− 1)tn+1an
n

)
R′n−1

n − 1

where

sn+1 = an+1,n+1 − an+1 +
(n+ 1)an+2

n+ 2

tn+1 = an+1,n − an+1an,n +
nsn+1an+1

n + 1

for n ∈ N where an is defined by (10) and an,n, an,n−1 are given in Table 3. �
Now we can see when we can reduce the class of the semi-classical orthogonal

polynomials to the classical ones.
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Corollary 11 In the conditions of the last theorem we have that, {Pn} is a clas-
sical MOPS if and only if

an+3an+2,n+1 − n+1
n+2

tn+2an+2 = 0

tn+1 6= (n+ 1)γn+2

for n ∈ N.

Remark Here we have an example of semi-classical MOPS of class one, with re-
spect to a linear functional which verify (9) and cannot be expressed as a linear
combination of four consecutive derivatives.

If {Pn} is a MOPS with respect to the linear functional u and u verifies (9) then
{Pn} is a sequence of Generalized Jacobi polynomials, as can be seen in the Magnus
work [10].

An example of a generalized Jacobi MOPS {Pn} such that

Pn =
P ′n+1

n+ 1
+

n∑
k=1

an,k
P ′k
k

with an,k 6= 0 for k = 1, . . . , n was given by Magnus with a aid of a computer.

From this we can suspect that there aren’t MOPS that can be expanded as a
linear combination of four consecutives derivatives.

4 Main Problem

Here we will prove that there aren’t MOPS that verify (8) and (9) with an,n−(s+1) 6= 0
and s ≥ 1. We only prove this result for s = 1 but the same is true for any s > 1.
First of all we state the following results:

Lemma 12 If {Pn} is a MOPS with respect to the linear functional u and verifies

the TTRR (3) then

(a) γn+1 =
〈u, xn+1Pn+1〉
〈u, xnPn〉

, n ∈ N;

(b)
〈u, xn+1Pn〉
〈u, xnPn〉

=
n∑
k=0

βk, n ∈ N, n ∈ N.

Proof. See Chihara [7].
We know that if {Pn} is a MOPS then can be represented by

Pn(x) = xn −
n−1∑
k=0

βkx
n−1 +

 ∑
0≤i<j≤n−1

βiβj −
n−1∑
k=1

γk

 xn−2 + . . .



10 A. Branquinho

Now, if we put this expression in βn = 〈u,xP 2
n〉

〈u,P 2
n〉

we get

βn =
〈u, x(xn −∑n−1

k=0 βkx
n−1 + . . .)Pn〉

〈u, P 2
n〉

=
〈u, xn+1Pn〉
〈u, P 2

n〉
−

n−1∑
k=0

βk

i.e. (b). To get (a) we only have to multiply (3) by Pn−1 and apply u to the resulting
equation. �

Lemma 13 Let {Pn} is a semi-classical MOPS of class 1 with respect to the linear
functional u; if u verifies D(φu) = P1u where φ(x) = a0x

3 + a1x
2 + a2x + a3 with

a0 6= 0 then:

(a) 〈φu, Pn−1P
′
n+1〉 = −a0(n− 1)〈u, P 2

n+1〉, n ≥ 1;

(b) 〈φu, PmP ′n+1〉 = 0, 0 ≤ m ≤ n− 2, n ≥ 2 or m ≥ n+ 4;

(c) 〈φu, PnP ′n+1〉 = −(a0(n(βn + βn+1) +
n−1∑
k=0

βk) + na1 + 1)〈u, P 2
n+1〉, n ∈ N.

Proof. If we substitute in the Definition 4, pn by
P ′n+1

n+1
, u by φu and s by 1, we

obtain

〈φu, P ′m+1P
′
n+1〉 = 0, |n−m| ≥ 2

∃r ≥ 1 : 〈φu, P ′rP ′r+1〉 6= 0.

But {P
′
n+1

n+1
} is a MPS so we can write these conditions like

〈φu, PmP ′n+1〉 = 0, 0 ≤ m ≤ n− 2, n ≥ 2 or m ≥ n+ 4 (11)

∃r ≥ 1 : 〈φu, Pr−1P
′
r+1〉 6= 0 (12)

Proof of (a). We know that Pr−1P
′
r+1 = (Pr−1Pr+1)

′ − P ′r−1Pr+1 so if we put this
expression in (12) we get

〈φu, Pr−1P
′
r+1〉 = −〈D(φu), Pr−1Pr+1〉 − 〈φu, P ′r−1Pr+1〉

= −〈P1u, Pr−1Pr+1〉 − a0〈u, P 2
r+1〉

= −a0〈u, P 2
r+1〉

Proof of (c). Put m = n in (11), using the same technique and the Lemma 12 we
get

〈φu, PnP ′n+1〉 = −〈u, P 2
n+1〉 −

n〈u, (a0x
3 + a1x

2)(nxn−1 − (n− 1)
n−1∑
k=0

βkx
n−2 + . . .)Pn+1〉

= −(a0(n(βn + βn+1) +
n−1∑
k=0

βk) + na1 + 1)〈u, P 2
n+1〉

Note that (b) coincides with (11). �
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Now, we are able to state:

Theorem 14 Let {Pn} is a semi-classical MOPS of class 1 with respect to the linear

functional u and u verifies D(φu) = P1u where φ(x) = a0x
3 + a1x

2 + a2x+ a3 with
a0 6= 0; then it admits the following representation in terms of its derivatives

Pn =
P ′n+1

n+ 1
+

n∑
k=2

bn,k
P ′k
k

(13)

for n ∈ N with bn,2 6= 0.

Proof. The procedure that we use for proving this assertion is the following:

• Multiply sucessively (13) by Pj with j = 0, 1, . . . , n− 4 and apply φu on each
sides of the resulting equation.

Hence, for j = 0 we get

0 = bn,1〈φu, P ′1〉+
bn,2
2
〈φu, P ′2〉+

bn,3
3
〈φu, P ′3〉

= −bn,1〈u, P 2
1 〉 −

bn,2
2
〈u, P2P1〉 −

bn,3
3
〈u, P3P1〉

i.e. bn,1 = 0.
For j = 1, and using the same technique, we get bn,3

3
= −1+a1+a0(β0+β1+β2)

a0γ3

bn,2
2

.

Procedure in the same way until j = n − 4. At that time you will get bn,n−2 given
in terms of bn,2.
Now if you consider bn,2 = 0 you have that bn,k = 0, for k = 2, . . . , n − 2, i.e. {Pn}
is a classical MOPS, in a contradiction with the hypothesis of the theorem. �

As a conclusion, we can state:

Theorem 15 If {Pn} is a MPS that verifies (8) with an,n−(s+1) 6= 0 for n ≥ s + 2
and s don’t depend on n then {Pn} is a MOPS if and only if s = 0.

Remark If we put the expression (13) in the derivative of (3), like we have done

in Theorem 6, we get the following relation for the derivatives

x
P ′n
n

=
P ′n+1

n + 1
+ (βn −

bn,n
n

)
P ′n
n

+
(n− 1)γn − bn,n−1

n

P ′n−1

n− 1
−

n−2∑
k=2

bn,k
n

P ′k
k

valid for n ≥ 1.

References
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